Skip to main content

Maize Starch for Industrial Applications

  • Chapter
  • First Online:

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 9))

Abstract

Starch is used in many industrial applications as viscosifiers, emulsifiers, defoaming agents, for encapsulation, and as sizing agents. Starches are valued for their ability to impart textural characteristics and provide gelling or film formation. Much of the starch used for industrial purposes must be chemically or physically modified to improve performance or provide functional persistence. Increasingly, however, as the genetics behind starch biosynthesis are better understood, native starches can be selected to allow chemical or physical modification protocols to be optimized or to be more fully utilized as non-modified starches. This review discusses the types of starch commonly used in industry, the development and availability of specialty corn types, breeding methods used, and the challenges and potentials for new approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Palmer RF. The days when Oswego was a Major Great Lakes Port. Oswego Historian. 2010. http://oswegohistorian.org/2010/11/the-days-when-oswego-was-a-major-great-lakes-port/. Last accessed 20 Mar 2014.

  2. Collins GN. A new type of Indian Corn from China. Bur Plant Ind (Bull). 1909;161:1–30.

    Google Scholar 

  3. Li Y, Shi YS, Cao YS, Wang TY. A phenotypic diversity analysis of maize germplasm preserved in China. Maydica. 2002;47(2):107–14.

    Google Scholar 

  4. Tian M, Tan G, Liu Y, Rong T, Huang Y. Origin and evolution of Chinese waxy maize: evidence from the Globulin-1 gene. Genet Res Crop Evol. 2009;56(2):247–55.

    Article  CAS  Google Scholar 

  5. Collins GN, Kempton JH. Inheritance of endosperm texture in sweet × waxy hybrids of maize. Am Nat. 1914;48(574):584–94.

    Article  Google Scholar 

  6. Bregger T. Linkage in maize: the C aleurone factor and waxy endosperm. Am Nat. 1918;52:57–61.

    Article  Google Scholar 

  7. Weatherwax P. A rare carbohydrate in waxy maize. Genetics. 1922;7:568–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. CNN. “Corn Products (Fortune 1938).” FORTUNE Features RSS. Fortune, 1938. Web. 20 Mar 2014.CNN Money, Business New Blog. Fortune 1938 Retrospective Review, “Corn Products”. http://features.blogs.fortune.cnn.com/2012/08/19/corn-products-fortune-1938/. Accessed 20 Mar 2014.

  9. Tapicorn®. Bear Hybrids Corn Company, Decatur; 1947.

    Google Scholar 

  10. Vineyard ML, Bear RP, MacMasters MM, Deatherage WL. Development of “amylomaize” – corn hybrids with high amylose starch: I. Genetic considerations. Agron J. 1958;50(10):595–8.

    Article  Google Scholar 

  11. Bear RP, Vineyard ML, MacMasters MM, Deatherage WL. Development of “amylomaize” – corn hybrids with high amylose starch: II. Results of breeding efforts. Agron J. 1958;50(10):598–602.

    Article  Google Scholar 

  12. Foulon J. National Starch and Chemical Company: the first century. Saddle Brook, New Jersey: Raad Graphics Arts Incorporated, 2004.

    Google Scholar 

  13. US Grain Council. Value enhanced corn report 2005/6. 2006. http://www.agmrc.org/media/cms/USGC_Value_Enhanced_Corn_Report_200_08C7959C2B1E6.pdf. Accessed 20 Mar 2014.

  14. Klimek-Kopyra A, Szmigiel A, Zając T, Kidacka A. Some aspects of cultivation and utilization of waxy maize (Zea mays L. ssp. ceratina). Acta Agrobot. 2012;65(3):3–12.

    Article  Google Scholar 

  15. Bock AK, Lheureux K, Libeau-Dulos M, Nilsagard H, Rodriguez-Cerezo E. Report “Scenarios for co-existence of genetically modified, conventional and organic crops. (IPTS-JRC); 2002.

    Google Scholar 

  16. FAOSTAT. “GeoHive.” Maize (corn) production. GEOHIVE. 2010. http://www.geohive.com/charts/ag_maize.aspx. Accessed 20 Mar 2014.

