Skip to main content

Sisal/Agave

  • Chapter
  • First Online:
Industrial Crops

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 9))

Abstract

Agave species have recently emerged as potential bioenergy feedstocks that can be grown on marginal semiarid lands, creating an economic opportunity in regions where there are few agricultural commodities. This chapter provides an introduction to Agave species that are currently cultivated at a commercial scale for the tequila and fiber industries. It then reviews the opportunities and challenges associated with developing Agave feedstocks for biofuel by integrating recent biotechnological advances with traditional knowledge of Agave production. Drought tolerance, high yield, CAM physiology, and genetic diversity are among the characteristics that make Agave species apparently attractive as feedstocks. Challenges include manual labor costs and the establishment time that is required for the crop. Opportunities for development include the use of land that is otherwise unsuited, or has become unsuitable, for other agriculture in economically depressed rural areas. Despite the additional research that is needed to identify the varieties most fit for biofuel feedstock, current technology exists to support an Agave-based biofuel production system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borland AM, Griffiths H, Hartwell J, Smith JAC. Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. J Exp Bot. 2009;60:2879–96.

    Article  CAS  PubMed  Google Scholar 

  2. Davis SC, Dohleman FG, Long SP. The global potential for Agave as a biofuel feedstock. GCB Bioenergy. 2011;3:68–78.

    Article  CAS  Google Scholar 

  3. Fish SK, Fish PR, Madsen JH. Evidence for large-scale Agave cultivation in the Marana Community. In: Fish SK, Fish PR, Madsen JH, editors. The Marana community in the Hohokam world. Tucson: The University of Arizona Press; 1992. p. 73–81.

    Google Scholar 

  4. Good-Avila SV, Souza V, Gaut BS, Eguiarte LE. Timing and rate of speciation in Agave (Agavaceae). Proc Natl Acad Sci U S A. 2006;103:9124–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Purseglove JW, editor. Tropical crops. London: Longman; 1972.

    Google Scholar 

  6. Colunga-García Marín P, Larqué Saavedra A, Eguiarte LE, Zizumbo-Villareal D. En lo ancestral hay futuro: del tequila, los mezcales y otros agaves. 1st ed. Mérida: Centro de Investigación Científica de Yucatán, A.C.; 2007.

    Google Scholar 

  7. Gentry HS. Agaves of continental North America. Tucson: University of Arizona Press; 1982.

    Google Scholar 

  8. Granick EB. A karyosystematic study of the genus Agave. Am J Bot. 1944;31:283–98.

    Article  Google Scholar 

  9. Palomino G, Dolezel J, Méndez I, Rubluo A. Nuclear genome size analysis of Agave tequilana Weber. Caryologia. 2003;56:37–46.

    Article  Google Scholar 

  10. Simpson J, Martinez HA, Abraham JM, Delgado Sandoval J, Sanchez S, Villarreal A, Cortes Romero C. Genomic resources and transcriptome mining in Agave tequilana. GCB Bioenergy. 2011;3:25–36.

    Article  CAS  Google Scholar 

  11. Valenzuela-Zapata AG, Nablan GP. Tequila: a natural and cultural history. Tucson: University of Arizona Press; 2004.

    Google Scholar 

  12. Szarek SR, Ting IP. Occurrence of crassulacean acid metabolism among plants. Photosynthetica. 1977;11:330–42.

    CAS  Google Scholar 

  13. Szarek SR. Occurrence of crassulacean acid metabolism – a supplementary list during 1976–1979. Photosynthetica. 1979;13:467–73.

    CAS  Google Scholar 

  14. Nobel PS. Remarkable agaves and cacti. Oxford: Oxford University Press; 1994.

    Google Scholar 

  15. Wolf J. Der Diurnale saurerhythmus. In: von W. Ruhland. (Ed.): Encyclopedia of plant physiology. Berlin/Heidelberg/New York: Springer; 1960. p. 809–89.

    Google Scholar 

  16. Luttge U. Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot. 2004;93:629–52.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Blunden G, Yi Y, Jewers K. Comparative leaf anatomy of Agave, Beschorneria, Doryanthes, and Furcraea species (Agavaceae-Agaveae). Bot J Linn Soc. 1973;66:157–79.

    Article  Google Scholar 

  18. Trombold CD, Israde-Alcantara I. Paleoenvironment and plant cultivation on terraces at La Quemada, Zacatecas, Mexico: the pollen, phytolith and diatom evidence. J Archaeol Sci. 2005;32:341–53.

