Skip to main content

Camelina sativa: For Biofuels and Bioproducts

  • Chapter
  • First Online:
Industrial Crops

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 9))

Abstract

Oilseed crops have the potential to increase the stability and sustainability of American agriculture by replacing a portion of the fossil fuels consumed by this sector. There are several candidate oilseed species that have been identified as compatible with a dryland winter wheat-fallow rotation. Of these species, Camelina sativa has been previously identified as being a promising species for drought-prone areas of the American High Plains. This is due to its short growing season, drought tolerance, cold tolerance, and resistance to many of the insect and pest species that cause yield reductions in other Brassica oilseed species. Camelina seed oil has high concentrations (30–40 %) of linolenic fatty acid (C18:3), which is a valuable product and also improves the cold-flow properties of the feedstock oil. Camelina is a native of Europe, and breeding efforts have so far focused on optimizing the varieties to produce high yields in agricultural regions of the United States and Europe. Breeding and research efforts have created linkage maps and identified QTL for yield, agronomic characteristics, and oil characteristics. Researchers have also found success in creating transgenic varieties of camelina, which could greatly facilitate the optimization of the oil profile for use as a feedstock for industrial oils and as a biofuel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zubr J. Oil-seed crop: Camelina sativa. Ind Crops Prod. 1997;6(2):113–9.

    Article  Google Scholar 

  2. Frohlich A, Rice B. Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind Crops Prod. 2005;21:25–31.

    Article  CAS  Google Scholar 

  3. Enjalbert JN, Johnson JJ. Guide for producing dryland camelina in Eastern Colorado. Colorado State University extension factsheet no. 0.709. 2011. http://www.ext.colostate.edu/pubs/crops/00709.pdf. Accessed 26 June 2013.

  4. Robinson RG. Camelina: a useful research crop and a potential oilseed crop, Station bulletin, vol. 579. St. Paul: Minnesota Agricultural Research Station; 1987.

    Google Scholar 

  5. Lafferty RM, Rife C, Foster G. Spring camelina production guide for the central high plains. Blue Sun Biodiesel special extension publication, ACRE. 2009. http://www.colorado.gov/cs/Satellite?blobcol=urldata&blobheader=application%2Fpdf&blobkey=id&blobtable= MungoBlobs&blobwhere=1251616501820&ssbinary=true. Accessed 26 June 26 2013.

  6. Ehrensing DT, Guy SO. Oilseed crops: camelina. Oregon State University Extension Service EM 2008; 8953-E.

    Google Scholar 

  7. French AN, Hunsaker D, Thorp K, Clarke T. Evapotranspiration over camelina crop at Maricopa. Ariz Ind Crops Prod. 2009;29:289–300.

    Article  Google Scholar 

  8. Hunsaker DJ, French AN, Thorp KR. Camelina water use and seed yield response to irrigation scheduling in an arid environment. Irrig Sc. Published online: 31 July 2012. doi: 10.1007/s00271-012-0368-7

  9. Johnson JJ, Enjalbert N, Shay R, Heng S, Coonrod D. Investigating straight vegetable oil as a diesel fuel substitute: final report to Colorado agricultural value-added development board. Colorado: Fort Collins; 2008.

    Google Scholar 

  10. Johnson JJ, Enjalbert N, Schneekloth J, Helm A, Malhotra R, Coonrod D. Development of oilseed crops for biodiesel production under Colorado limited irrigation conditions. Completion report no. 211. Colorado Water Institute; 2009.

    Google Scholar 

  11. Zubr J. Qualitative variation of Camelina sativa seed from different locations. Ind Crops Prod. 2003;17(3):161–9.

    Article  Google Scholar 

  12. Putnam DH, Budin JT, Field LA, Breene WM. Camelina: a promising low-input oilseed. In: Janick J, Simon JE, editors. New crops. New York: Wiley; 1993. p. 314–22.

    Google Scholar 

  13. Hulbert S, Guy S, Pan B, Paulitz T, Schillinger B, Wysocki D, Sowers K. Camelina production in the Pacific Northwest. Washington State University Extension Publication. 2011. http://css.wsu.edu/biofuels/publications/. Accessed 26 June 2013.

