Skip to main content

Dysplastic Nevi Versus Melanoma

  • Chapter
  • First Online:
Pathology of Challenging Melanocytic Neoplasms

Abstract

Ever since its original description, the dysplastic nevus (DN) has been a source of major debate and controversy amongst dermatologists, dermatopathologists, and pathologists. Multiple studies in the literature have not only validated the existence of the DN and characterized it histopathologically and clinically, but also addressed the relevant issues relating to its nosology and terminology. However, there remains a lack of consensus regarding its biologic behavior and clinical significance. A central point of debate is whether the DN should be regarded and managed as a premalignant neoplasm, i.e., a precursor to melanoma. The ambiguous status ascribed to this entity is derived from both clinical and histopathologic characteristics, which bear some resemblance both to common acquired nevi and to melanoma. Immunohistochemical studies, molecular genetics, and novel in vivo microscopic technologies may facilitate a better understanding of the dysplastic nevus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cawley EP, Kruse WT, Pinkus HK. Genetic aspects of malignant melanoma. AMA Arch Derm Syphilol. 1952;65(4):440–50.

    Article  CAS  PubMed  Google Scholar 

  2. Clark Jr WH, Reimer RR, Greene M, Ainsworth AM, Mastrangelo MJ. Origin of familial malignant melanomas from heritable melanocytic lesions ‘The B-K mole syndrome’. Arch Dermatol. 1978;114(5):732–8.

    Article  PubMed  Google Scholar 

  3. Lynch HT, Frichot 3rd BC, Lynch JF. Familial atypical multiple mole-melanoma syndrome. J Med Genet. 1978;15(5):352–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Elder DE, Goldman LI, Goldman SC, Greene MH, Clark Jr WH. Dysplastic nevus syndrome: a phenotypic association of sporadic cutaneous melanoma. Cancer. 1980;46(8):1787–94.

    Article  CAS  PubMed  Google Scholar 

  5. Kamb A, Shattuck-Eidens D, Eeles R, Liu Q, Gruis NA, Ding W, Hussey C, Tran T, Miki Y, Weaver-Feldhaus J, et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet. 1994;8(1):23–6.

    Article  CAS  PubMed  Google Scholar 

  6. Goldstein AM, Struewing JP, Chidambaram A, Fraser MC, Tucker MA. Genotype–phenotype relationships in U.S. melanoma-prone families with CDKN2A and CDK4 mutations. J Natl Cancer Inst. 2000;92(12):1006–10.

    Article  CAS  PubMed  Google Scholar 

  7. Duffy K, Grossman D. The dysplastic nevus: from historical perspective to management in the modern era: part I. Historical, histologic, and clinical aspects. J Am Acad Dermatol. 2012;67(1):1.e1–16.

    Google Scholar 

  8. NIH consensus conference. Diagnosis and treatment of early melanoma. JAMA. 1992;268:1314–9.

    Article  Google Scholar 

  9. Jimbow K, Horikoshi T, Takahashi H, Akutsu Y, Maeda K. Fine structural and immunohistochemical properties of dysplastic melanocytic nevi: comparison with malignant melanoma. J Invest Dermatol. 1989;92(5 Suppl):304S–9S.

    Article  CAS  PubMed  Google Scholar 

  10. Lebe B, Pabuççuoglu U, Ozer E. Expression pattern of type IV collagen in sporadic dysplastic melanocytic nevi. Anal Quant Cytol Histol. 2008;30(5):291–6.

    PubMed  Google Scholar 

  11. Shea CR, Vollmer RT, Prieto VG. Correlating architectural disorder and cytologic atypia in Clark (dysplastic) melanocytic nevi. Hum Pathol. 1999;30(5):500–5.

    Article  CAS  PubMed  Google Scholar 

  12. Duffy KL, Mann DJ, Petronic-Rosic V, Shea CR. Clinical decision making based on histopathologic grading and margin status of dysplastic nevi. Arch Dermatol. 2012;148(2):259–60.