  17. Tsai CY. The function of the waxy locus in starch synthesis in maize endosperm. Biochem Genet. 1974;11(2):83–96.

    Article  CAS  PubMed  Google Scholar 

  18. Nelson OE, Chourey PS, Chang MT. Nucleoside diphosphate sugar-starch glucosyl transferase activity of wx starch granules. Plant Physiol. 1978;62(3):383–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Boyer CD, Preiss J. Evidence for independent genetic control of the multiple forms of maize endosperm branching enzymes and starch synthases. Plant Physiol. 1981;67(6):1141–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Blanco M. 2010 annual report of the GEM project. Germplasm enhancement of maize. 2010. http://www.public.iastate.edu/~usda-gem/. Last accessed 20 Mar 2014.

  21. Shure M, Wessler S, Fedoroff N. Molecular identification and isolation of the Waxy locus in maize. Cell. 1983;35(1):225–33.

    Article  CAS  PubMed  Google Scholar 

  22. Wessler SR, Varagona MJ. Molecular basis of mutations at the waxy locus of maize: correlation with the fine structure genetic map. Proc Natl Acad Sci. 1985;82(12):4177–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Campbell MR, Jane JL, Pollak L, Blanco M, O’Brien A. Registration of maize germplasm line GEMS-0067. J Plant Reg. 2007;1(1):60–1.

    Article  Google Scholar 

  24. Chen T, Ning L, Liu X, Cui D, Zhang H, Li D, … Chen H. Development of functional molecular markers of I and IIb for the high amylose maize germplasm line GEMS-0067. Crop Sci 2013; 53(2): 482–90.

    Google Scholar 

  25. Xia H, Yandeau-Nelson M, Thompson D, Guiltinan M. Deficiency of maize starch-branching enzyme i results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination. BMC Plant Biol. 2011;11(1):95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Fergason V. High amylose and waxy corns. In: Hallauer AR, editor. Specialty corns. Boca Raton: CRC Press; 2001. p. 63–84.

    Google Scholar 

  27. Yangcheng H, Jiang H, Blanco M, Jane JL. Characterization of normal and waxy corn starch for bioethanol production. J Agric Food Chem. 2013;61(2):379–86.

    Article  CAS  PubMed  Google Scholar 

  28. Blandino M, Reyneri A. Comparison between normal and waxy maize hybrids for Fusarium-toxin contamination in NW Italy. Maydica. 2007;52(2):127.

    Google Scholar 

  29. Santiago R, Cao A, Malvar RA, Reid LM, Butrón A. Assessment of corn resistance to fumonisin accumulation in a broad collection of inbred lines. Field Crop Res. 2013;149:193–202.

    Article  Google Scholar 

  30. High Plains Journal. Pioneer releases new hybrids for 2008. High Plains Journal, 17 Mar 2008. Web. 20 Mar 2014.

    Google Scholar 

  31. Brookes G. Global economic impact biotech crop global economic impact of transgenic/biotech crops biotech crop (1996–2008). In: Sustainable food production. New York: Springer; 2013. p. 871–912.

    Chapter  Google Scholar 

  32. Brookes G, Barfoot P. The global income and production effects of genetically modified (GM) crops 1996–2011. GM Crops Food Biotechnol Agric Food Chain. 2013;4(1):74–83.

    Article  Google Scholar 

  33. Fernandez-Cornejo J, Wechsler SJ. USDA Economic Research Service-Bt Corn Adoption by US Farmers Increases Yields and Profits. 2013

    Google Scholar 

  34. Liu D, Parker ML, Wellner N, Kirby AR, Cross K, Morris VJ, Cheng F. Structural variability between starch granules in wild type and in ae high-amylose mutant maize kernels. Carbohydr Polym. 2013;97(2):458–68.

    Article  CAS  PubMed  Google Scholar 

  35. Kötting O, Kossmann J, Zeeman SC, Lloyd JR. Regulation of starch metabolism: the age of enlightenment? Curr Opin Plant Biol. 2010;13(3):320–8.

