Skip to main content

Canola, Rapeseed, and Mustard: For Biofuels and Bioproducts

  • Chapter
  • First Online:
Book cover Industrial Crops

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 9))

Abstract

Brassica species have been used as sources for edible and nonedible oil for thousands of years. These species include Brassica carinata, B. juncea, B. napus, B. nigra, and B. rapa. Currently, canola, rapeseed, and mustard oilseed species are the third largest source of vegetable oil globally. Production of B. juncea and B. rapa occurs in warmer semitropical regions of the world, while B. napus is produced in cooler temperate regions. Most of the canola/rapeseed/mustard breeding achievements have been associated with oil and/or meal quality, including the development of low erucic acid rapeseed B. napus, high erucic acid rapeseed in B. napus, and high oleic, low linolenic B. napus. A reduction in glucosinolates in B. napus and B. rapa occurred almost simultaneously to the reduction of erucic acid to create double low rapeseed, renamed canola in Canada. Significant breeding effort is directed to increasing seed yield; enhancing yield stability; improving seed quality, oil quality, and meal quality; as well as herbicide tolerance and resistance to abiotic and biotic stress. Breeding strategies now focus on doubled haploid line development and hybrid development because of significant heterosis for seed yield. Pollination control systems for hybrid development include cytoplasmic male sterility, genetic male sterility, nuclear male sterility, and self-incompatibility. Genomic strategies and marker-assisted selection have been successfully incorporated into Brassica breeding. Brassica oils compete with fossil oils in the biofuel and bioproduct markets, and further Brassica breeding advancements are required to meet the quantities and quality necessary for successful biofuel/bioproduct production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CGIAR:

Consultative Group on International Agricultural Research

CMS:

Cytoplasmic male sterility

GMS:

Genetic male sterility

HEAR:

High erucic acid rapeseed

HOLL:

High oleic, low linolenic

IPGRI:

International Plant Genetic Resources Institute

LEAR:

Low erucic acid rapeseed

MSL:

Male sterile Lembke

NMS:

Nuclear male sterility

QTL:

Quantitative trait loci

SHEAR:

Super high erucic acid rapeseed

SI:

Self-incompatibility

SRAP:

Sequence-related amplified polymorphisms

References

  1. Friedt W, Snowdon R. Oilseed rape. In: Vollmann J, Rajcan I, editors. Oil crops. New York: Springer; 2009. p. 91–126.

    Google Scholar 

  2. Booth EJ, Gunstone FD. Rapeseed and rapeseed oil: agronomy, production and trade. In: Gunstone FD, editor. Rapeseed and canola oil: production, processing properties and uses. Boca Raton: Blackwell Publishing/CRC Press; 2004. p. 1–16.

    Google Scholar 

  3. Röbbelen G. Rapeseed in a changing world: plant production potential. In: GCIRC, editor. Proceedings of the 8th International Rapeseed Congress. Saskatoon: GCIRC; Jul 9–11, 1991. p. 29–38.

    Google Scholar 

  4. Kondra ZP. Temperature effects on germination of rapeseed (Brassica napus L. and B. campestris L.). Can J Plant Sci. 1983;63:377–84.

    Google Scholar 

  5. Morrison MJ, McVetty PBE, Shaykewich CF. The determination and verification of a baseline temperature for the growth of Westar summer rape. Can J Plant Sci. 1989;69:455–64.

    Google Scholar 

  6. Aaes-Jorgensen E. Nutritional value of rapeseed oil. In: Appelqvist LA, Ohlson R, editors. Rapeseed: cultivation, composition, processing and utilization. Amsterdam: Elsevier Publishing Company; 1972. p. 301–53.

    Google Scholar 

  7. Abdellatif AMM, Vles RO. Physiopathological effects of rapeseed oil and canbra oil in rats. In: Proceedings of the international conference of science technology and marketing of rapeseed and rapeseed products. St. Adele Quebec; Sep 1970. p. 423–34.

    Google Scholar 

  8. Mitten R. Leaf glucosinolate profiles and their relationship to pests and disease resistance in oilseed rape. Euphytica. 1992;63:71–83.

    Google Scholar 

  9. Fenwick GR, Heaney RK, Mullin WJ. Glucosinolates and their breakdown products in food and food plants. Crit Rev Food Nutr. 1983;18:123–201.