    Article  PubMed  Google Scholar 

  13. Gown AM, Vogel AM, Hoak D, Gough F, McNutt MA. Monoclonal antibodies specific for melanocytic tumors distinguish subpopulations of melanocytes. Am J Pathol. 1986;123(2):195–203.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Yaziji H, Gown AM. Immunohistochemical markers of melanocytic tumors. Int J Surg Pathol. 2003;11(1):11–5. Review.

    Article  PubMed  Google Scholar 

  15. Coulie PG, Brichard V, Van Pel A, Wölfel T, Schneider J, Traversari C, Mattei S, De Plaen E, Lurquin C, Szikora JP, Renauld JC, Boon T. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med. 1994;180(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  16. Orosz Z. Melan-A/Mart-1 expression in various melanocytic lesions and in non-melanocytic soft tissue tumours. Histopathology. 1999;34(6):517–25.

    Article  CAS  PubMed  Google Scholar 

  17. Busam KJ, Chen YT, Old LJ, Stockert E, Iversen K, Coplan KA, Rosai J, Barnhill RL, Jungbluth AA. Expression of melan-A (MART1) in benign melanocytic nevi and primary cutaneous malignant melanoma. Am J Surg Pathol. 1998;22(8):976–82.

    Article  CAS  PubMed  Google Scholar 

  18. Busam KJ, Iversen K, Coplan KA, Old LJ, Stockert E, Chen YT, McGregor D, Jungbluth A. Immunoreactivity for A103, an antibody to melan-A (Mart-1), in adrenocortical and other steroid tumors. Am J Surg Pathol. 1998;22(1):57–63.

    Article  CAS  PubMed  Google Scholar 

  19. Nasr MR, El-Zammar O. Comparison of pHH3, Ki-67, and survivin immunoreactivity in benign and malignant melanocytic lesions. Am J Dermatopathol. 2008;30(2):117–22.

    Article  PubMed  Google Scholar 

  20. Scurr LL, McKenzie HA, Becker TM, Irvine M, Lai K, Mann GJ, Scolyer RA, Kefford RF, Rizos H. Selective loss of wild-type p16(INK4a) expression in human nevi. J Invest Dermatol. 2011;131(11):2329–32.

    Article  CAS  PubMed  Google Scholar 

  21. Goldstein AM, Chan M, Harland M, Gillanders EM, Hayward NK, Avril MF, Azizi E, Bianchi-Scarra G, Bishop DT, Bressac-de Paillerets B, Bruno W, Calista D, Cannon Albright LA, Demenais F, Elder DE, Ghiorzo P, Gruis NA, Hansson J, Hogg D, Holland EA, Kanetsky PA, Kefford RF, Landi MT, Lang J, Leachman SA, Mackie RM, Magnusson V, Mann GJ, Niendorf K, Newton Bishop J, Palmer JM, Puig S, Puig-Butille JA, de Snoo FA, Stark M, Tsao H, Tucker MA, Whitaker L, Yakobson E, Melanoma Genetics Consortium (GenoMEL). High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Cancer Res. 2006;66(20):9818–28.

    Article  CAS  PubMed  Google Scholar 

  22. Sini MC, Manca A, Cossu A, Budroni M, Botti G, Ascierto PA, Cremona F, Muggiano A, D’Atri S, Casula M, Baldinu P, Palomba G, Lissia A, Tanda F, Palmieri G. Molecular alterations at chromosome 9p21 in melanocytic naevi and melanoma. Br J Dermatol. 2008;158(2):243–50.

    CAS  PubMed  Google Scholar 

  23. Clark Jr WH, Elder DE, Guerry 4th D, Epstein MN, Greene MH, Van Horn M. A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum Pathol. 1984;15(12):1147–65.

    Article  PubMed  Google Scholar 

  24. Widlund HR, Fisher DE. Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival. Oncogene. 2003;22(20):3035–41. Review.

