Skip to main content

Light Reflectance Spectroscopy and Autofluorescence (Kidney and Prostate)

  • Chapter
  • First Online:
Book cover Advances in Image-Guided Urologic Surgery

Abstract

Quantitative spectroscopy has been scientifically investigated since the 1800s, but application of spectroscopic techniques in medical diagnosis is relatively recent. Light reflectance and autofluorescence spectroscopy in the kidney and prostate have undergone extensive preclinical evaluation over the past decade. Initial promising findings with regard to differentiation of malignant from benign tissues and in characterization of tissue response to ischemia among others have been reported in select preclinical studies. However, limitations of current spectroscopic equipment, in spectral data processing, and a dearth of in vivo studies of these techniques in appropriate experimental models have resulted in their restricted use to the experimental setting, pending further development and clinical evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richards-Kortum R, Sevick-Muraca E. Quantitative optical spectroscopy for tissue diagnosis. Annu Rev Phys Chem. 1996;47:555–606.

    Article  CAS  PubMed  Google Scholar 

  2. Evers D, Hendriks B, Lucassen G, Ruers T. Optical spectroscopy: current advances and future applications in cancer diagnostics and therapy. Future Oncol. 2012;8(3):307–20.

    Article  PubMed  Google Scholar 

  3. Monici M. Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev. 2005;11:227–56.

    Article  CAS  PubMed  Google Scholar 

  4. Rajaram N, Aramil TJ, Lee K, Reichenberg JS, Nguyen TH, Tunnell JW. Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy. Appl Opt. 2010;49(2):142–52.

    Article  PubMed Central  PubMed  Google Scholar 

  5. de Veld DC, Skurichina M, Witjes MJ, Duin RP, Sterenborg HJ, Roodenburg JL. Autofluorescence and diffuse reflectance spectroscopy for oral oncology. Lasers Surg Med. 2005;36(5):356–64.

    Article  PubMed  Google Scholar 

  6. Bigio IJ, Bown SG, Briggs G, Kelley C, Lakhani S, Pickard D, et al. Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results. J Biomed Opt. 2000;5(2):221–8.

    Article  CAS  PubMed  Google Scholar 

  7. Fawzy Y, Zeng H. Intrinsic fluorescence spectroscopy for endoscopic detection and localization of the endobronchial cancerous lesions. J Biomed Opt. 2008;13(6):064022.

    Article  PubMed  Google Scholar 

  8. Fawzy YS, Petek M, Tercelj M, Zeng H. In vivo assessment and evaluation of lung tissue morphologic and physiological changes from non-contact endoscopic reflectance spectroscopy for improving lung cancer detection. J Biomed Opt. 2006;11(4):044003.

    Article  PubMed  Google Scholar 

  9. Cardenas-Turanzas M, Freeberg JA, Benedet JL, Atkinson EN, Cox DD, Richards-Kortum R, et al. The clinical effectiveness of optical spectroscopy for the in vivo diagnosis of cervical intraepithelial neoplasia: where are we? Gynecol Oncol. 2007;107(1 Suppl 1):S138–46.

    Article  PubMed  Google Scholar 

  10. Georgakoudi I, Jacobson BC, Van Dam J, Backman V, Wallace MB, Muller MG, et al. Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus. Gastroenterology. 2001;120(7):1620–9.

    Article  CAS  PubMed  Google Scholar 

  11. Fitzgerald JT, Demos S, Michalopoulou A, Pierce JL, Troppmann C. Assessment of renal ischemia by optical spectroscopy. J Surg Res. 2004;122(1):21–8.

    Article  PubMed  Google Scholar 

  12. Parekh DJ, Lin WC, Herrell SD. Optical spectroscopy characteristics can differentiate benign and malignant renal tissues: a potentially useful modality. J Urol. 2005;174(5):1754–8.

    Article  PubMed  Google Scholar 

  13. Bensalah K, Tuncel A, Peshwani D, Zeltser I, Liu H, Cadeddu J. Optical reflectance spectroscopy to differentiate renal tumor from normal parenchyma. J Urol. 2008;179(5):2010–3.