    CAS  Google Scholar 

  10. Stefansson BR, Downey RK. Rapeseed. In: Slinkard AE, Knott DR, editors. Harvest of gold. Saskatoon: University Extension Press/University of Saskatchewan; 1995. p. 140–52.

    Google Scholar 

  11. Potts DA, Rakow GW, Males DR, Woods DL. The development of canola-quality Brassica juncea. Can J Plant Sci. 2003;83:117–8.

    Google Scholar 

  12. McVetty PBE, Scarth R. Breeding oil quality for edible and industrial applications in oilseed rape and linseed. In: Gupta SK, editor. Technological innovations in major world oil crops. New York: Springer; 2012. p. 105–22.

    Google Scholar 

  13. Van Dyne DL, Blase MG. Commercialization of crops with high erucic acid for industrial uses. In: Rattray J, editor. Biotechnology of plant fats and oils. Champaign: American Oil Chemists Society; 1991. p. 151–61.

    Google Scholar 

  14. Hasib ZM, Hossain J, Biswas S, Islam A. Bio-diesel from mustard oil: a renewable alternative for small diesel engines. Mod Mech Eng. 2011;1:77–83.

    Google Scholar 

  15. Blackshaw RE, Johnson EN, Gan Y, May WE, McAndrew DW, Barthet V, McDonald T, Wispinski D. Alternative oilseed crops for biodiesel feedstock on the Canadian prairies. Can J Plant Sci. 2011;91:889–96.

    Google Scholar 

  16. Gupta SK, Pratap A. History, origin and evolution. In: Gupta SK, editor. Rapeseed breeding, Advances in botanical research. New York: Elsevier; 2007. p. 1–21.

    Google Scholar 

  17. Bailey CD, Koch MA, Mayer M, Mummenhoff K, O’Kane SL, Warwick SL, Windham MD, Al Shehbaz IA. Toward a global phylogeny of the Brassicaceae. Mol Biol Evol. 2006;23:2142–60.

    CAS  PubMed  Google Scholar 

  18. Warwick SI, Francis A, Al-Shehbaz IA. Brassicaceae: species checklist and database on CD-Rom. Plant Syst Evol. 2006;259:249–58.

    Google Scholar 

  19. Gómez-Campo C. Studies on Cruciferae: geographical distribution and conservation status of Boleum Desv. Guiraoa Coss. and Euzomodendron Coss. Anales Inst Bot Cavanilles. 1980;35:165–76.

    Google Scholar 

  20. Hayward A. Introduction – oilseed Brassicas. In: Kole C, editor. Genome mapping and molecular breeding in plants vol. 2: oilseeds. Berlin: Springer; 2011. p. 1–13.

    Google Scholar 

  21. UN. Genome analysis in Brassica with special reference to the experimental formation of Brassica napus and peculiar mode of fertilization. Jpn J Bot. 1935;7:389–452.

    Google Scholar 

  22. Mizushima U. Genome analysis in Brassica and allied genera. In: Tsunoda S, Hinata K, Gomez-Campo C, editors. Brassica and wild allies. Tokyo: Scientific Press; 1980. p. 89–108.

    Google Scholar 

  23. Snowdon RJ, Lühs W, Freidt W. Brassica oilseeds. In: Singh RJ, editor. Genetic resources, chromosome engineering and crop improvement – oilseed crops. Boca Raton/London/New York: CRC Press/Taylor and Francis Group; 2007. p. 195–230.

    Google Scholar 

  24. Zohary D, Hopf M. Domestication of plants in the old world. Oxford: Oxford University Press; 2000.

    Google Scholar 

  25. Ziolkowski PA, Kaczmarek M, Babula-Skowronska D, Sadowski J. Brassica genome evolution: dynamics and plasticity. In: Edwards D, Batley J, Parkin I, Kole C, editors. Genetics, genomics and breeding of oilseed Brassicas. Lebanon: Science Publishers; 2011. p. 14–46.

    Google Scholar 

  26. Gómez-Campo C, Prakash S. Origin and domestication. In: Gomez-Campo C, editor. Biology of Brassica coenospecies. Amsterdam: Elsevier; 1999. p. 58.

    Google Scholar 

  27. Song K, Osborn TC. Phylogenetic origins of Brassica napus: new evidence based on organelle and nuclear RFLP analyses. Genome. 1992;35:992–1001.

    Google Scholar 

  28. Palmer JD, Shields CR, Cohen DR, Orton TJ. Chloroplast DNA evolution and the origin of amphidiploid Brassica species. Theor Appl Genet. 1983;65:181–9.

