Skip to main content

Algae Crops: Coproduction of Algae Biofuels

  • Chapter
  • First Online:
Industrial Crops

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 9))

  • 2313 Accesses

Abstract

The chapter discusses potential uses of algae, and the benefits of coproducing algae biofuels and value-added products such as wastewater treatment and fish. Because of the discussion and the data surrounding algae, and the large technical and economic barriers faced by producers of algae biofuels, we predict that the use of algae to produce energy will likely end up being combined with other value-added products. The combination of energy production and other coproducts (e.g., wastewater treatment) can make large-scale algae biofuel production economically viable. Key, however, to algae biofuel coproduction is the ancillary market’s ability to consume large volumes.

The chapter also discusses aquaponics systems, which use algae to filter out water pollution and then recirculate the cleansed water back to the aquaculture production system. This part of the chapter is used to show that the social cost of coproducing algae for biofuel, while employing an aquaponics system is different than the private costs. Thus, an efficient outcome is achieved using public policy—e.g., subsidies, making algae for biofuel production more economical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. FAO Secretariat. Building an ecosystem approach to aquaculture. FAO/Universitat de les Illes Balears, Experts Workshop, Palma de Mallorca. 2007 May 7–11. Rome: Food and Agriculture Organization of the United Nations; 2007.

    Google Scholar 

  2. Chopin T, Buschmann AH, Halling C, Troell M, Kautsky N, Neori A, Kraemer GP, Zertuche-Gunzalez JA, Yarish C, Neefus C. Integrating seaweeds into marine aquaculture systems: a key toward sustainability. J Phycol. 2001;37:975–86.

    Article  Google Scholar 

  3. Frank ED, Han J, Palou-Rivera I, Elgowainy A, Wang MQ. Methane and nitrous oxide emissions affect the life-cycle analysis of algal biofuels. Environ Res Lett. 2012;7:014030.

    Article  Google Scholar 

  4. Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR. A realistic technology and engineering assessment of algae biofuel production. Berkeley: Energy Biosciences Institute; 2010.

    Google Scholar 

  5. FAO Fisheries and Aquaculture Secretariat. The state of world fisheries and aquaculture 2010. Rome: Food and Agriculture Organization of the United Nation; 2010.

    Google Scholar 

  6. Ahlgren G, Lundstedt L, Brett M, Forsberg C. Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. J Plankton Res. 1990;12(4):809–18.

    Article  CAS  Google Scholar 

  7. Rodolfi L, Chini Zittelli G, Bassi N, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng. 2009;102(1):100–12.

    Article  CAS  PubMed  Google Scholar 

  8. Xin L, Hong-Ying H, Jia Y. Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalga, Scenedesmus sp. LX1, growing in secondary effluent. Nat Biotechnol. 2009;27(1):59–63.

    Article  Google Scholar 

  9. Widjaja A, Chien C, Ju YH. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng. 2009;40:13–20.

    Article  CAS  Google Scholar 

  10. Chynoweth DP. Review of biomethane from marine biomass. Gainesville: University of Florida; 2002. p. 1–207.

    Google Scholar 

  11. Reith JH, BDeurwaarder BP, Hemmes K, Curvers A, Brandeburg W, Zeeman G. Bio-offshore: scale cultivation of seaweeds in combination with offshore wind farms in the North Sea. Energy research Centre of the Netherlands, Amsterdam, The Netherlands; 2005.

    Google Scholar 

  12. Buck BC, Buchholz CM. The offshore ring: a new system design for the open ocean aquaculture of macroalgae. J Appl Phycol. 2004;16:355–69.

    Article  Google Scholar 

  13. Pérez R. Ces algues qui nous entourent. Conception actuelle, role dans la biosphere, utilizations, culture. [These algae around us: current design role in the biosphere, utilizations, culture]. Editions Ifrimer; 1997.

    Google Scholar 

  14. Carlsson AS, van Beilen JB, Moller R, Clayton D. Micro- and macro-algae: utility for industrial applications. EPOBIO: realizing the economic potential of sustainable resources—bioproducts from non-food crops. CNAP, University of York, York, UK; 2007.

    Google Scholar 

  15. Lee YK. Commercial production of microalgae in the Asia-Pacific rim. J Appl Phycol. 1997;9:403–11.

    Article  Google Scholar 

  16. Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol. 2004;65:635–48.

    Article  CAS  PubMed  Google Scholar 

  17. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng. 2006;101:87–96.

    Article  CAS  PubMed  Google Scholar 

  18. Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306.

    Article  CAS  PubMed  Google Scholar 

  19. Harder R, von Witsch K. Uber Massenkultur von Diatomeen. Ber Deut Bot Ges. 1942;60:146–52.

    Google Scholar 

  20. Huntley M, Redalje DG. CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strat Glob Chang. 2007;12:573–608.

    Article  Google Scholar 

  21. Kruse O, Rupprecht J, Mussgnug JH, Dismukes GC, Hankamer B. Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci. 2005;4:957–70.

    Article  CAS  PubMed  Google Scholar 

  22. Li X, Xu H, Wu Q. Large-scale biodiesel production from microalgae Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng. 2007;98(4):764–71.

    Article  CAS  PubMed  Google Scholar 

  23. Miao X, Wu Q. High yield bio-oil production from fast pyrolysis by metaboliccontrolling of Chlorella protothecoides. J Biotechnol. 2004;110:85–93.

    Article  CAS  PubMed  Google Scholar 

  24. Miao X, Wu Q, Yang CY. Fast pyrolysis of microalgae to produce renewable fuels. J Anal Appl Pyrolysis. 2004;71:855–63.

    Article  CAS  Google Scholar 

  25. Ono E, Cuello JL. Carbon dioxide mitigation using thermophilic cyanobacteria. Biosyst Eng. 2007;96:129–34.

    Article  Google Scholar 

  26. Rupprecht J, Hankamer B, Mussgnug JH, Ananyev G, Dismukes GC, Kruse O. Perspectives and advances of biological H2 production in microorganisms. Appl Microbiol Biotechnol. 2006;72:442–9.

    Article  CAS  PubMed  Google Scholar 

  27. Scragg AH, Morrison J, Shales SW. The use of a fuel containing Chlorella vulgaris in a diesel engine. Enzyme Microb Technol. 2003;33:884–9.

    Article  CAS  Google Scholar 

  28. Tsukahara K, Sawayama S. Liquid fuel production using microalgae. J Jpn Pet Inst. 2005;48:251–9.

    Article  CAS  Google Scholar 

  29. Xu H, Miao XL, Wu Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol. 2006;126:499–507.

    Article  CAS  PubMed  Google Scholar 

  30. Hankammer B, Lehr F, Rupprecht J, Mussgnug JH, Posten C, Kruse O. Photosynthetic biomass and H2 production by green algae: from bioengineering to bioreactor scale up. Physiol Plant. 2007;131(1):10–21.

    Article  Google Scholar 

  31. Richmond A. Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia. 2004;512:33–7.

    Article  Google Scholar 

  32. Wen ZY, Chen F. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv. 2003;21:273–94.

    Article  CAS  PubMed  Google Scholar 

  33. Ward OP, Singh A. Omega-3/6 fatty acids: alternative sources of production. Process Biochem. 2005;40:3627–52.

    Article  CAS  Google Scholar 

  34. Zilberman D. The development of algal farming in the Arava. Report, Dec 1988; 1988.

    Google Scholar 

  35. Oswald WJ. Micro-algae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ, editors. Micro algal biotechnology. New York: Cambridge University Press; 1987. p. 305–28.

    Google Scholar 

  36. Oswald WJ. Large scale algal culture systems. In: Borowitzka MA, Borowitzka LJ, editors. Micro algal biotechnology. New York: Cambridge University Press; 1987. p. 357–94.

    Google Scholar 

  37. Shelef G. High-rate algae ponds for waste water treatment and protein production. Water Sci Technol. 1982;14:439–52.

    CAS  Google Scholar 

  38. Sheehan J, Dunahay T, Benemann J, Roessler P, Weissman J. Look back at the U.S. department of energy’s aquatic species program: biodiesel from algae. Close-Out-Report 1998, NREL Report No.: TP-580-24190; 1998.

    Google Scholar 

  39. Huesemann MH, Hausmann TS, Bartha R, Aksoy M, Weissman JC, Benemann JR. Biomass productivities in wild type and pigment mutant of Cyclotella sp. (Diatom). Appl Biochem Biotechnol. 2009;157:507–26.

    Article  CAS  PubMed  Google Scholar 

  40. Benemann JR. Hydrogen production by microalgae. J Appl Phycol. 2000;12:291–300.

    Article  CAS  Google Scholar 

  41. Kok B. Photosynthesis. In: Gibbs M, Hollaender A, Kok B, Krampitz LO, San Pietro A, editors. Proceedings of the Workshop on Bio Solar Hydrogen Conversion; 1973 Sept 5–6. Bethesda: National Science Foundation, 22-3; 1973.

    Google Scholar 

  42. Nakajima Y, Ueda R. Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments. J Appl Phycol. 1997;9:503–10.

    CAS  Google Scholar 

  43. Neidhardt J, Benemann JR, Zhang L, Melis A. Maximizing photosynthetic productivity and light utilization in microalgae by minimizing the light: harvesting chlorophyll antenna size of the photosystems. Photosynth Res. 1998;56:175–84.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gal Hochman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hochman, G., Trachtenberg, M.C., Zilberman, D. (2015). Algae Crops: Coproduction of Algae Biofuels. In: Cruz, V.M.V., Dierig, D.A. (eds) Industrial Crops. Handbook of Plant Breeding, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1447-0_17

Download citation

Publish with us

Policies and ethics