    Article  PubMed  Google Scholar 

  14. Bensalah K, Peswani D, Tuncel A, Raman JD, Zeltser I, Liu H, et al. Optical reflectance spectroscopy to differentiate benign from malignant renal tumors at surgery. Urology. 2009;73(1):178–81.

    Article  PubMed  Google Scholar 

  15. Couapel JP, Senhadji L, Rioux-Leclercq N, Verhoest G, Lavastre O, de Crevoisier R, et al. Optical spectroscopy techniques can accurately distinguish benign and malignant renal tumours. BJU Int. 2013;111(6):865–71.

    Article  PubMed  Google Scholar 

  16. Goetz AF, Vane G, Solomon JE, Rock BN. Imaging spectrometry for Earth remote sensing. Science. 1985;228(4704):1147–53.

    Article  CAS  PubMed  Google Scholar 

  17. Zuzak KJ, Schaeberle MD, Gladwin MT, Cannon 3rd RO, Levin IW. Noninvasive determination of spatially resolved and time-resolved tissue perfusion in humans during nitric oxide inhibition and inhalation by use of a visible-reflectance hyperspectral imaging technique. Circulation. 2001;104(24):2905–10.

    Article  CAS  PubMed  Google Scholar 

  18. Zuzak KJ, Schaeberle MD, Lewis EN, Levin IW. Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion. Anal Chem. 2002;74(9):2021–8.

    Article  CAS  PubMed  Google Scholar 

  19. Zuzak KJ, Francis RP, Wehner EF, Litorja M, Cadeddu JA, Livingston EH. Active DLP hyperspectral illumination: a noninvasive, in vivo, system characterization visualizing tissue oxygenation at near video rates. Anal Chem. 2011;83(19):7424–30.

    Article  CAS  PubMed  Google Scholar 

  20. Tracy CR, Terrell JD, Francis RP, Wehner EF, Smith J, Litorja M, et al. Characterization of renal ischemia using DLP hyperspectral imaging: a pilot study comparing artery-only occlusion versus artery and vein occlusion. J Endourol. 2010;24(3):321–5.

    Article  PubMed  Google Scholar 

  21. Best SL, Thapa A, Holzer MJ, Jackson N, Mir SA, Cadeddu JA, et al. Minimal arterial in-flow protects renal oxygenation and function during porcine partial nephrectomy: confirmation by hyperspectral imaging. Urology. 2011;78(4):961–6.

    Article  PubMed  Google Scholar 

  22. Holzer MS, Best SL, Jackson N, Thapa A, Raj GV, Cadeddu JA, et al. Assessment of renal oxygenation during partial nephrectomy using hyperspectral imaging. J Urol. 2011;186(2):400–4.

    Article  PubMed  Google Scholar 

  23. Best SL, Thapa A, Jackson N, Olweny EO, Holzer MJ, Park SK, et al. Renal oxygenation measurement during partial nephrectomy using hyperspectral imaging may predict acute post-operative renal function. J Endourol. 2013;27(8):1037–40.

    Article  PubMed  Google Scholar 

  24. Liu ZW, Faddegon S, Olweny EO, Best SL, Jackson N, Raj GV, et al. Renal oxygenation during partial nephrectomy: a comparison between artery-only occlusion versus artery and vein occlusion. J Endourol. 2013;27(4):470–4.

    Article  PubMed  Google Scholar 

  25. Olweny EO, Faddegon S, Best SL, Jackson N, Wehner EF, Tan YK, et al. Renal oxygenation during robot-assisted laparoscopic partial nephrectomy: characterization using laparoscopic digital light processing hyperspectral imaging. J Endourol. 2013;27(3):265–9.

    Article  PubMed  Google Scholar 

  26. Blanco F, Lopez-Mesas M, Serranti S, Bonifazi G, Havel J, Valiente M. Hyperspectral imaging based method for fast characterization of kidney stone types. J Biomed Opt. 2012;17(7):076027.

    Article  PubMed  Google Scholar 

  27. Wagnieres GA, Star WM, Wilson BC. In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol. 1998;68(5):603–32.

    Article  CAS  PubMed  Google Scholar 

  28. Fitzgerald JT, Michalopoulou A, Pivetti CD, Raman RN, Troppmann C, Demos SG. Real-time assessment of in vivo renal ischemia using laser autofluorescence imaging. J Biomed Opt. 2005;10(4):44018.