    CAS  PubMed  Google Scholar 

  29. Thompson KF. Production of haploid plants of marrow stem kale. Nature. 1956;178:748.

    Google Scholar 

  30. Röbbelen G. Beitrage zur analyse des Brassica genomes. Chromosoma. 1960;11:205–28.

    Google Scholar 

  31. Truco MJ, Sadowski J, Quiros CF. Inter- and intra-genomic homology of the Brassica genomes: implications on their origin and evolution. Theor Appl Genet. 1996;93:1225–33.

    CAS  PubMed  Google Scholar 

  32. Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci. 2006;103:5224–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ. Evolution of genome size in Brassicaceae. Ann Bot. 2005;95:229–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Murphy DJ. People, plants and genes: the story of crops and humanity. Oxford: Oxford University Press; 2007.

    Google Scholar 

  35. Yang YW, Lai KN, Tai PY, Li WH. Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol. 1999;48:597–604.

    CAS  PubMed  Google Scholar 

  36. Hedge IC. A systematic and geographical survey of the old world cruciferae. In: Vaughan JG, McCleod AJ, Jones BMG, editors. The biology and chemistry of the cruciferae. New York: Academic; 1976. p. 1–45.

    Google Scholar 

  37. Prakash S. Cruciferous oilseeds in India. In: Tsunoda S, Hinata K, Gomez-Campo C, editors. Brassica and wild allies. Tokyo: Japan Scientific Press; 1980. p. 151–63.

    Google Scholar 

  38. Shahidi F. Rapeseed and canola: global production and distribution. In: Shahidi F, editor. Canola and rapeseed production, chemistry, nutrition and processing technology. New York: Van Nostrand Reinhold; 1990. p. 3–14.

    Google Scholar 

  39. Li CS. Classification and evolution of mustard crops (Brassica juncea) in China. Crucif Newslett. 1980;5:33–6.

    Google Scholar 

  40. Prakash S, Hinata K. Taxonomy, cytogenetics and origin of crop Brassica, a review. Opera Bot. 1980;55:11–57.

    Google Scholar 

  41. Downey RK, Röbbelen G. Brassica species. In: Röbbelen G, Downey RK, Ashri A, editors. Oil crops of the world. New York: McGraw-Hill; 1989. p. 339–62.

    Google Scholar 

  42. Downey RK. The origin and description of the Brassica oilseed crops. Food Sci Tech Abstr. 1983;1:1–20.

    Google Scholar 

  43. Rakow G. Classical genetics and traditional breeding. In: Kole C, editor. Genome mapping and molecular breeding in plants vol. 2: oilseeds. New York: Springer; 2011. p. 73–84.

    Google Scholar 

  44. Das S, Lagercrantz U, Lascoux M. Black mustard. In: Kole C, editor. Genome mapping and molecular breeding in plants, vol 2: oilseeds. New York: Springer; 2007. p. 264–74.

    Google Scholar 

  45. Edwards D, Salisbury PA, Burton WA, Hopkins CJ, Batley J. Indian mustard. In: Kole C, editor. Genome mapping and molecular breeding in plants, vol 2: oilseeds. Berlin: Springer; 2007. p. 179–210.

    Google Scholar 

  46. Rai B, Gupta SK, Pratap A. Breeding methods. In: Gupta SK, editor. Rapeseed breeding, advances in botanical research. New York: Elsevier; 2007. p. 1–21.

    Google Scholar 

  47. Rakow G. Species origin and economic importance of Brassica. In: Pua EC, Douglas DJ, editors. Biotechnology in agriculture and forestry, vol 54: Brassica. Springer: New York; 2004. p. 3–11.

    Google Scholar 

  48. Alemaheyu N, Becker H. Genotypic diversity and patterns of variation in a germplasm material of Ethiopian mustard (Brassica carinata A. Braun). Genetic Resour Crop Evol. 2002;49:573–82.

    Google Scholar 

  49. Potter TD, Potter PA, Salisbury DJ, Ballinger N, Wratten, Mailer RJ. Comparison of historical varieties of rapeseed and canola in Australia. In: Proceedings of the 9th international rapeseed Congress. Canberra; 1995. p. 365–67.

    Google Scholar 

  50. Food and Agricultural Commodities Production [Internet]. Food and agriculture organization of the United Nations; 2013. Available from: faostat.fao.org [cited 2013 Jan 25].

    Google Scholar 

  51. Warwick SI, Francis A, Gugel RK. 2009. Guide to wild germplasm of Brassica and allied crops (tribe Brassiceae, Brassicaceae). 3rd ed. Available from: http://www.brassica.info/info/publications/guide-wild-germplasm.php. [cited 2013 Feb 20].

  52. Downey RK, Klassen AJ, Stringam GR. Rapeseed and mustard. In: Fehr WR, Hadley HH, editors. Hybridization of crop plants. Madison: American Society of Agronomy; 1980. p. 495–509.

    Google Scholar 

  53. Seyis F, Snowdon RJ, Luhs W, Friedt W. Molecular characterization of novel resynthesized rapeseed (Brassica napus) lines and analysis of their genetic diversity in comparison with spring rapeseed cultivars. Plant Breed. 2003;122:473–8.

    CAS  Google Scholar 

  54. Downey RK, Rakow G. Rapeseed and mustard. In: Fehr WR, editor. Principles of cultivar development, Crop species, vol. 2. New York: MacMillan Publishing Co; 1987. p. 437–86.

    Google Scholar 

  55. Becker HC, Löptien H, Röbbelen G. Breeding. In: Gómez-Campo C, editor. Biology of Brassica coenospecies. Amsterdam: Elsevier; 1999. p. 413–60.

    Google Scholar 

  56. Boukema IW, Van Hintum TJL. The European Brassica database. Acta Hort. 1998;459:249–54.

    Google Scholar 

  57. Bioversity International [Internet]. Germplasm databases. Available from: http://www.ecpgr.cgiar.org/germplasm_databases.html. [cited 2013 Jan 30].

  58. Gómez-Campo C (1990) A germplasm collection of crucifers, vol 22. Monografias instituto Nacional de Investigaciones Agrarias, Madrid, p. 1–55

    Google Scholar 

  59. Kirk JT, Oram RM. Isolation of erucic acid free lines of Brassica juncea: Indian mustard now a potential oilseed crop in Australia. J Aust Inst Agric Sci. 1981;47:51–2.

    CAS  Google Scholar 

  60. Scarth R, McVetty PBE, Rimmer SR, Stefansson BR. Stellar low linolenic-high linoleic acid summer rape. Can J Plant Sci. 1988;68:509–11.

    CAS  Google Scholar 

  61. McVetty PBE, Fernando WGD, Tahir M, Zelmer C. High erucic acid, low glucosinolate rapeseed (HEAR) cultivar development in Canada. In: Hou CT, Shaw JF, editors. Biocatalysis and agricultural biotechnology. Boca Raton: Taylor and Francis; 2009. p. 43–62.

    Google Scholar 

  62. Nath UK, Wilmer JA, Wallington EJ, Becker HC, Möllers C. Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with Ld-LPAZT + Bn-fae1 transgenes in rapeseed. Theor Appl Genet. 2009;118:765–73.

    CAS  PubMed  Google Scholar 

  63. McVetty PBE, Zelmer C. Breeding herbicide tolerant oilseed rape cultivars. In: Gupta SK, editor. Rapeseed breeding. Advances in botanical research, vol. 45. San Diego: Elsevier; 2007. p. 234–70.

    Google Scholar 

  64. Norton R. Conservation farming systems and canola. Melbourne: Report of the University of Melbourne; 2003. p. 26.

    Google Scholar 

  65. National Variety Trials [Internet]. National variety trials in Australia; 2012. Available from: www.acasnvt.com.au/ACAS/VarietyInformation.aspx. [cited 2012 Dec 1].

  66. James C. Global status of commercialized biotech/GM crops: 2011. ISAAA brief no. 43. Ithaca: ISAAA.

    Google Scholar 

  67. Sodhi YS, Chandra A, Verma JK, Arumugam N, Mukhopadhyay A, Gupta V, Pental D, Pradhan AK. A new cytoplasmic male sterility system for hybrid seed production in Indian oilseed mustard, Brassica juncea. Theor Appl Genet. 2006;114:93–9.

    CAS  PubMed  Google Scholar 

  68. Agnithotri A, Sarkar G, Kaushik N, Gupta K, Prem D. Introgression of high oleic acid in Indian mustard through interspecific hybridization. In: Proceedings of the 12th GCIRC international rapeseed Congress; 2007 Mar 26–30; Wuhan. p. 188–190.

    Google Scholar 

  69. Scarth R, McVetty PBE, Rimmer SR, Daun JK. Breeding for specialty oil quality in canola rapeseed: the University of Manitoba program. In: MacKenzie SL, Taylor DC, editors. Seed oils for the future. Champaign: AOCS Press; 1992. p. 171–6.

    Google Scholar 

  70. Poehlman JM, Sleeper DA, editors. Breeding field crops. 5th ed. Ames: Iowa State University Press; 2006.

    Google Scholar 

  71. Voelker TA, Hayes TR, Cranmer AM, Turner JC, Davies HM. Genetic engineering of a quantitative trait: metabolic and genetic parameters influencing the accumulation of laurate in rapeseed. Plant J. 1996;9:229–41.

    CAS  Google Scholar 

  72. Lühs W, Friedt W. Non-food uses of vegetable oils and fatty acids. In: Murphy DJ, editor. Designer oil crops. Weinheim: VCH; 1994. p. 73–130.

    Google Scholar 

  73. Sivaraman I, Arumugam N, Sodhi YS, Gupta V, Mukhopadhyay A, Pradhan AK, Burma PK, Pental D. Development of high oleic and low linoleic acid transgenics in a zero erucic acid Brassica juncea L. (Indian mustard) line by antisense suppression of the fad2 gene. Mol Breed. 2004;13:365–75.

    CAS  Google Scholar 

  74. Rakow G. Selektion auf linol- und linolensäuregehalt in rapssamem nach mutagener behandlung. Z Pflanzenzüchtg. 1973;69:62–82.

    Google Scholar 

  75. Taylor DC, Barton DL, Giblin EM, MacKenzie SL, Van Den Berg CGJ, McVetty PBE. Microsomal lyso-phosphatidic acid transferase from a Brassica oleracea cultivar incorporates erucic acid into the sn-2 position of seed triacylglycerols. Plant Phys. 1995;109:409–20.

    CAS  Google Scholar 

  76. Love HK, Rakow G, Raney JP, Downey RK. Development of low glucosinolate mustard. Can J Plant Sci. 1990;70:419–24.

    CAS  Google Scholar 

  77. Roy NN. Interspecific transfer of Brassica juncea type high blackleg resistance to Brassica napus. Euphytica. 1984;33:295–303.

    Google Scholar 

  78. Crouch JH, Lewis BG, Mithen RF. The effect of a genome substitution on the resistance of Brassica napus to infection by Leptosphaeria maculans. Plant Breed. 1994;112:265–78.

    CAS  Google Scholar 

  79. Beversdorf WD, Hume DJ. OAC Triton spring rapeseed. Can J Plant Sci. 1984;64:1007–9.

    Google Scholar 

  80. Droge W, Broer I, Puhler A. Transgenic plants containing the phosphinothricin-N-acetyltransferase gene metabolize the herbicide l-phosphinothricin (glufosinate) differently from untransformed plants. Planta. 1992;187:142–51.

    CAS  PubMed  Google Scholar 

  81. Williams ME, Leemans J, Michaels F. Male sterility through recombinant DNA technology. In: Shivanna KR, Sawhney VK, editors. Pollen biotechnology for crop production and improvement. Cambridge: Cambridge University Press; 1997. p. 237–58.

    Google Scholar 

  82. Dill GM. Glyphosate-resistant crops: history, status and future. Pest Manag Sci. 2005;61:219–24.

    CAS  PubMed  Google Scholar 

  83. Canadian Food Inspection Agency [Internet]. Notice of submission for approval of novel food, livestock feed and unconfined environmental release for canola genetically modified for glyphosate tolerance (MON 88302) from Monsanto Canada Inc; 2011. Available from: http://www.inspection.gc.ca/plants/plants-with-novel-traits/notices-of-submission/mon-88302/eng/1330717702650/1330717788295. [Cited 2013 Feb 16].

  84. Tan S, Evans RR, Dhamer ML, Singh BK, Shaner DL. Imidazolinone-tolerant crops: history, current status and future. Pest Manag Sci. 2005;61:246–57.

    CAS  PubMed  Google Scholar 

  85. Swanson EB, Herrgesell MJ, Arnaldo M, Sipell DW, Wong RSC. Microspore mutagenesis and selection – canola plants with field tolerance to the imidazolinones. Theor Appl Genet. 1989;78:525–30.