    Article  CAS  PubMed  Google Scholar 

  25. Goding CR. Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes Dev. 2000;14(14):1712–28. Review.

    CAS  PubMed  Google Scholar 

  26. Du J, Miller AJ, Widlund HR, Horstmann MA, Ramaswamy S, Fisher DE. MLANA/MART1 and SILV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma. Am J Pathol. 2003;163(1):333–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Loercher AE, Tank EM, Delston RB, Harbour JW. MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. J Cell Biol. 2005;168(1):35–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, Beroukhim R, Milner DA, Granter SR, Du J, Lee C, Wagner SN, Li C, Golub TR, Rimm DL, Meyerson ML, Fisher DE, Sellers WR. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature. 2005;436(7047):117–22.

    Article  CAS  PubMed  Google Scholar 

  29. Cronin JC, Wunderlich J, Loftus SK, Prickett TD, Wei X, Ridd K, Vemula S, Burrell AS, Agrawal NS, Lin JC, Banister CE, Buckhaults P, Rosenberg SA, Bastian BC, Pavan WJ, Samuels Y. Frequent mutations in the MITF pathway in melanoma. Pigment Cell Melanoma Res. 2009;22(4):435–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Salti GI, Manougian T, Farolan M, Shilkaitis A, Majumdar D, Das Gupta TK. Micropthalmia transcription factor: a new prognostic marker in intermediate-thickness cutaneous malignant melanoma. Cancer Res. 2000;60(18):5012–6.

    CAS  PubMed  Google Scholar 

  31. Miller AJ, Du J, Rowan S, Hershey CL, Widlund HR, Fisher DE. Transcriptional regulation of the melanoma prognostic marker melastatin (TRPM1) by MITF in melanocytes and melanoma. Cancer Res. 2004;64(2):509–16.

    Article  CAS  PubMed  Google Scholar 

  32. Larson AR, Dresser KA, Zhan Q, Lezcano C, Woda BA, Yosufi B, Thompson JF, Scolyer RA, Mihm Jr MC, Shi YG, Murphy GF, Lian CG. Loss of 5-hydroxymethylcytosine correlates with increasing morphologic dysplasia in melanocytic tumors. Mod Pathol. 2014;27(7):936–44.

    Google Scholar 

  33. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3(6):415–28. Review.

    Google Scholar 

  34. Lian CG, Xu Y, Ceol C, Wu F, Larson A, Dresser K, Xu W, Tan L, Hu Y, Zhan Q, Lee CW, Hu D, Lian BQ, Kleffel S, Yang Y, Neiswender J, Khorasani AJ, Fang R, Lezcano C, Duncan LM, Scolyer RA, Thompson JF, Kakavand H, Houvras Y, Zon LI, Mihm Jr MC, Kaiser UB, Schatton T, Woda BA, Murphy GF, Shi YG. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell. 2012;150(6):1135–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Wegner M. All purpose Sox: the many roles of Sox proteins in gene expression. Int J Biochem Cell Biol. 2010;42(3):381–90.

    Article  CAS  PubMed  Google Scholar 

  36. Elworthy S, Lister JA, Carney TJ, Raible DW, Kelsh RN. Transcriptional regulation of mitfa accounts for the sox10 requirement in zebrafish melanophore development. Development. 2003;130(12):2809–18.

    Article  CAS  PubMed  Google Scholar 

  37. Hoek KS, Eichhoff OM, Schlegel NC, Döbbeling U, Kobert N, Schaerer L, Hemmi S, Dummer R. In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res. 2008;68(3):650–6.

    Article  CAS  PubMed  Google Scholar 

  38. Bakos RM, Maier T, Besch R, Mestel DS, Ruzicka T, Sturm RA, Berking C. Nestin and SOX9 and SOX10 transcription factors are coexpressed in melanoma. Exp Dermatol. 2010;19(8):e89–94.