    Article  Google Scholar 

  19. Arrizon J, Morel S, Gschaedler A, Monsan P. Comparison of the water-soluble carbohydrate composition and fructan structures of Agave tequilana plants of different ages. Food Chem. 2010;122:123–30.

    Article  CAS  Google Scholar 

  20. FAO. FAO Statistics Division. 2012. http://faostat.fao.org. Accessed 29 Nov 2012.

  21. Shine SJ, Bhandari VK, Majaja BA. Evaluation and optimization of sisal harvesting systems. Paper, American Society of Agricultural Engineers; 1984. 15 pp.

    Google Scholar 

  22. Majaja BA, Chancellor WJ. The potential for mechanical harvest of sisal. Appl Eng Agric. 1997;13:703–8.

    Article  Google Scholar 

  23. Nuñez HM, Rodríguez LF, Khanna M. Agave for tequila and biofuels: an economic assessment and potential opportunities. GCB Bioenergy. 2011;3:43–57.

    Article  Google Scholar 

  24. UNEP. World atlas of desertification. 2nd ed. Washington, DC/Nairobi: United Nations Environment Programme; 1997.

    Google Scholar 

  25. Valenzuela-Zapata AG. A new agenda for blue agave landraces: food, energy and tequila. GCB Bioenergy. 2011;3:15–24.

    Article  Google Scholar 

  26. Khaliq I, Khan MA, Pearce S. Ty1-Copia retrotransposons are heterogeneous, extremely high copy number and are major players in the genome organization and evolution of Agave tequilana. Genet Resour Crop Evol. 2012;59:575–87.

    Article  CAS  Google Scholar 

  27. Lindsay DL, Edwards CE, Jung MG, Bailey P, Lance RF. Novel microsatellite loci for Agave parryi and cross-amplification in Agave palmeri (Agavaceae). Am J Bot. 2012;99:E295–7.

    Article  PubMed  Google Scholar 

  28. Sitwat A, Noor UH, Shakeel SN. Identification and validation of stable internal control for heat induced gene expression of Agave americana. Pakistan J Bot. 2012;44:1289–96.

    Google Scholar 

  29. Zhou W, Zhang Y, Lu J, Li J. Construction and evaluation of normalized cDNA libraries enriched with full-length sequences for rapid discovery of new genes from sisal (Agave sisalana Perr.) different developmental stages. Int J Mol Sci. 2012;13:13150–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kirby RH. Vegetable fibres: botany, cultivation, and utilization. London: Hill/Leonard; 1963.

    Google Scholar 

  31. Valenzuela-Zapata AG. The tequila industry in Jalisco, Mexico. Desert Plants. 1985;7:65–70.

    Google Scholar 

  32. Mancilla-Margalli NA, Lopez MG. Water-soluble carbohydrates and fructan structure patterns from Agave and Dasylirion species. J Agric Food Chem. 2006;54:7832–9.

    Article  CAS  PubMed  Google Scholar 

  33. Perrin RK, Fretes NF, Sesmero JP. Efficiency of midwest US corn ethanol plants: a plant survey. Energy Policy. 2009;37:1309–16.

    Article  Google Scholar 

  34. Carroll A, Somerville CR. Cellulosic biofuels. Annu Rev Plant Biol. 2009;60:165–82.

    Article  CAS  PubMed  Google Scholar 

  35. Cedeño MC. Tequila production. Crit Rev Biotechnol. 1995;15:1–11.

    Article  PubMed  Google Scholar 

  36. Iñiquez-Covarrubias G, Lange SE, Rowell RM. Utilization of byproducts from the tequila industry: part 1: agave bagasse as a raw material for animal feeding and fiberboard production. Bioresour Technol. 2001;77:25–32.

    Article  Google Scholar 

  37. Hernandez-Salas JM, Villa-Ramirez MS, Veloz-Rendon JS, Rivera-Hernandez KN, Gonzalez-Cesar RA, Plascencia-Espinosa MA, Trejo-Estrada SR. Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Bioresour Technol. 2009;100:1238–45.

    Article  CAS  PubMed  Google Scholar 

  38. Ha SJ, Galazka JM, Kim SR, Choi JH, Yang XM, Seo JH, Glass NL, Cate JHD, Jin YS. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci U S A. 2011;108:504–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Kim SR, Ha SJ, Wei N, Oh EJ, Jin YS. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol. 2012;30:274–82.