    CAS  PubMed  Google Scholar 

  86. Yao K, Potts DA, Males DR. High oleic acid Brassica juncea. Food Sci Tech Abstr. 2008.

    Google Scholar 

  87. Wang R, Ripley VL, Rakow G. Pod shatter resistance evaluation in cultivars and breeding lines of Brassica napus, B. juncea and Sinapis alba. Plant Breed. 2007;126:588–95.

    Google Scholar 

  88. Taylor DC, Falk KC, Palmer CD, Hammerlindl J, Babic V, Mietkiewska E, Jadhav A, Marillia EF, Francis T, Hoffman T, Giblin EM, Katavic V, Keller WA. Brassica carinata – a new molecular farming platform for delivering bio-industrial oil feedstocks: case studies of genetic modifications to improve very long-chain fatty acid and oil content in seeds. Biofuels Bioprod Bioref. 2010;4:538–61.

    CAS  Google Scholar 

  89. Das B, Rai B. Heterosis in intervarietal crosses of toria. Indian J Genet. 1972;32:197–202.

    Google Scholar 

  90. Hutcheson DS, Downey RK, Campbell SJ. Performance of a naturally occurring subspecies hybrid in B. campestris L. var. oleifera Metzg. Can J Plant Sci. 1981;61:895–900.

    Google Scholar 

  91. Falk KC, Rakow G, Downey RK, Spur DT. Performance of inter-cultivar summer turnip rape hybrids in Saskatchewan. Can J Plant Sci. 1994;74:441–5.

    Google Scholar 

  92. Schuler TJ, Hurcheson DS, Downey RK. Heterosis in intervarietal hybrids of summer turnip rape in western Canada. Can J Plant Sci. 1992;72:127–36.

    Google Scholar 

  93. Lefort-Buson M, Dattee Y. Genetic study of some agronomic characters in winter oilseed rape (Brassica napus L.) I. – heterosis. Agronomie. 1982;2:315–32.

    Google Scholar 

  94. Sernyk JL, Stefansson BR. Heterosis in summer rape (Brassica napus L.). Can J Plant Sci. 1983;63:407–13.

    Google Scholar 

  95. Grant I, Beversdorf WD. Heterosis and combining ability estimates in spring oilseed rape (Brassica napus L.). Can J Genet Cytol. 1985;27:472–8.

    Google Scholar 

  96. Brandle JE, McVetty PBE. Heterosis and combining ability in hybrids derived from oilseed rape cultivars and inbred lines. Can J Plant Sci. 1989;69:1191–5.

    Google Scholar 

  97. Brandle JE, McVetty PBE. Geographical diversity, parental section and heterosis in oilseed rape. Can J Plant Sci. 1990;70:935–40.

    Google Scholar 

  98. McVetty PBE. Cytoplasmic male sterility. In: Shivanna KR, Sawhney VK, editors. Pollen biotechnology for crop production and improvement. Cambridge: Cambridge University Press; 1997. p. 155–82.

    Google Scholar 

  99. Sawhney VK. Genic male sterility. In: Shivanna KR, Sawhney VK, editors. Pollen biotechnology for crop production and improvement. Cambridge: Cambridge University Press; 1997. p. 183–8.

    Google Scholar 

  100. McCubbin A, Dickinson HG. Self-incompatibility. In: Shivanna KR, Sawhney VK, editors. Pollen biotechnology for crop production and improvement. Cambridge: Cambridge University Press; 1997. p. 199–217.

    Google Scholar 

  101. Thompson KF. Cytoplasmic male sterility in oilseed rape. Heredity. 1972;29:253–7.

    Google Scholar 

  102. Fu TD. Production and research of rapeseed in the People’s Republic of China. Eucarpia Crucif Newsl. 1981;6:6–7.

    Google Scholar 

  103. Hinata K, Konno N. Studies on a male sterile system having B. campestris nucleus and D. muralis cytoplasm. Breeding and some characteristics of this strain. Jpn J Breed. 1979;29:305–11.

    Google Scholar 

  104. Ogura H. Studies on a new male sterility system in Japanese radish with special reference to utilization of the sterility toward the practical raising of hybrid seed. Mem Fac Agric Kagoshima Univ. 1968;6:39–78.

    Google Scholar 

  105. Pelletier G, Primard C, Vendel F, Chetrit P, Rouselle P, Renard M. Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion. Mol Genet. 1983;191:244–50.

    CAS  Google Scholar 

  106. Heyn FW. Transfer of restorer genes from Raphanus to cytoplasmic male sterile Brassica napus. Eucarpia Crucif Newsl. 1976;1:15–6.