    Article  Google Scholar 

  36. Liu F, Makhmoudova A, Lee EA, Wait R, Emes MJ, Tetlow IJ. The amylose extender mutant of maize conditions novel protein–protein interactions between starch biosynthetic enzymes in amyloplasts. J Exp Bot. 2009;60(15):4423–40.

    Article  CAS  PubMed  Google Scholar 

  37. Guan S, Wang P, Liu H, Liu G, Ma Y, Zhao L. Production of high-amylose maize lines using RNA interference in sbe2a. Afr J Biotechnol. 2011;10:15229–37.

    Article  CAS  Google Scholar 

  38. Wei C, Qin F, Zhou W, Xu B, Chen C, Chen Y, … Liu Q. Comparison of the crystalline properties and structural changes of starches from high-amylose transgenic rice and its wild type during heating. Food Chem. 2011; 128(3): 645–652.

    Google Scholar 

  39. Sestili F, Janni M, Doherty A, Botticella E, D’Ovidio R, Masci S, … Lafiandra D. Increasing the amylose content of durum wheat through silencing of the SBEIIa genes. BMC Plant Biol. 2010; 10(1): 144.

    Google Scholar 

  40. Carciofi M, Blennow A, Jensen SL, Shaik SS, Henriksen A, Buléon A, … Hebelstrup KH. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules. BMC Plant Biol. 2012; 12(1): 223.

    Google Scholar 

  41. Schwall GP, Safford R, Westcott RJ, Jeffcoat R, Tayal A, Shi YC, … Jobling SA. Production of very-high-amylose potato starch by inhibition of SBE A and B. Nat Biotechnol. 2000; 18(5): 551–54.

    Google Scholar 

  42. Shimada T, Otani M, Hamada T, Kim SH. Increase of amylose content of sweet potato starch by RNA interference of the starch branching enzyme II gene (IbSBEII). Plant Biotechnol. 2006;23(1):85–90.

    Article  CAS  Google Scholar 

  43. Slattery CJ, Kavakli IH, Okita TW. Engineering starch for increased quantity and quality. Trends Plant Sci. 2000;5(7):291–8.

    Article  CAS  PubMed  Google Scholar 

  44. Morell MK, Myers AM. Towards the rational design of cereal starches. Curr Opin Plant Biol. 2005;8(2):204–10.

    Article  CAS  PubMed  Google Scholar 

  45. Hennen-Bierwagen TA, Lin Q, Grimaud F, Planchot V, Keeling PL, James MG, Myers AM. Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: a model for regulation of carbon allocation in maize amyloplasts. Plant Physiol. 2009;149(3):1541–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Kötting O, Kossmann J, Zeeman SC, Lloyd JR. Regulation of starch metabolism: the age of enlightenment? Curr Opin Plant Biol. 2010;13(3):320–8.

    Article  Google Scholar 

  47. Pérez S, Bertoft E. The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch‐Stärke. 2010;62(8):389–420.

    Article  Google Scholar 

  48. Sonnewald U, Kossmann J. Starches – from current models to genetic engineering. Plant Biotechnol J. 2013;11(2):223–32.

    Article  CAS  PubMed  Google Scholar 

  49. Stitt M, Zeeman SC. Starch turnover: pathways, regulation and role in growth. Curr Opin Plant Biol. 2012;15(3):282–92.

    Article  CAS  PubMed  Google Scholar 

  50. Holder DG, Glover DV, Shannon JC. Interaction of shrunken-2 with five other carbohydrate genes in corn endosperm. Crop Sci. 1974;14(5):643–6.

    Article  Google Scholar 

  51. Sanders EB, Thompson DB, Boyer CD. Thermal behavior during gelatinization and amylopectin fine structure for selected maize genotypes as expressed in four inbred lines. Cereal Chem. 1990;67(6):594–602.

    CAS  Google Scholar 

  52. Wang YJ, White P, Pollak L, Jane J. Characterization of starch structures of 17 maize endosperm mutant genotypes with Oh43 inbred line background. Cereal Chem. 1993;70:171–9.

    CAS  Google Scholar 

  53. Shi YC, Seib PA. Fine structure of maize starches from four wx-containing genotypes of the W64A inbred line in relation to gelatinization and retrogradation. Carbohydr Polym. 1995;26(2):141–7.

    Article  CAS  Google Scholar 

  54. Klucinec JD, Thompson DB. Fractionation of high-amylose maize starches by differential alcohol precipitation and chromatography of the fractions. Cereal Chem. 1998;75(6):887–96.

    Article  CAS  Google Scholar 

  55. Liu Q, Thompson DB. Retrogradation of du wx and su2 wx maize starches after different gelatinization heat treatments. Cereal Chem. 1998;75(6):868–74.

    Article  CAS  Google Scholar 

  56. Yao Y. WIPO patent no. 2013019977. Geneva: World Intellectual Property Organization; 2013.

    Google Scholar 

  57. Huang L, Yao Y. Particulate structure of phytoglycogen nanoparticles probed using amyloglucosidase. Carbohydr Polym. 2011;83(4):1665–71.

    Article  CAS  Google Scholar 

  58. Wang Z, Chen X, Wang J, Liu T, Liu Y, Zhao L, Wang G. Increasing maize seed weight by enhancing the cytoplasmic ADP-glucose pyrophosphorylase activity in transgenic maize plants. Plant Cell Tiss Org Cult. 2007;88(1):83–92.

    Article  CAS  Google Scholar 

  59. Hannah LC, Futch B, Bing J, Shaw JR, Boehlein S, Stewart JD, … Greene T. A shrunken-2 transgene increases maize yield by acting in maternal tissues to increase the frequency of seed development. Plant Cell Online. 2012; 24(6): 2352–363.

    Google Scholar 

  60. Li J, Baroja-Fernández E, Bahaji A, Muñoz FJ, Ovecka M, Montero M, … Pozueta-Romero J. Enhancing sucrose synthase activity results in increased levels of starch and ADP-glucose in maize (Zea mays L.) seed endosperms. Plant Cell Physiol. 2013;54(2): 282–94.

    Google Scholar 

  61. Gao M, Wanat J, Stinard PS, James MG, Myers AM. Characterization of dull1, a maize gene coding for a novel starch synthase. Plant Cell Online. 1998;10(3):399–412.

    Article  CAS  Google Scholar 

  62. Campbell MR, White PJ, Pollak LM. Dosage effect at the sugary-2 locus on maize starch structure and function. Cereal Chem. 1994;71(5):464–8.

    CAS  Google Scholar 

  63. Shogren RL. Starch polymer as advanced material for industrial and consumer products. In: Ahmed J, Tiwari BK, Imam SH, Rao MA, editors. Starch-based polymeric materials and nanocomposites: chemistry, processing, and applications. Boca Raton: CRC Press; 2012. p. 287–99.

    Chapter  Google Scholar 

  64. Nahampun HN, Lee CJ, Jane JL, Wang K. Ectopic expression of bacterial amylopullulanase enhances bioethanol production from maize grain. Plant Cell Rep. 2013;32(9):1393–405.

    Article  CAS  PubMed  Google Scholar 

  65. Benchimol LL, Souza Jr CLD, Souza APD. Microsatellite-assisted backcross selection in maize. Genet Mol Biol. 2005;28(4):789–97.

    Article  Google Scholar 

  66. Jiang L, Yu X, Qi X, Yu Q, Deng S, Bai B, Li N, et al. Multigene engineering of starch biosynthesis in maize endosperm increases the total starch content and the proportion of amylose. Transgenic Res. 2013;22(6):1133–42.

    Article  CAS  PubMed  Google Scholar 

  67. Schmitz TG, Schmitz A, Moss CB. The economic impact of StarLink corn. Agribusiness. 2005;21(3):391–407.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad M. Ostrander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ostrander, B.M. (2015). Maize Starch for Industrial Applications. In: Cruz, V.M.V., Dierig, D.A. (eds) Industrial Crops. Handbook of Plant Breeding, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1447-0_9

Download citation

Publish with us

Policies and ethics