    Article  PubMed  Google Scholar 

  39. Passeron T, Valencia JC, Bertolotto C, Hoashi T, Le Pape E, Takahashi K, Ballotti R, Hearing VJ. SOX9 is a key player in ultraviolet B-induced melanocyte differentiation and pigmentation. Proc Natl Acad Sci U S A. 2007;104(35):13984–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Harris ML, Baxter LL, Loftus SK, Pavan WJ. Sox proteins in melanocyte development and melanoma. Pigment Cell Melanoma Res. 2010;23(4):496–513.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Barnhill RL, Fandrey K, Levy MA, Mihm Jr MC, Hyman B. Angiogenesis and tumor progression of melanoma. Quantification of vascularity in melanocytic nevi and cutaneous malignant melanoma. Lab Invest. 1992;67(3):331–7.

    CAS  PubMed  Google Scholar 

  42. Konstantina A, Lazaris AC, Ioannidis E, Liossi A, Aroni K. Immunohistochemical expression of VEGF, HIF1-a, and PlGF in malignant melanomas and dysplastic nevi. Melanoma Res. 2011;21(5):389–94.

    Article  CAS  PubMed  Google Scholar 

  43. Ioannidis EN, Aroni K, Kavantzas N. Assessment of vascularity in common Blue Nevi, small/medium congenital nevocellular, common and dysplastic acquired melanocytic nevi and melanomas: a comparative study. Am J Dermatopathol. 2014;36(3):217–22.

    Article  PubMed  Google Scholar 

  44. Adamkov M, Lauko L, Balentova S, Pec J, Pec M, Rajcani J. Expression pattern of anti-apoptotic protein survivin in dysplastic nevi. Neoplasma. 2009;56(2):130–5.

    Article  CAS  PubMed  Google Scholar 

  45. Nwaneshiudu A, Kuschal C, Sakamoto FH, Anderson RR, Schwarzenberger K, Young RC. Introduction to confocal microscopy. J Invest Dermatol. 2012;132(12):e3. doi:10.1038/jid.2012.429. Review.

    Article  CAS  PubMed  Google Scholar 

  46. Rajadhyaksha M, González S, Zavislan JM, Anderson RR, Webb RH. In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology. J Invest Dermatol. 1999;113(3):293–303.

    Article  CAS  PubMed  Google Scholar 

  47. Rajadhyaksha M, Grossman M, Esterowitz D, Webb RH, Anderson RR. In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. J Invest Dermatol. 1995;104(6):946–52.

    Article  CAS  PubMed  Google Scholar 

  48. Pellacani G, Guitera P, Longo C, Avramidis M, Seidenari S, Menzies S. The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions. J Invest Dermatol. 2007;127(12):2759–65.

    CAS  PubMed  Google Scholar 

  49. Carrera C, Puig S, Malvehy J. In vivo confocal reflectance microscopy in melanoma. Dermatol Ther. 2012;25(5):410–22.

    Article  PubMed  Google Scholar 

  50. Pellacani G, Cesinaro AM, Seidenari S. Reflectance-mode confocal microscopy of pigmented skin lesions-improvement in melanoma diagnostic specificity. J Am Acad Dermatol. 2005;53(6):979–85.

    Article  PubMed  Google Scholar 

  51. Pellacani G, Farnetani F, Gonzalez S, Longo C, Cesinaro AM, Casari A, Beretti F, Seidenari S, Gill M. In vivo confocal microscopy for detection and grading of dysplastic nevi: a pilot study. J Am Acad Dermatol. 2012;66(3):e109–21.

    Article  PubMed  Google Scholar 

  52. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    Article  CAS  PubMed  Google Scholar 

  53. Wu J, Rosenbaum E, Begum S, Westra WH. Distribution of BRAF T1799A(V600E) mutations across various types of benign nevi: implications for melanocytic tumorigenesis. Am J Dermatopathol. 2007;29(6):534–7.

    Article  PubMed  Google Scholar 

  54. Duffy K, Grossman D. The dysplastic nevus: from historical perspective to management in the modern era: Part II. Molecular aspects and clinical management. J Am Acad Dermatol. 2012;67(1):19.e1–12. quiz 31–2.

    Article  Google Scholar 

  55. Sharpless E, Chin L. The INK4a/ARF locus and melanoma. Oncogene. 2003;22(20):3092–8. Review.

    Article  CAS  PubMed  Google Scholar 

  56. Sauter ER, Yeo UC, von Stemm A, Zhu W, Litwin S, Tichansky DS, Pistritto G, Nesbit M, Pinkel D, Herlyn M, Bastian BC. Cyclin D1 is a candidate oncogene in cutaneous melanoma. Cancer Res. 2002;62(11):3200–6.

    CAS  PubMed  Google Scholar 

  57. Pomerantz J, Schreiber-Agus N, Liégeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, Cordon-Cardo C, DePinho RA. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell. 1998;92(6):713–23.

    Article  CAS  PubMed  Google Scholar 

  58. Sharpless NE, Ramsey MR, Balasubramanian P, Castrillon DH, DePinho RA. The differential impact of p16(INK4a) or p19(ARF) deficiency on cell growth and tumorigenesis. Oncogene. 2004;23(2):379–85.

    Article  CAS  PubMed  Google Scholar 

  59. Miller AJ, Mihm Jr MC. Melanoma. N Engl J Med. 2006;355(1):51–65. Review.

    Article  CAS  PubMed  Google Scholar 

  60. Stahl JM, Sharma A, Cheung M, Zimmerman M, Cheng JQ, Bosenberg MW, Kester M, Sandirasegarane L, Robertson GP. Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res. 2004;64(19):7002–10.

    Article  CAS  PubMed  Google Scholar 

  61. Hsu M, Andl T, Li G, Meinkoth JL, Herlyn M. Cadherin repertoire determines partner-specific gap junctional communication during melanoma progression. J Cell Sci. 2000;113(Pt 9):1535–42.

    CAS  PubMed  Google Scholar 

  62. Widlund HR, Horstmann MA, Price ER, Cui J, Lessnick SL, Wu M, He X, Fisher DE. Beta-catenin-induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor. J Cell Biol. 2002;158(6):1079–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, Ben-Ze’ev A. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A. 1999;96(10):5522–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Gerami P, Busam KJ. Cytogenetic and mutational analyses of melanocytic tumors. Dermatol Clin. 2012;30(4):555–66.

    Article  CAS  PubMed  Google Scholar 

  65. Song J, Mooi WJ, Petronic-Rosic V, Shea CR, Stricker T, Krausz T. Nevus versus melanoma: to FISH, or not to FISH. Adv Anat Pathol. 2011;18(3):229–34.

    Article  CAS  PubMed  Google Scholar 

  66. Gerami P, Jewell SS, Morrison LE, Blondin B, Schulz J, Ruffalo T, Matushek 4th P, Legator M, Jacobson K, Dalton SR, Charzan S, Kolaitis NA, Guitart J, Lertsbarapa T, Boone S, LeBoit PE, Bastian BC. Fluorescence in situ hybridization (FISH) as an ancillary diagnostic tool in the diagnosis of melanoma. Am J Surg Pathol. 2009;33(8):1146–56.

    Article  PubMed  Google Scholar 

  67. Newman MD, Lertsburapa T, Mirzabeigi M, Mafee M, Guitart J, Gerami P. Fluorescence in situ hybridization as a tool for microstaging in malignant melanoma. Mod Pathol. 2009;22(8):989–95.

    Article  CAS  PubMed  Google Scholar 

  68. Ackerman AB, Magana-Garcia M. Naming acquired melanocytic nevi. Unna’s, Miescher’s, Spitz’s Clark’s. Am J Dermatopathol. 1990;12(2):193–209.

    Article  CAS  PubMed  Google Scholar 

  69. Duncan LM, Berwick M, Bruijn JA, Byers HR, Mihm MC, Barnhill RL. Histopathologic recognition and grading of dysplastic melanocytic nevi: an interobserver agreement study. J Invest Dermatol. 1993;100(3):318S–21.

    Article  CAS  PubMed  Google Scholar 

  70. Clemente C, Cochran AJ, Elder DE, Levene A, MacKie RM, Mihm MC, Rilke F, Cascinelli N, Fitzpatrick TB, Sober AJ. Histopathologic diagnosis of dysplastic nevi: concordance among pathologists convened by the World Health Organization Melanoma Programme. Hum Pathol. 1991;22(4):313–9.

    Article  CAS  PubMed  Google Scholar 

  71. Annessi G, Cattaruzza MS, Abeni D, Baliva G, Laurenza M, Macchini V, Melchi F, Ruatti P, Puddu P, Faraggiana T. Correlation between clinical atypia and histologic dysplasia in acquired melanocytic nevi. J Am Acad Dermatol. 2001;45(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  72. Arumi-Uria M, McNutt NS, Finnerty B. Grading of atypia in nevi: correlation with melanoma risk. Mod Pathol. 2003;16(8):764–71.

    Article  PubMed  Google Scholar 

  73. Piepkorn MW, Barnhill RL, Cannon-Albright LA, Elder DE, Goldgar DE, Lewis CM, Maize JC, Meyer LJ, Rabkin MS, Sagebiel RW, et al. A multiobserver, population-based analysis of histologic dysplasia in melanocytic nevi. J Am Acad Dermatol. 1994;30(5 Pt 1):707–14.

    Article  CAS  PubMed  Google Scholar 

  74. Klein LJ, Barr RJ. Histologic atypia in clinically benign nevi. A prospective study. J Am Acad Dermatol. 1990;22(2 Pt 1):275–82.

    Article  CAS  PubMed  Google Scholar 

  75. Schmidt B, Weinberg DS, Hollister K, Barnhill RL. Analysis of melanocytic lesions by DNA image cytometry. Cancer. 1994;73(12):2971–7.

    Article  CAS  PubMed  Google Scholar 

  76. Meyer LJ, Schmidt LA, Goldgar DE, Piepkorn MW. Survival and histopathologic characteristics of human melanocytic nevi transplanted to athymic (nude) mice. Am J Dermatopathol. 1995;17(4):368–73.

    CAS  PubMed  Google Scholar 

  77. Tsao H, Bevona C, Goggins W, Quinn T. The transformation rate of moles (melanocytic nevi) into cutaneous melanoma: a population-based estimate. Arch Dermatol. 2003;139(3):282–8.

    Article  PubMed  Google Scholar 

  78. Shors AR, Kim S, White E, Argenyi Z, Barnhill RL, Duray P, Erickson L, Guitart J, Horenstein MG, Lowe L, Messina J, Rabkin MS, Schmidt B, Shea CR, Trotter MJ, Piepkorn MW. Dysplastic naevi with moderate to severe histological dysplasia: a risk factor for melanoma. Br J Dermatol. 2006;155(5):988–93.

    Article  CAS  PubMed  Google Scholar 

  79. Goldstein AM, Tucker MA. Dysplastic nevi and melanoma. Cancer Epidemiol Biomarkers Prev. 2013;22(4):528–32.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Rhodes AR. Acquired dysplastic melanocytic nevi and cutaneous melanoma: precursors and prevention Ann Intern Med. 1985 Apr;102(4):546–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Shea M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nwaneshiudu, A.I., Reed, J.A., Prieto, V.G., Shea, C.R. (2015). Dysplastic Nevi Versus Melanoma. In: Shea, C., Reed, J., Prieto, V. (eds) Pathology of Challenging Melanocytic Neoplasms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1444-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1444-9_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1443-2

  • Online ISBN: 978-1-4939-1444-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics