Skip to main content

Breeding Willow for Short Rotation Coppice Energy Cropping

  • Chapter
  • First Online:
Industrial Crops

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 9))

Abstract

Willow (Salix) is a diverse and adaptable genus that has served human beings well for many thousands of years. The Roman scholar Pliny the Elder (AD 23–AD 79) advised on willow planting in the Roman Empire. However, it has only recently been subjected to controlled breeding (twentieth century). Willow breeding has been able to benefit from the knowledge and technologies developed by plant breeders across the globe. The breeding exploits the tremendous genetic diversity and specifically the rapid growth rates observed in response to coppicing on a 2–4 year cycle. Willow breeding cycles are short and commercial exploitation rapid via vegetative propagation of the F1 progeny. The latest molecular genetics techniques are being deployed in Europe and North America to advance and accelerate crop improvement. Willow is now being rapidly improved and deployed for production of woody biomass, much of it for energy, but also for pulp, potentially specific high value extracts, and applications associated with the multifunctionality of the crop such as bioremediation. Most northern temperate latitude areas have an interest in willow cropping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Argus GW. Infrageneric classification of Salix (Salicaceae) in the New World. Systematic botany monographs. Ann Arbor: The American Society of Plant Taxonomists 1997; 52(1):121.

    Google Scholar 

  2. Argus GW. Classification of Salix in the New World. Botanical Electronic News (BEN): 227. 5 July 1999. http://www.ou.edu/cas/botany-micro/ben/ben227.html. Accessed 27 Feb 2014.

  3. Skvortsov AK. Willows of Russia and adjacent countries: taxonomical and geographical revision. Report series vol. 39. Finland: Faculty of Mathematics and Natural Sciences, University of Joensuu; 1999.

    Google Scholar 

  4. Zhenfu F, Shidong Z, Skvortsov AK. Saliceae. In: Zheng-yi W, Raven PH, editors. Flora of China. St. Louis: Missouri Botanical Garden Press; 1999. p. 139–274.

    Google Scholar 

  5. Trybush S, Jahodová S, Čížková L, Karp A, Hanley S. High levels of genetic diversity in Salix viminalis of the Czech Republic as revealed by microsatellite markers. Bioenerg Res. 2012;5(4):969–77.

    Article  CAS  Google Scholar 

  6. Suda Y, Argus GW. Chromosome numbers of some North American Salix. Brittonia. 1968;20(3):191–7.

    Article  Google Scholar 

  7. Eason DL, Forbes EGA, McCracken AR. The challenges of harvesting and drying short rotation coppice willow to meet the quality constraints of small scale boilers. Asp Appl Biol. 2011;112:221–9.

    Google Scholar 

  8. Mola-Yudegoa B, González-Olabarriab JR. Mapping the expansion and distribution of willow plantations for bioenergy in Sweden: lessons to be learned about the spread of energy crops. Biomass Bioenerg. 2010;34(4):442–8.

    Article  Google Scholar 

  9. Rosenqvist H, Roos A, Ling E, Hektor B. Willow growers in Sweden. Biomass Bioenerg. 2000;18:137–45.

    Article  Google Scholar 

  10. Smart LB, Volk TA, Lin J, Kopp RF, Phillips IS, Cameron KD, White EH, Abrahamson LP. Genetic improvement of shrub willow (Salix spp.) crops for bioenergy and environmental applications in the United States. Unasylva. 2005;56(221):51–5.

    Google Scholar 

  11. Karp A, Hanley SJ, Trybush SO, Macalpine WJ, Pei M, Shield IF. Genetic improvement of willow for bioenergy and biofuels. J Integr Plant Biol. 2011;53(2):151–65.

    Article  PubMed  Google Scholar 

  12. Hanley SJ, Karp A. Genetic strategies for dissecting complex traits in biomass willows (Salix spp.). Tree Physiol. 2013, in press.

    Google Scholar 

  13. Stott KG. Improving the biomass potential of willow by selection and breeding. In: Perttu K, editor. Ecology and management of forest biomass production systems. Uppsala: Swedish University of Agricultural Sciences; 1984. p. 233–60.

    Google Scholar 

  14. Tharakan PJ, Volk TA, Nowak CA, Abrahamson LP. Morphological traits of 30 willow clones and their relationship to biomass production. Can J Forest Res. 2005;35(2):421–31.

    Article  Google Scholar 

  15. Serapiglia MJ, Cameron KD, Stipanovic AJ, Smart L. Analysis of biomass composition using high-resolution thermogravimetric analysis and percent bark content for the selection of shrub willow bioenergy crop varieties. Bioenerg Res. 2009;2:1–9.

    Article  Google Scholar 

  16. Lee SJ, Warnick TA, Pattathil S, Alvelo-Maurosa JG, Serapiglia MJ, McCormick H, Brown V, Young NF, Schnell DJ, Smart LB, Hahn MG, Pedersen JF, Leschine SB, Hazen SP. Biological conversion assay using Clostridium phytofermentans to estimate plant feedstock quality. Biotechnol Biofuels. 2012;5:1–14.

    Article  Google Scholar 

  17. Ray MJ, Brereton NJB, Shield IF, Karp A, Murphy RJ. Variation in cell wall composition and accessibility in relation to biofuel potential of short rotation coppice willows. Bioenerg Res. 2012;5(3):685–98.

    Article  Google Scholar 

  18. Hanley SJ. Genetic mapping of important agronomic traits in biomass willow. PhD thesis. Bristol: University of Bristol; 2003.

    Google Scholar 

  19. Tsarouhas V, Gullberg U, Lagercrantz U. Mapping of quantitative trait loci controlling timing of bud flush in Salix. Hereditas. 2003;138(3):172–8.

    Article  PubMed  Google Scholar 

  20. Hanley SJ, Pei MH, Powers SJ, Ruiz C, Mallott MD, Barker JHA, Karp A. Genetic mapping of rust resistance loci in biomass willow. Tree Genet Genomes. 2011;7(3):597–608.

    Article  Google Scholar 

  21. Rönnberg-Wastljung AC, Ahman I, Glynn C, Widenfalk O. Quantitative trait loci for resistance to herbivores in willow: field experiments with varying soils and climates. Entomol Exp Appl. 2006;118(2):163–74.

    Article  Google Scholar 

  22. Tsarouhas V, Gullberg U, Lagercrantz U. An AFLP and RFLP linkage map and quantitative trait locus (QTL) analysis of growth traits in Salix. Theor Appl Genet. 2002;105(2–3):277–88.

    CAS  PubMed  Google Scholar 

  23. Tsarouhas V, Gullberg U, Lagercrantz U. Mapping of quantitative trait loci (QTLs) affecting autumn freezing resistance and phenology in Salix. Theor Appl Genet. 2004;108(7):1335–42.

    Article  CAS  PubMed  Google Scholar 

  24. Rönnberg-Wastljung AC, Glynn C, Weih M. QTL analyses of drought tolerance and growth for a Salix dasyclados x Salix viminalis hybrid in contrasting water regimes. Theor Appl Genet. 2005;110(3):537–49.

    Article  PubMed  Google Scholar 

  25. Weih M, Rönnberg-Wastljung AC, Glynn C. Genetic basis of phenotypic correlations among growth traits in hybrid willow (Salix dasyclados x S. viminalis) grown under two water regimes. New Phytol. 2006;170(3):467–77.

    Article  CAS  PubMed  Google Scholar 

  26. Brereton NJB, Pitre FE, Hanley SJ, Ray MJ, Karp A, Murphy RJ. QTL mapping of enzymatic saccharification in short rotation coppice willow and its independence from biomass yield. Bioenerg Res. 2010;3:251–61.

    Article  Google Scholar 

  27. Hanley SJ, Barker JHA, Van Ooijen J, Aldam C, Harris S, Åhman I, Larsson S, Karp A. A genetic linkage map of willow (Salix viminalis) based on AFLP and microsatellite markers. Theor Appl Genet. 2002;105(6–7):1087–96.

    CAS  PubMed  Google Scholar 

  28. Hanley SJ, Mallott MD, Karp A. Alignment of a Salix linkage map to the Populus genomic sequence reveals macrosynteny between willow and poplar genomes. Tree Genet Genomes. 2006;3:35–48.

    Article  Google Scholar 

  29. Ward SP, Salmon J, Hanley SJ, Karp A, Leyser O. Using Arabidopsis to study shoot branching in biomass willow (Salix spp.). Plant Physiol. 2013;162:800–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Macalpine WJ, Shield IF, Karp A. Seed to near market variety; the BEGIN willow breeding pipeline 2003–2010 and beyond. In: Bridgewater AV, editor. Proceedings of the bioten conference on biomass, bioenergy and biofuels; 2010 Sep 21–23. Birmingham. p. 94–104.

    Google Scholar 

  31. Wood CB, Pritchard HW, Lindegaard K. Seed cryopreservation and longevity of two Salix hybrids. Cryo Letters. 2003;24:17–26.

    PubMed  Google Scholar 

  32. Simpson JD, Daigle BI. Five years’ storage of seeds from three willow species. Native Plants J. 2009;10(1):63–7.

    Article  Google Scholar 

  33. Karp A. Willows as a source of renewable fuels and diverse products. In: Fenning T, editor. Challenges and opportunities for the world’s forests in the 21st century. Dordrecht: Springer; 2014. p. 614–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Shield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shield, I., Macalpine, W., Hanley, S., Karp, A. (2015). Breeding Willow for Short Rotation Coppice Energy Cropping. In: Cruz, V.M.V., Dierig, D.A. (eds) Industrial Crops. Handbook of Plant Breeding, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1447-0_4

Download citation

Publish with us

Policies and ethics