    Google Scholar 

  107. Heyn FW. Introgression of restorer genes from Raphanus sativus into male sterile Brassica napus and the genetics of fertility restoration. In: Proceedings of the 5th international rapeseed conference. Malmo; 1978. p. 82–3.

    Google Scholar 

  108. Pellan-Delourme R, Eber F, Renard M. Male fertility restoration in Brassica napus with radish cytoplasmic male sterility. In: Proceedings 7th international rapeseed Congress. Poznan; 1998. p. 199–203.

    Google Scholar 

  109. Butruille DV, Guries RP, Osborn TC. Increasing yield of spring oilseed rape hybrids through introgression of winter germplasm. Crop Sci. 1999;39:1491–6.

    Google Scholar 

  110. Labana KS, Badwal SS, Chaurasia BD. Heterosis and the combining ability analysis in Brassica juncea L. Czern Coss Crop Improv. 1975;2:46–51.

    Google Scholar 

  111. Banga SS, Labana KS. Heterosis in Indian mustard (Brassica juncea L.). Plant Breed. 1984;92:61–70.

    Google Scholar 

  112. Kumar PR, Arora RK, Singh NP, Yadav RC, Kumar P. A study of heterosis in Indian mustard. Acta Agron Hungarica. 1990;39:137–43.

    Google Scholar 

  113. Pradhan AK, Sodhi YS, Mukeropandhyay A, Pental D. Heterosis breeding in Indian mustard (B. juncea L.): analysis of component characters contributing to heterosis for yield. Euphytica. 1993;69:219–29.

    Google Scholar 

  114. Sodhi YS, Verma JK, Arumugam N, Mukhopadhyay A, Gupta V, Pradhan AK, Pental D. Development of a new high yielding Indian mustard hybrid DMH-1. In: Proceedings of the 12th international rapeseed Congress. Wuhan; 2007. p. 84–6.

    Google Scholar 

  115. Teklewold A, Becker HC. Heterosis and combining ability in a diallel cross of Ethiopian mustard inbred lines. Crop Sci. 2005;45:2629–35.

    Google Scholar 

  116. Keller WA, Armstrong KC. High frequency production of microspore derived plants from Brassica napus anther cultures. Z Pflanzenzucht. 1978;80:100–8.

    Google Scholar 

  117. Baillie AMR, Epp DJ, Hutcheson D, Keller WA. In vitro culture of isolated microspores and regeneration of plants in Brassica campestris. Plant Cell Rep. 1992;11:234–7.

    CAS  PubMed  Google Scholar 

  118. Palmer CE, Keller WA, Arnison PG. Experimental haploidy in Brassica species. In: Jain SM, Sopory SK, Veilleux RE, editors. In vitro haploid production in higher plants. Dordrecht: Kluwer Academic Publishers; 1996. p. 143–72.

    Google Scholar 

  119. Palmer CE, Keller WA, Arnison PG. Utilization of Brassica haploids. In: Jain SM, Sopory SK, Veilleux RE, editors. In vitro haploid production in higher plants. Dordrecht: Kluwer Academic Publishers; 1996. p. 173–92.

    Google Scholar 

  120. Chen ZZ, Snyder S, Fan ZG, Low WH. Efficient production of doubled haploid plants through chromosome doubling of isolated microspores in Brassica napus. Plant Breed. 1994;113:217–21.

    Google Scholar 

  121. Chuong PV, Beversdorf WD. High frequency embryogenesis through isolated microspore culture in Brassica napus L. and B. carinata Braun. Plant Sci. 1985;39:219–26.

    Google Scholar 

  122. Lionneton E, Beuret W, Delaitre C, Ochatt S, Rancillac M. Improved microspore culture and doubled haploid plant regeneration in the brown condiment mustard Brassica juncea. Plant Cell Rep. 2001;20:126–30.

    CAS  Google Scholar 

  123. Keller WA, Armstrong KC. Production of Brassica napus haploids through anther and microspore culture. In: Proceedings of the 6th international rapeseed conference. Paris; 1983. p. 239–45.

    Google Scholar 

  124. Palmer CE, Keller WF. Pollen embryos. In: Shivanna KR, Sawhney VK, editors. Pollen biotechnology for crop production and improvement. Cambridge: Cambridge University Press; 1997. p. 392–422.

    Google Scholar 

  125. Choi SR, Teakle GR, Plaha P, Kim JH, Allender CJ, Beynon E, Zhong YP, Soengas P, Han TH, King GJ, Barker GC, Hand P, Lydiate DJ, Batley J, Edwards D, Koo DH, Bang JW, Park BS, Lim YP. The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet. 2007;115:777–92.

    CAS  PubMed  Google Scholar 

  126. Geng J, Javed N, McVetty PBE, Li G, Tahir M. An integrated genetic map for Brassica napus derived from double haploid and recombinant inbred populations. Hered Genet. 2011;1:103.

    Google Scholar 

  127. Sun Z, Wang Z, Tu J, Zhang J, Yu F, McVetty PBE, Li G. An ultra dense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theor Appl Genet. 2007;114:1305–17.

    CAS  PubMed  Google Scholar 

  128. Panjabi P, Jagannath A, Bisht NC, Lakshmi KL, Sharma S, Gupta V, Pradhan AK, Pental D. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics. 2008;9:113.

    PubMed Central  PubMed  Google Scholar 

  129. Guo S, Zou J, Li R, Long Y, Chen S, Meng J. A genetic linkage map of Brassica carinata constructed with a doubled haploid population. Theor Appl Genet. 2012;125:1113–24.

    CAS  PubMed  Google Scholar 

  130. Landry BS, Hubert N, Etoh T, Harada JJ, Lincoln SE. A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome. 1991;34:543–52.

    CAS  Google Scholar 

  131. Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet. 2001;103:455–61.

    CAS  Google Scholar 

  132. Gaborieau L, Brown GG. Positional cloning in Brassica napus: strategies for circumventing genome complexity in a polyploidy plant. In: Brown GG, editor. Molecular cloning – selected applications in medicine and biology. Shanghai: InTech publishers; 2011. p. 309–24.

    Google Scholar 

  133. Li G, Long Y, Zheng L, Wang Z, Chen Y, Fernando D, McVetty PBE. Map-based cloning of a blackleg disease resistance gene in allotetraploid Brassica napus. In: Proceedings of the plant and animal genomes XVIII conference. 2010 Jan 9–13; San Diego; 2010. p. W099.

    Google Scholar 

  134. Snowdon RJ, Lühs W, Freidt W. Oilseed rape. In: Kole C, editor. Genome mapping and molecular breeding, vol 2: oilseeds. Heidelberg: Springer; 2006. p. 55–114.

    Google Scholar 

  135. Li C, Li BO, Qu CM, Yan XY, Fu FY, Liu LZ, Chen L, Li JN. Analysis of different QTLs for oil content between two environments in Brassica napus L. Acta Agron Sinica. 2011;37:249–54.

    CAS  Google Scholar 

  136. Rahman M, Sun Z, McVetty PBE, Li G. High throughput genome specific molecular markers for erucic acid content gens in Brassica napus (L.). Theor Appl Genet. 2008;117:895–904.

    CAS  PubMed  Google Scholar 

  137. Poulsen GB. Genetic transformation of Brassica. Plant Breed. 1996;115:209–25.

    CAS  Google Scholar 

  138. Gladis T, Hammer K. The Gatersleben Brassica collection – Brassica juncea, B. napus, B. nigra and B. rapa. Feddes Repertorium. 1992;103:7–8.

    Google Scholar 

  139. Thompson KF, Hughes WG. Breeding and varieties. In: Scarisbrick DH, Daniels RW, editors. Oilseed rape. London: William Collins and Sons Co; 1986. p. 32–82.

    Google Scholar 

  140. Canadian Seed Growers’ Association, Circular 6 [Internet]. Canadian regulations and procedures for pedigreed seed crop production. [updated 8 Jan 2013 ]. Available from: http://www.seedgrowers.ca/cropcertification/circular.asp. [cited 2013 Jan 30].

  141. Frauen M. Technical and economic aspects of seed production of hybrids varieties of rape. In: Feistritzer WP, Kelly AF, editors. Hybrid seed production of selected cereal, oil and vegetable crops, FAO plant production and protection paper, vol. 82. Rome: FAO; 1987. p. 281–300.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. E. McVetty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

McVetty, P.B.E., Duncan, R.W. (2015). Canola, Rapeseed, and Mustard: For Biofuels and Bioproducts. In: Cruz, V.M.V., Dierig, D.A. (eds) Industrial Crops. Handbook of Plant Breeding, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1447-0_7

Download citation

Publish with us

Policies and ethics