    Article  PubMed  Google Scholar 

  40. Avila-Fernandez A, Rendon-Poujol X, Olvera C, Gonzalez F, Capella S, Peña-Alvarez A, Lopez-Mungula A. Enzymatic hydrolysis of fructans in the tequila production process. J Agric Food Chem. 2009;57:5578–85.

    Article  CAS  PubMed  Google Scholar 

  41. Arrizon J, Gschaedler A. Increasing fermentation efficiency at high sugar concentrations by supplementing an additional source of nitrogen during the exponential phase of the tequila fermentation process. Can J Microbiol. 2002;48:965–70.

    Article  CAS  PubMed  Google Scholar 

  42. Gutiérrez-Loméli M, Torres-Guzmán JC, González-Hernández GA, Cira-Chávez LA, Pelayo-Ortiz C, Ramírez-Córdova J. Overexpression of ADH1 and HXT1 genes in the yeast Saccharomyces cerevisiae improves the fermentative efficiency during tequila elaboration. Antonie Van Leeuwenhoek. 2008;93:363–71.

    Article  PubMed  Google Scholar 

  43. Jin YS, Cate JHD. Model-guided strain improvement: simultaneous hydrolysis and co-fermentation of cellulosic sugars. Biotechnol J. 2012;7:328–9.

    Article  CAS  PubMed  Google Scholar 

  44. Cortez L, Freire WJ, Rosillo-Calle F. Biodigestion of vinasse in Brazil. Int Sugar J. 1998;100:403–13.

    CAS  Google Scholar 

  45. Mendez-Acosta HO, Snell-Castro R, Alcaraz-Gonzalez V, Gonzalez-Alvarez V, Pelayo-Ortiz C. Anaerobic treatment of tequila vinasses in a CSTR-type digester. Biodegradation. 2010;21:357–63.

    Article  CAS  PubMed  Google Scholar 

  46. Chandra R, Takeuchi H, Hasegawa T. Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sust Energy Rev. 2012;16:1462–76.

    Article  CAS  Google Scholar 

  47. De Souza ZM, Prado RD, Paixao ACS, Cesarin LG. Harvest systems and residue management of sugarcane. Pesqui Odontol Bras. 2005;40:271–8.

    Google Scholar 

  48. Espinoza-Escalante FM, Pelayo-Ortiz C, Navarro-Corona J, Gonzalez-Garcia Y, Bories A, Gutierrez-Pulido H. Anaerobic digestion of the vinasses from the fermentation of Agave tequilana Weber to tequila: the effect of pH, temperature and hydraulic retention time on the production of hydrogen and methane. Biomass Bioenergy. 2009;33:14–20.

    Article  CAS  Google Scholar 

  49. Cedeño CM, Alvarez-Jacobs J. Production of tequila from agave: historical influences and contemporary processes. In: Jacques K, Lyons TP, Kelsall DR, editors. The alcohol textbook. 3rd ed. Nottingham: Nottingham University Press; 1999. p. 225–42.

    Google Scholar 

  50. Vieira MC, Heinze T, Antonio-Cruz R, Mendoza-Martinez AM. Cellulose derivatives from cellulosic material isolated from Agave lechuguilla and Agave fourcroydes. Cellulose. 2002;9:203–12.

    Article  CAS  Google Scholar 

  51. McDougall GJ, Morrison IM, Stewart D, Weyers JDB, Hillman JR. Plant fibres: botany, chemistry, and processing for industrial use. J Sci Food Agric. 1993;62:1–20.

    Article  CAS  Google Scholar 

  52. Mylsamy K, Rajendran I. Investigation on physio-chemical and mechanical properties of raw and alkali-treated Agave americana fibre. J Reinf Plast Compos. 2010;29(19):2925–35. doi:10.1177/0731684410362817.

    Article  CAS  Google Scholar 

  53. García-Reyes BR, Rangel-Mendez JR. Contribution of agro-waste material main components (hemicelluloses, cellulose, and lignin) to the removal of chromium (III) from aqueous solution. J Chem Technol Biotechnol. 2009;84:1533–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah C. Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davis, S.C., Long, S.P. (2015). Sisal/Agave. In: Cruz, V.M.V., Dierig, D.A. (eds) Industrial Crops. Handbook of Plant Breeding, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1447-0_15

Download citation

Publish with us

Policies and ethics