  14. Berti M, Wilckens R, Fischer S, Solis A, Johnson B. Seeding date influence on camelina seed yield, yield components, and oil content in Chile. Ind Crops Prod. 2011;34(2):1358–65.

    Article  Google Scholar 

  15. Onyilagha JC, Gruber MY, Hallet RH, Holowachuk J, Buckner A, Soroka JJ. Constitutive flavonoids deter flea beetle insect feeding in Camelina sativa. Biochem Syst Ecol. 2012;42:128–33.

    Article  CAS  Google Scholar 

  16. Browne LM, Conn KL, Ayer WA, Tewari JP. The camelexins: new phytoalexins produced in the leaves of Camelina sativa (Cruciferae). Tetrahedron. 1991;47(24):3909–14.

    Article  CAS  Google Scholar 

  17. Lovett JV, Jackson HF. Allelopathic activity of Camelina sativa (L.) Crantz in relation to its phyllosphere bacteria. New Phytol. 1980;86:273–7.

    Article  Google Scholar 

  18. Lovett JV, Duffield AM. Allelochemicals of Camelina sativa. J Appl Ecol. 1981;18(1):283–90.

    Article  CAS  Google Scholar 

  19. Hunsaker DJ, French AN, Clarke TR, El-Shikha DM. Water use, crop coefficients and irrigation management criteria for camelina production in arid regions. Irrig Sci. 2011;29:27–43.

    Article  Google Scholar 

  20. Sabu P, Panda SN, Kumar DN. Optimal irrigation allocation: a multilevel approach. J Irrig Drain Eng. 2000;126(3):149–56.

    Article  Google Scholar 

  21. Plessers AG, McGregor WG, Carson RB, Nakoneshny W. Species trials with oilseed plants: ii. Camelina. Can J Plant Sci. 1962;42(3):452–9.

    Article  Google Scholar 

  22. Ghamkhar K, Croser J, Aryamanesh N, Campbell M, Kon’kova N, Francis C. Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses. Genome. 2010;53(7):558–67.

    Article  CAS  PubMed  Google Scholar 

  23. Francis A, Warwick SI. The biology of Canadian weeds. 142. Camelina alyssum (Mill.) Thell.; C. microcarpa Andrz. ex DC.; C. sativa (L.) Crantz. Can J Plant Sci. 2009;89(4):791–810.

    Article  Google Scholar 

  24. Hanson BD, Park KW, Mallory-Smith CA, Thrill DC. Resistance of Camelina microcarpa to acetolactate synthase inhibiting herbicides. Weed Res. 2004;44:187–94.

    Article  CAS  Google Scholar 

  25. Shonnard DR, Williams L, Kalnes TN. Camelina-derived jet fuel and diesel: sustainable advanced biofuels. Environ Prog Sust Energy. 2010;29(3):382–92.

    Article  CAS  Google Scholar 

  26. Warwick SI, Al-Shehbaz IA. Brassicaceae: chromosome number index and database on CD-ROM. Plant Syst Evol. 2006;259(2–4):237–48.

    Article  Google Scholar 

  27. Hutcheon C, Ditt RF, Beilstein M, Comai L, Schroeder J, Goldstein E, Shewmaker CK, Nguyen T, De Rocher J, Kiser J. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes. BMC Plant Biol. 2010;10(1):233.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Vollman J, Grausgruber H, Stift G, Dryzhyruk V, Lelly T. Genetic diversity in camelina germplasm as revealed by seed quality characteristics and RAPD polymorphism. Plant Breed. 2005;124:446–53.

    Article  Google Scholar 

  29. Pavlista AD, Isbell TA, Baltensperger DD, Hergert GW. Planting date and development of spring-seeded irrigated canola, brown mustard and camelina. Ind Crops Prod. 2011;33:451–6.

    Article  CAS  Google Scholar 

  30. Gesch RW, Cermak SC. Sowing date and tillage effects on fall-seeded camelina in the northern corn belt. Agron J. 2011;103(4):980–7.

    Article  Google Scholar 

  31. Gehringer A, Friedt W, Lühs W, Snowdon RJ. Genetic mapping of agronomic traits in false flax (Camelina sativa). Genome. 2006;49(12):1555–63.

    Article  CAS  PubMed  Google Scholar 

  32. Enjalbert JN. An integrated approach to local based biofuel development. Ph.D. Dissertation. Colorado State University Libraries. 140 p. 2011. http://hdl.handle.net/10217/46747. Accessed 26 June 2013.

  33. Hunter J, Roth G. Camelina production and potential in Pennsylvania. Agronomy facts 72. The Pennsylvania State University. 2010. Retrieved from: http://pubs.cas.psu.edu/freepubs/pdfs/uc212.pdf. Accessed 21 June 2012.

  34. Geschickter C, Lawrence M. Camelina aviation biofuels: market opportunity and renewable energy report. Biomass advisors report; 2010.

    Google Scholar 

  35. Hansen L. Intertribal somatic hybridization between rapid cycling Brassica oleracea L. and Camelina sativa (L.) Crantz. Euphytica. 1998;104:173–9.

    Article  Google Scholar 

  36. Walsh DT. Selection of camelina mutants resistant to acetolactate synthase inhibitor herbicides. Master’s thesis. Washington State University; 2010. 60 p. http://www.dissertations.wsu.edu/thesis/summer2010/d_walsh_072210.pdf. Accessed 26 June 2013.

  37. Vollmann J, Damboeck A, Baumgartner S, Ruckenbauer P. Selection of induced mutants with improved linolenic acid content in camelina. Fett/Lipid. 1997;99(10):357–61.

    Article  CAS  Google Scholar 

  38. Vollmann J, Damboeck A, Eckl A, Schrems H, Ruckenbauer P. Improvement of Camelina sativa, an underexploited oilseed. In: Janick J, editor. Progress in new crops. Alexandria: ASHS Press; 1996. p. 357–62.

    Google Scholar 

  39. Ferrie AMR, Bethune TD. A microspore embryogenesis protocol for Camelina sativa, a multi-use crop. Plant Cell Tiss Org Cult. 2011;106(3):495–501.

    Article  CAS  Google Scholar 

  40. Vollmann J, Moritz T, Kargl C, Baumgartner S, Wagentristl H. Agronomic evaluation of camelina genotypes selected for seed quality characteristics. Ind Crops Prod. 2007;26(3):270–7.

    Article  CAS  Google Scholar 

  41. McConn M, Hugly S, Browse J, Somerville C. A mutation at the FAD8 locus of Arabidopsis identifies a second chloroplast omega-3 desaturase. Plant Physiol. 1994;106:1609–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Triboi-Blondel AM, Renard M. Effects of temperature and water stress on fatty acid composition of rapeseed oil. In: Proceedings of the 10th international rapeseed congress. Canberra; 26–30 Mar 1999.

    Google Scholar 

  43. Matsuda O, Sakamoto H, Hashimoto T, Iba K. A temperature-sensitive mechanism that regulates post-translational stability of a plastidial omega-3 fatty acid desaturase (FAD8) in Arabidopsis leaf tissues. J Biol Chem. 2005;280:3597–604.

    Article  CAS  PubMed  Google Scholar 

  44. Merrien A, Krouti M, Dechambre J, Garnon V, Evrard J. Contribution to understand the fluctuation of linolenic acid profile in winter oilseed rape grown in France. In: Proceedings of the 12th international rapeseed congress on quality, nutrition and processing, Wuhan; 26–30 Mar 2007, p. 92–5.

    Google Scholar 

  45. Mene-Saffrane L, Dubugnon L, Chetelat A, Stolz S, Gouhier-Darimont C, Farmer EE. Nonenzymatic oxidation of trienoic fatty acids contributes to reactive oxygen species management in Arabidopsis. J Biol Chem. 2009;284:1702–8.

    Article  CAS  PubMed  Google Scholar 

  46. Food and Drug Administration (FDA). Approved uses of camelina meal in feed. 2012. http://agr.mt.gov/agr/Programs/Commodities/Camelina/FeedUses.html. Accessed 26 June 2013.

  47. Moriel P, Nayigihugu V, Cappellozza BI, Goncalves EP, Krall JM, Foulke T, Cammak KM, Hess BW. Camelina mean and crude glycerin as feed supplements for developing replacement beef heifers. J Anim Sci. 2011;89:4314–24.

    Article  CAS  PubMed  Google Scholar 

  48. Ryhanen EL, Perttla S, Tupasela T, Valaja J, Eriksson C, Larkka K. Effects of Camelina sativa expeller cake on performance and meat quality of broilers. J Sci Food Agric. 2007;87(8):1489–94.

    Article  CAS  Google Scholar 

  49. Naczk M, Diosady LL, Rubin LJ. Functional properties of canola meals produced by a two-phase solvent extraction system. J Food Sci. 1985;50:1685–8.

    Article  CAS  Google Scholar 

  50. Fenwick GR, Heaney RK. Glucosinolates and their breakdown products in cruciferous crops, food and feeding stuffs. Food Chem. 1983;11:249–71.

    Article  CAS  Google Scholar 

  51. Khan LM, Hanna MA. Expression of oil from oilseeds-a review. J Agric Eng Res. 1983;28:495–503.

    Article  Google Scholar 

  52. Boateng AA, Mullen CA, Goldberg NM. Producing stable pyrolosis liquids from the oil-seed presscakes of mustard family plants: pennycress (Thlaspi arvense L.) and camelina (Camelina sativa). Energy Fuels. 2010;24:6624–632.

    Google Scholar 

  53. Pinzi S, Garcia IL, Lopez-Gimenez FJ, Luque de Castro MD, Dorado G, Dorado MP. The ideal vegetable oil-based biodiesel composition: a review of social, economical and technical implications. Energy Fuels. 2009;23(5):2325–341.

    Article  CAS  Google Scholar 

  54. Walsh KD, Puttick DM, Hills MJ, Yang RC, Topinka KC, Hall LM. Short communication: first report of outcrossing rates in camelina (Camelina sativa (L.) Crantz), a potential platform for bioindustrial oils. Can J Plant Sci. 2012;92(4):681–5.

    Article  CAS  Google Scholar 

  55. Ahrent DK, Caviness CE. Natural cross-pollination of twelve soybean cultivars in Arkansas. Crop Sci. 1994;34(2):376–8.

    Article  Google Scholar 

  56. Lu C, Kang J. Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Plant Cell Rep. 2008;27:273–8.

    Article  CAS  PubMed  Google Scholar 

  57. United States Department of Agriculture-NASS. 2010 camelina crop. 2011. http://www.nass.usda.gov/Statistics_by_State/Montana/Publications/Press_Releases_Crops/camelina.pdf. Accessed 26 June 2013.

  58. Stein L. Economic analysis of potential oil crop supplies in the Northwest U.S. Master’s thesis. Oregon State University; 2012. 80 p. http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/33836/SteinLukas2012.pdf?sequence=2. Accessed 26 June 2013.

  59. Keske CMH, Hoag DL, Brandess A, Johnson JJ. Is it economically feasible for farmers to grow their own fuel? A study of Camelina sativa produced in the Western United States as an on-farm biofuel. Biomass Bioenergy. 2013;54:89–99.

    Article  Google Scholar 

  60. Jewett FG. Camelina variety performance for yield, yield components and oil characteristics. Master’s thesis. Colorado State University Libraries; 2013 (in press).

    Google Scholar 

  61. Aase JK, Siddoway FH. Crown-depth soil temperatures and winter protection for winter wheat survival. J Soil Sci Soc Am. 1979;43:1229–33.

    Article  Google Scholar 

  62. Sharratt BS, Baker DG, Wall DB, Skaggs RH, Ruschy DL. Snow depth required for near steady-state soil temperatures. Agr Forest Meteorol. 1992;57:243–51.

    Article  Google Scholar 

  63. Cripps MG, Schwarzlander M, McKenny JL, Hinz HL, Price WJ. Biogeographical comparison of the arthropod herbivore communities associated with Lepidium draba in its native, expanded and introduced ranges. J Biogeogr. 2006;33:2107–19.

    Article  Google Scholar 

  64. Crowley JG. Evaluation of Camelina sativa as an alternative oilseed crop. End of project report no. 7. ISBN 1 84170 049 5. Oak Park: Crops Research Centre; 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freeborn G. Jewett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jewett, F.G. (2015). Camelina sativa: For Biofuels and Bioproducts. In: Cruz, V.M.V., Dierig, D.A. (eds) Industrial Crops. Handbook of Plant Breeding, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1447-0_8

Download citation

Publish with us

Policies and ethics