    Article  PubMed  Google Scholar 

  29. Michalopoulou AP, Fitzgerald JT, Troppmann C, Demos SG. Spectroscopic imaging for detection of ischemic injury in rat kidneys by use of changes in intrinsic optical properties. Appl Opt. 2005;44(11):2024–32.

    Article  PubMed  Google Scholar 

  30. Raman RN, Pivetti CD, Matthews DL, Troppmann C, Demos SG. A non-contact method and instrumentation to monitor renal ischemia and reperfusion with optical spectroscopy. Opt Express. 2009;17(2):894–905.

    Article  CAS  PubMed  Google Scholar 

  31. Tirapelli LF, Bagnato VS, Tirapelli DP, Kurachi C, Barione DF, Tucci Jr S, et al. Renal ischemia in rats: mitochondria function and laser autofluorescence. Transplant Proc. 2008;40(5):1679–84.

    Article  CAS  PubMed  Google Scholar 

  32. Tirapelli LF, Trazzi BF, Bagnato VS, Tirapelli DP, Kurachi C, da Costa MM, et al. Histopathology and laser autofluorescence of ischemic kidneys of rats. Lasers Med Sci. 2009;24(3):397–404.

    Article  PubMed  Google Scholar 

  33. Bellini MH, Coutinho EL, Courrol LC, Rodrigues de Oliveira Silva F, Vieira Junior ND, Schor N. Correlation between autofluorescence intensity and tumor area in mice bearing renal cell carcinoma. J Fluoresc. 2008;18(6):1163–8.

    Article  CAS  PubMed  Google Scholar 

  34. Arnfield MR, Chapman JD, Tulip J, Fenning MC, McPhee MS. Optical properties of experimental prostate tumors in vivo. Photochem Photobiol. 1993;57(2):306–11.

    Article  CAS  PubMed  Google Scholar 

  35. Svensson T, Alerstam E, Einarsdottir M, Svanberg K, Andersson-Engels S. Towards accurate in vivo spectroscopy of the human prostate. J Biophotonics. 2008;1(3):200–3.

    Article  CAS  PubMed  Google Scholar 

  36. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90(12):889–905.

    Article  CAS  PubMed  Google Scholar 

  37. Yu G, Durduran T, Zhou C, Zhu TC, Finlay JC, Busch TM, et al. Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light. Photochem Photobiol. 2006;82(5):1279–84.

    Article  CAS  PubMed  Google Scholar 

  38. Salomon G, Hess T, Erbersdobler A, Eichelberg C, Greschner S, Sobchuk AN, et al. The feasibility of prostate cancer detection by triple spectroscopy. Eur Urol. 2009;55(2):376–83.

    Article  PubMed  Google Scholar 

  39. Sharma V, Kashyap D, Mathker A, Narvenkar S, Bensalah K, Kabbani W, et al. Optical reflectance spectroscopy for detection of human prostate cancer. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:118–21.

    PubMed  Google Scholar 

  40. Sharma V, Patel N, Shen J, Tang L, Alexandrakis G, Liu H. A dual-modality optical biopsy approach for in vivo detection of prostate cancer in a rat model. J Innov Opt Health Sci. 2011;4(3):269–77.

    Article  Google Scholar 

  41. Akbari H, Halig LV, Schuster DM, Osunkoya A, Master V, Nieh PT, et al. Hyperspectral imaging and quantitative analysis for prostate cancer detection. J Biomed Opt. 2012;17(7):076005.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Sharma V, Olweny EO, Kapur P, Cadeddu JA, Roehrborn CG, Liu H. Prostate cancer detection using combinded auto-flourescence and light reflectance spectroscopy: ex vivo study of a dual-modal optical technique. Biomedical Optical Express 5(5): doi: 10.1364/BOE.5.001512, May 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Cadeddu MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Olweny, E.O., Cadeddu, J.A. (2015). Light Reflectance Spectroscopy and Autofluorescence (Kidney and Prostate). In: Liao, J., Su, LM. (eds) Advances in Image-Guided Urologic Surgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1450-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1450-0_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1449-4

  • Online ISBN: 978-1-4939-1450-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics