Skip to main content

Neuroprotection Versus Neurotoxicity

  • Chapter
  • First Online:
Microglia in Health and Disease

Abstract

Several original concepts concerning microglia have changed in the last decade. Ramified microglia are no longer seen to be “resting” cells and it also is very obvious today that microglia responses are by no means stereotypic, but manifold and targeted. Moreover, there is good evidence that microglia are not only important in brain pathology, but that they also play important roles in the healthy brain. One long-standing aspect of microglia biology, however, was never questioned: their involvement in brain disease. Based on morphological changes (retraction of processes and amoeboid shape) that inevitably occur in these cells in case of damage to the central nervous system, microglia in the diseased brain were called “activated”. Because “activated” microglia were always found in direct neighbourhood to dead or dying neurons, and since it is known now for more than 20 years that cultured microglia release numerous factors that are able to kill neurons, microglia “activation” was often seen as neurotoxic. From an evolutionary point of view, however, it is difficult to understand why an important, mostly post-mitotic and highly vulnerable organ like the brain would host numerous toxic cells. How microglia can protect the nervous tissue and what might go awry when microglia turn neurotoxic will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo-Ouf H, Hooper AW, White EJ, van Rensburg HJ, Trigatti BL, Igdoura SA (2013) Deletion of tumor necrosis factor-alpha ameliorates neurodegeneration in Sandhoff disease mice. Hum Mol Genet 22:3960–3975

    CAS  PubMed  Google Scholar 

  • Aguzzi A, Barres BA, Bennett ML (2013) Microglia: scapegoat, saboteur, or something else? Science 339:156–161

    CAS  PubMed  Google Scholar 

  • Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543

    CAS  PubMed  Google Scholar 

  • Anrather J, Gallo EF, Kawano T, Orio M, Abe T, Gooden C et al (2011) Purinergic signaling induces cyclooxygenase-1-dependent prostanoid synthesis in microglia: roles in the outcome of excitotoxic brain injury. PLoS One 6:e25916

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ajmone-Cat MA, Mancini M, De Simone R, Cilli P, Minghetti L (2013) Microglial polarization and plasticity: evidence from organotypic hippocampal slice cultures. Glia 61:1698–1711

    PubMed  Google Scholar 

  • Antonini JM, Sriram K, Benkovic SA, Roberts JR, Stone S, Chen BT et al (2009) Mild steel welding fume causes manganese accumulation and subtle neuroinflammatory changes but not overt neuronal damage in discrete brain regions of rats after short-term inhalation exposure. Neurotoxicology 30:915–925

    CAS  PubMed  Google Scholar 

  • Appel SH, Zhao W, Beers DR, Henkel JS (2011) The microglial-motoneuron dialogue in ALS. Acta Myol 30:4–8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ardeljan D, Chan CC (2013) Aging is not a disease: distinguishing age-related macular degeneration from aging. Prog Retin Eye Res 37:68–89

    CAS  PubMed  Google Scholar 

  • Bachstetter AD, Rowe RK, Kaneko M, Goulding D, Lifshitz J, Van Eldik LJ (2013) The p38alpha MAPK regulates microglial responsiveness to diffuse traumatic brain injury. J Neurosci 33:6143–6153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bachstetter AD, Xing B, de Almeida L, Dimayuga ER, Watterson DM, Van Eldik LJ (2011) Microglial p38alpha MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Abeta). J Neuroinflammation 8:79

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bechade C, Cantaut-Belarif Y, Bessis A (2013) Microglial control of neuronal activity. Front Cell Neurosci 7:32

    PubMed Central  PubMed  Google Scholar 

  • Beers DR, Henkel JS, Xiao Q, Zhao W, Wang J, Yen AA et al (2006) Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 103:16021–16026

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bernstein HG, Steiner J, Bogerts B (2009) Glial cells in schizophrenia: pathophysiological significance and possible consequences for therapy. Expert Rev Neurother 9:1059–1071

    CAS  PubMed  Google Scholar 

  • Beumer W, Gibney SM, Drexhage RC, Pont-Lezica L, Doorduin J, Klein HC et al (2012) The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. J Leukoc Biol 92:959–975

    CAS  PubMed  Google Scholar 

  • Biber K, Neumann H, Inoue K, Boddeke HW (2007) Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 30:596–602

    CAS  PubMed  Google Scholar 

  • Blandini F (2013) Neural and immune mechanisms in the pathogenesis of Parkinson’s disease. J Neuroimmune Pharmacol 8:189–201

    PubMed  Google Scholar 

  • Blank T, Prinz M (2013) Microglia as modulators of cognition and neuropsychiatric disorders. Glia 61:62–70

    PubMed  Google Scholar 

  • Block ML, Calderon-Garciduenas L (2009) Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci 32:506–516

    CAS  PubMed Central  PubMed  Google Scholar 

  • Block ML, Elder A, Auten RL, Bilbo SD, Chen H, Chen JC et al (2012) The outdoor air pollution and brain health workshop. Neurotoxicology 33:972–984

    PubMed Central  PubMed  Google Scholar 

  • Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    CAS  PubMed  Google Scholar 

  • Boche D, Perry VH, Nicoll JA (2013) Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 39:3–18

    CAS  PubMed  Google Scholar 

  • Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G et al (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312:1389–1392

    CAS  PubMed  Google Scholar 

  • Bolton JL, Smith SH, Huff NC, Gilmour MI, Foster WM, Auten RL et al (2012) Prenatal air pollution exposure induces neuroinflammation and predisposes offspring to weight gain in adulthood in a sex-specific manner. FASEB J 26:4743–4754

    CAS  PubMed  Google Scholar 

  • Bonneh-Barkay D, Reaney SH, Langston WJ, Di Monte DA (2005) Redox cycling of the herbicide paraquat in microglial cultures. Brain Res Mol Brain Res 134:52–56

    CAS  PubMed  Google Scholar 

  • Broderick C, Hoek RM, Forrester JV, Liversidge J, Sedgwick JD, Dick AD (2002) Constitutive retinal CD200 expression regulates resident microglia and activation state of inflammatory cells during experimental autoimmune uveoretinitis. Am J Pathol 161:1669–1677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown GC (2007) Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem Soc Trans 35:1119–1121

    CAS  PubMed  Google Scholar 

  • Butovsky O, Landa G, Kunis G, Ziv Y, Avidan H, Greenberg N, Schwartz A, Smirnov I, Pollack A, Jung S, Schwartz M (2006) Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis. J Clin Invest 116(4):905–915

    CAS  PubMed Central  PubMed  Google Scholar 

  • Butovsky O, Bukshpan S, Kunis G, Jung S, Schwartz M (2007) Microglia can be induced by IFN-gamma or IL-4 to express neural or dendritic-like markers. Mol Cell Neurosci 35(3):490–500

    CAS  PubMed  Google Scholar 

  • Buiting AM, Van Rooijen N (1994) Liposome mediated depletion of macrophages: an approach for fundamental studies. J Drug Target 2:357–362

    CAS  PubMed  Google Scholar 

  • Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE et al (2001) In-vivo measurement of activated microglia in dementia. Lancet 358:461–467

    CAS  PubMed  Google Scholar 

  • Calderon-Garciduenas L, Solt AC, Henriquez-Roldan C, Torres-Jardon R, Nuse B, Herritt L et al (2008) Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults. Toxicol Pathol 36:289–310

    CAS  PubMed  Google Scholar 

  • Campbell A, Araujo JA, Li H, Sioutas C, Kleinman M (2009) Particulate matter induced enhancement of inflammatory markers in the brains of apolipoprotein E knockout mice. J Nanosci Nanotechnol 9:5099–5104

    CAS  PubMed  Google Scholar 

  • Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C et al (2005) Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain. Neurotoxicology 26:133–140

    CAS  PubMed  Google Scholar 

  • Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM et al (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9:917–924

    CAS  PubMed  Google Scholar 

  • Carvey PM, Chang Q, Lipton JW, Ling Z (2003) Prenatal exposure to the bacteriotoxin lipopolysaccharide leads to long-term losses of dopamine neurons in offspring: a potential, new model of Parkinson’s disease. Front Biosci 8:s826–s837

    CAS  PubMed  Google Scholar 

  • Chahine LM, Stern MB (2011) Diagnostic markers for Parkinson’s disease. Curr Opin Neurol 24:309–317

    CAS  PubMed  Google Scholar 

  • Chanyachukul T, Yoovathaworn K, Thongsaard W, Chongthammakun S, Navasumrit P, Satayavivad J (2004) Attenuation of paraquat-induced motor behavior and neurochemical disturbances by L-valine in vivo. Toxicol Lett 150:259–269

    CAS  PubMed  Google Scholar 

  • Chen H, O’Reilly EJ, Schwarzschild MA, Ascherio A (2008) Peripheral inflammatory biomarkers and risk of Parkinson’s disease. Am J Epidemiol 167:90–95

    PubMed  Google Scholar 

  • Chiba-Falek O, Lopez GJ, Nussbaum RL (2006) Levels of alpha-synuclein mRNA in sporadic Parkinson disease patients. Mov Disord 21:1703–1708

    PubMed  Google Scholar 

  • Cho IH, Hong J, Suh EC, Kim JH, Lee H, Lee JE et al (2008) Role of microglial IKKbeta in kainic acid-induced hippocampal neuronal cell death. Brain 131:3019–3033

    PubMed Central  PubMed  Google Scholar 

  • Choi SH, Aid S, Caracciolo L, Minami SS, Niikura T, Matsuoka Y et al (2013) Cyclooxygenase-1 inhibition reduces amyloid pathology and improves memory deficits in a mouse model of Alzheimer’s disease. J Neurochem 124:59–68

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cicchetti F, Lapointe N, Roberge-Tremblay A, Saint-Pierre M, Jimenez L, Ficke BW et al (2005) Systemic exposure to paraquat and maneb models early Parkinson’s disease in young adult rats. Neurobiol Dis 20:360–371

    CAS  PubMed  Google Scholar 

  • Cipriani R, Villa P, Chece G, Lauro C, Paladini A, Micotti E et al (2011) CX3CL1 is neuroprotective in permanent focal cerebral ischemia in rodents. J Neurosci 31:16327–16335

    CAS  PubMed  Google Scholar 

  • Colonna M (2003) TREMs in the immune system and beyond. Nat Rev Immunol 3:445–453

    CAS  PubMed  Google Scholar 

  • Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 4:399–418

    PubMed Central  PubMed  Google Scholar 

  • Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE (2000) Inflammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J Neurosci 20:558–567

    CAS  PubMed  Google Scholar 

  • Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B (2009) Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemiol 169:919–926

    PubMed Central  PubMed  Google Scholar 

  • Croisier E, Moran LB, Dexter DT, Pearce RK, Graeber MB (2005) Microglial inflammation in the parkinsonian substantia nigra: relationship to alpha-synuclein deposition. J Neuroinflammation 2:14

    PubMed Central  PubMed  Google Scholar 

  • Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    CAS  PubMed  Google Scholar 

  • del Rio-Hortega P (1932) Cytology and cellular pathology of the nervous system. Can Med Assoc J 27(5):576

    Google Scholar 

  • Dheen ST, Jun Y, Yan Z, Tay SS, Ang Ling E (2004) Retinoic acid inhibits expression of TNF-alpha and iNOS in activated rat microglia. Glia 50:21–31

    Google Scholar 

  • Dhillon AS, Tarbutton GL, Levin JL, Plotkin GM, Lowry LK, Nalbone JT et al (2008) Pesticide/environmental exposures and Parkinson’s disease in East Texas. J Agromedicine 13:37–48

    PubMed  Google Scholar 

  • Domercq M, Vazquez-Villoldo N, Matute C (2013) Neurotransmitter signaling in the pathophysiology of microglia. Front Cell Neurosci 7:49

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doring A, Yong VW (2011) The good, the bad and the ugly. Macrophages/microglia with a focus on myelin repair. Front Biosci (Schol Ed) 3:846–856

    Google Scholar 

  • Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K et al (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68:384–386

    CAS  PubMed  Google Scholar 

  • Drabek T, Janata A, Jackson EK, End B, Stezoski J, Vagni VA et al (2012) Microglial depletion using intrahippocampal injection of liposome-encapsulated clodronate in prolonged hypothermic cardiac arrest in rats. Resuscitation 83:517–526

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eikelenboom P, Bate C, Van Gool WA, Hoozemans JJ, Rozemuller JM, Veerhuis R et al (2002) Neuroinflammation in Alzheimer’s disease and prion disease. Glia 40:232–239

    CAS  PubMed  Google Scholar 

  • El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C et al (2007) Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13:432–438

    PubMed  Google Scholar 

  • Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J et al (2006) Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 114:1172–1178

    CAS  PubMed Central  PubMed  Google Scholar 

  • Faustino JV, Wang X, Johnson CE, Klibanov A, Derugin N, Wendland MF et al (2011) Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke. J Neurosci 31:12992–13001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fei Q, McCormack AL, Di Monte DA, Ethell DW (2008) Paraquat neurotoxicity is mediated by a Bak-dependent mechanism. J Biol Chem 283:3357–3364

    CAS  PubMed  Google Scholar 

  • Fenn AM, Henry CJ, Huang Y, Dugan A, Godbout JP (2012) Lipopolysaccharide-induced interleukin (IL)-4 receptor-α expression and corresponding sensitivity to the M2 promoting effects of IL-4 are impaired in microglia of aged mice. Brain Behav Immun 26(5):766–777

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feng ZH, Wang TG, Li DD, Fung P, Wilson BC, Liu B et al (2002) Cyclooxygenase-2-deficient mice are resistant to 1-methyl-4-phenyl1, 2, 3, 6-tetrahydropyridine-induced damage of dopaminergic neurons in the substantia nigra. Neurosci Lett 329:354–358

    CAS  PubMed  Google Scholar 

  • Gao HM, Liu B, Zhang W, Hong JS (2003a) Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. FASEB J 17:1954–1956

    CAS  PubMed  Google Scholar 

  • Gao HM, Liu B, Zhang W, Hong JS (2003b) Synergistic dopaminergic neurotoxicity of MPTP and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson’s disease. FASEB J 17:1957–1959

    CAS  PubMed  Google Scholar 

  • Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A et al (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21:404–412

    CAS  PubMed  Google Scholar 

  • Gerlofs-Nijland ME, van Berlo D, Cassee FR, Schins RP, Wang K, Campbell A (2010) Effect of prolonged exposure to diesel engine exhaust on proinflammatory markers in different regions of the rat brain. Part Fibre Toxicol 7:12

    PubMed Central  PubMed  Google Scholar 

  • German DC, Eagar T, Sonsalla PK (2011) Parkinson’s disease: a role for the immune system. Curr Mol Pharmacol

    Google Scholar 

  • Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    CAS  PubMed Central  PubMed  Google Scholar 

  • Girard S, Brough D, Lopez-Castejon G, Giles J, Rothwell NJ, Allan SM (2013) Microglia and macrophages differentially modulate cell death after brain injury caused by oxygen-glucose deprivation in organotypic brain slices. Glia 61(5):813–824

    PubMed Central  PubMed  Google Scholar 

  • Goedert M, Spillantini MG, Del Tredici K, Braak H (2013) 100 years of Lewy pathology. Nat Rev Neurol 9:13–24

    CAS  PubMed  Google Scholar 

  • Gomez-Nicola D, Fransen NL, Suzzi S, Perry VH (2013) Regulation of microglial proliferation during chronic neurodegeneration. J Neurosci 33:2481–2493

    CAS  PubMed  Google Scholar 

  • Gowing G, Philips T, Van Wijmeersch B, Audet JN, Dewil M, Van Den Bosch L et al (2008) Ablation of proliferating microglia does not affect motor neuron degeneration in amyotrophic lateral sclerosis caused by mutant superoxide dismutase. J Neurosci 28:10234–10244

    CAS  PubMed  Google Scholar 

  • Gowing G, Vallieres L, Julien JP (2006) Mouse model for ablation of proliferating microglia in acute CNS injuries. Glia 53:331–337

    PubMed  Google Scholar 

  • Graeber MB (2010) Changing face of microglia. Science 330:783–788

    CAS  PubMed  Google Scholar 

  • Grathwohl SA, Kalin RE, Bolmont T, Prokop S, Winkelmann G, Kaeser SA et al (2009) Formation and maintenance of Alzheimer’s disease beta-amyloid plaques in the absence of microglia. Nat Neurosci 12:1361–1363

    CAS  PubMed  Google Scholar 

  • Hanamsagar R, Torres V, Kielian T (2011) Inflammasome activation and IL-1beta/IL-18 processing are influenced by distinct pathways in microglia. J Neurochem 119:736–748

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanisch UK (2013) Functional diversity of microglia—how heterogeneous are they to begin with? Front Cell Neurosci 7:65

    PubMed Central  PubMed  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    CAS  PubMed  Google Scholar 

  • Harms AS, Lee JK, Nguyen TA, Chang J, Ruhn KM, Trevino I et al (2012) Regulation of microglia effector functions by tumor necrosis factor signaling. Glia 60:189–202

    PubMed Central  PubMed  Google Scholar 

  • Hayashi Y, Tomimatsu Y, Suzuki H, Yamada J, Wu Z, Yao H et al (2006) The intra-arterial injection of microglia protects hippocampal CA1 neurons against global ischemia-induced functional deficits in rats. Neuroscience 142:87–96

    CAS  PubMed  Google Scholar 

  • Hellwig S, Heinrich A, Biber K (2013) The brain’s best friend: microglial neurotoxicity revisited. Front Cell Neurosci 7:71

    PubMed Central  PubMed  Google Scholar 

  • Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N et al (2005) Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11:146–152

    CAS  PubMed  Google Scholar 

  • Hertzman C, Wiens M, Bowering D, Snow B, Calne D (1990) Parkinson’s disease: a case-control study of occupational and environmental risk factors. Am J Ind Med 17:349–355

    CAS  PubMed  Google Scholar 

  • Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM et al (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290:1768–1771

    CAS  PubMed  Google Scholar 

  • Hsieh YH, McCartney K, Moore TA, Thundyil J, Gelderblom M, Manzanero S et al (2011) Intestinal ischemia-reperfusion injury leads to inflammatory changes in the brain. Shock 36:424–430

    CAS  PubMed  Google Scholar 

  • Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S et al (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43:3063–3070

    CAS  PubMed  Google Scholar 

  • Hughes V (2012) Microglia: the constant gardeners. Nature 485:570–572

    CAS  PubMed  Google Scholar 

  • Huh Y, Jung JW, Park C, Ryu JR, Shin CY, Kim WK et al (2003) Microglial activation and tyrosine hydroxylase immunoreactivity in the substantia nigral region following transient focal ischemia in rats. Neurosci Lett 349:63–67

    CAS  PubMed  Google Scholar 

  • Iadecola C, Anrather J (2011) Stroke research at a crossroad: asking the brain for directions. Nat Neurosci 14:1363–1368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iannaccone S, Cerami C, Alessio M, Garibotto V, Panzacchi A, Olivieri S et al (2013) In vivo microglia activation in very early dementia with Lewy bodies, comparison with Parkinson’s disease. Parkinsonism Relat Disord 19:47–52

    CAS  PubMed  Google Scholar 

  • Imai F, Suzuki H, Oda J, Ninomiya T, Ono K, Sano H et al (2007) Neuroprotective effect of exogenous microglia in global brain ischemia. J Cereb Blood Flow Metab 27:488–500

    CAS  PubMed  Google Scholar 

  • Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y (2003) Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol 106:518–526

    CAS  PubMed  Google Scholar 

  • Jang E, Lee S, Kim JH, Seo JW, Lee WH, Mori K et al (2013) Secreted protein lipocalin-2 promotes microglial M1 polarization. FASEB J 27:1176–1190

    CAS  PubMed  Google Scholar 

  • Jiang C, Cui K, Wang J, He Y (2011) Microglia and cyclooxygenase-2: possible therapeutic targets of progesterone for stroke. Int Immunopharmacol 11:1925–1931

    CAS  PubMed  Google Scholar 

  • Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A et al (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaindl AM, Degos V, Peineau S, Gouadon E, Chhor V, Loron G et al (2012) Activation of microglial N-methyl-D-aspartate receptors triggers inflammation and neuronal cell death in the developing and mature brain. Ann Neurol 72:536–549

    CAS  PubMed  Google Scholar 

  • Kang J, Rivest S (2007) MyD88-deficient bone marrow cells accelerate onset and reduce survival in a mouse model of amyotrophic lateral sclerosis. J Cell Biol 179:1219–1230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karperien A, Ahammer H, Jelinek HF (2013) Quantitating the subtleties of microglial morphology with fractal analysis. Front Cell Neurosci 7:3

    PubMed Central  PubMed  Google Scholar 

  • Kauppinen TM, Higashi Y, Suh SW, Escartin C, Nagasawa K, Swanson RA (2008) Zinc triggers microglial activation. J Neurosci 28:5827–5835

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kay GW, Palmer DN (2013) Chronic oral administration of minocycline to sheep with ovine CLN6 neuronal ceroid lipofuscinosis maintains pharmacological concentrations in the brain but does not suppress neuroinflammation or disease progression. J Neuroinflammation 10:97

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kettenmann H (2007) Neuroscience: the brain’s garbage men. Nature 446:987–989

    CAS  PubMed  Google Scholar 

  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    CAS  PubMed  Google Scholar 

  • Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77:10–18

    CAS  PubMed  Google Scholar 

  • Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG et al (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16:273–280

    CAS  PubMed  Google Scholar 

  • Kierdorf K, Prinz M (2013) Factors regulating microglia activation. Front Cell Neurosci 7:44

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim YS, Choi DH, Block ML, Yang L, Lorenz S, Shin DH et al (in review) Matrix metalloproteinase-3 inhibition prevents dopamine neuronal degeneration. Neuroscience

    Google Scholar 

  • Kish SJ, Shannak K, Rajput A, Deck JH, Hornykiewicz O (1992) Aging produces a specific pattern of striatal dopamine loss: implications for the etiology of idiopathic Parkinson’s disease. J Neurochem 58:642–648

    CAS  PubMed  Google Scholar 

  • Kitamura Y, Yanagisawa D, Inden M, Takata K, Tsuchiya D, Kawasaki T et al (2005) Recovery of focal brain ischemia-induced behavioral dysfunction by intracerebroventricular injection of microglia. J Pharmacol Sci 97:289–293

    CAS  PubMed  Google Scholar 

  • Kohl A, Dehghani F, Korf HW, Hailer NP (2003) The bisphosphonate clodronate depletes microglial cells in excitotoxically injured organotypic hippocampal slice cultures. Exp Neurol 181:1–11

    CAS  PubMed  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    CAS  PubMed  Google Scholar 

  • Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27:2596–2605

    CAS  PubMed  Google Scholar 

  • Lambertsen KL, Clausen BH, Babcock AA, Gregersen R, Fenger C, Nielsen HH et al (2009) Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci 29:1319–1330

    CAS  PubMed  Google Scholar 

  • Lauro C, Cipriani R, Catalano M, Trettel F, Chece G, Brusadin V et al (2010) Adenosine A1 receptors and microglial cells mediate CX3CL1-induced protection of hippocampal neurons against Glu-induced death. Neuropsychopharmacology 35:1550–1559

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee EJ, Woo MS, Moon PG, Baek MC, Choi IY, Kim WK et al (2010) Alpha-synuclein activates microglia by inducing the expressions of matrix metalloproteinases and the subsequent activation of protease-activated receptor-1. J Immunol 185:615–623

    CAS  PubMed  Google Scholar 

  • Levesque S, Surace MJ, McDonald J, Block ML (2011a) Air pollution & the brain: subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease. J Neuroinflammation 8:105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levesque S, Taetzsch T, Lull ME, Kodavanti U, Stadler K, Wagner A et al (2011b) Diesel exhaust activates and primes microglia: air pollution, neuroinflammation, and regulation of dopaminergic neurotoxicity. Environ Health Perspect 119:1149–1155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levesque S, Wilson B, Gregoria V, Thorpe LB, Dallas S, Polikov VS et al (2010) Reactive microgliosis: extracellular micro-calpain and microglia-mediated dopaminergic neurotoxicity. Brain 133:808–821

    PubMed Central  PubMed  Google Scholar 

  • Li MSM, Ohnishi K, Ichimori Y (1996) beta-Amyloid protein-dependent nitric oxide production from microglial cells and neurotoxicity. Brain Res 720:93–100

    Google Scholar 

  • Linnartz B, Wang Y, Neumann H (2010) Microglial immunoreceptor tyrosine-based activation and inhibition motif signaling in neuroinflammation. Int J Alzheimers Dis 2010 pii: 587463. doi: 10.4061/2010/587463

    Google Scholar 

  • Liou HH, Tsai MC, Chen CJ, Jeng JS, Chang YC, Chen SY et al (1997) Environmental risk factors and Parkinson’s disease: a case-control study in Taiwan. Neurology 48:1583–1588

    CAS  PubMed  Google Scholar 

  • Liu M, Liang Y, Chigurupati S, Lathia JD, Pletnikov M, Sun Z et al (2008) Acute kidney injury leads to inflammation and functional changes in the brain. J Am Soc Nephrol 19:1360–1370

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lobsiger CS, Boillee S, McAlonis-Downes M, Khan AM, Feltri ML, Yamanaka K et al (2009) Schwann cells expressing dismutase active mutant SOD1 unexpectedly slow disease progression in ALS mice. Proc Natl Acad Sci U S A 106:4465–4470

    CAS  PubMed Central  PubMed  Google Scholar 

  • London A, Cohen M, Schwartz M (2013) Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci 7:34

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lucchini RG, Dorman DC, Elder A, Veronesi B (2012) Neurological impacts from inhalation of pollutants and the nose-brain connection. Neurotoxicology 33:838–841

    CAS  PubMed  Google Scholar 

  • Madinier A, Bertrand N, Mossiat C, Prigent-Tessier A, Beley A, Marie C et al (2009) Microglial involvement in neuroplastic changes following focal brain ischemia in rats. PLoS One 4:e8101

    PubMed Central  PubMed  Google Scholar 

  • Mangano EN, Litteljohn D, So R, Nelson E, Peters S, Bethune C et al (2012) Interferon-gamma plays a role in paraquat-induced neurodegeneration involving oxidative and proinflammatory pathways. Neurobiol Aging 33:1411–1426

    CAS  PubMed  Google Scholar 

  • Mao H, Liu B (2008) Synergistic microglial reactive oxygen species generation induced by pesticides lindane and dieldrin. Neuroreport 19:1317–1320

    CAS  PubMed  Google Scholar 

  • McCormack AL, Thiruchelvam M, Manning-Bog AB, Thiffault C, Langston JW, Cory-Slechta DA et al (2002) Environmental risk factors and Parkinson’s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis 10:119–127

    CAS  PubMed  Google Scholar 

  • McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291

    CAS  PubMed  Google Scholar 

  • McGeer PL, Itagaki S, Tago H, McGeer EG (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 79:195–200

    CAS  PubMed  Google Scholar 

  • McGeer PL, Schwab C, Parent A, Doudet D (2003) Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol 54:599–604

    CAS  PubMed  Google Scholar 

  • Meda L, Cassatella MA, Szendrei GI, Otvos L Jr, Baron P, Villalba M et al (1995) Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374:647–650

    CAS  PubMed  Google Scholar 

  • Michaud M, Balardy L, Moulis G, Gaudin C, Peyrot C, Vellas B et al (2013) Proinflammatory cytokines, aging, and age-related diseases. J Am Med Dir Assoc 14:877–882

    PubMed  Google Scholar 

  • Miller RL, Sun GY, Sun AY (2007) Cytotoxicity of paraquat in microglial cells: Involvement of PKCdelta- and ERK1/2-dependent NADPH oxidase. Brain Res 1167:129–139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minghetti L, Ajmone-Cat MA, De Berardinis MA, De Simone R (2005) Microglial activation in chronic neurodegenerative diseases: roles of apoptotic neurons and chronic stimulation. Brain Res Brain Res Rev 48:251–256

    CAS  PubMed  Google Scholar 

  • Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL van Wijngaarden P, Wagers AJ, Williams A, Franklin RJ, ffrench-Constant C 2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16:1211–1218

    Google Scholar 

  • Mirrione MM, Konomos DK, Gravanis I, Dewey SL, Aguzzi A, Heppner FL et al (2010) Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice. Neurobiol Dis 39:85–97

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mitra S, Chakrabarti N, Bhattacharyya A (2011) Differential regional expression patterns of alpha-synuclein, TNF-alpha, and IL-1beta; and variable status of dopaminergic neurotoxicity in mouse brain after Paraquat treatment. J Neuroinflammation 8:163

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyamoto A, Wake H, Moorhouse AJ, Nabekura J (2013) Microglia and synapse interactions: fine tuning neural circuits and candidate molecules. Front Cell Neurosci 7:70

    PubMed Central  PubMed  Google Scholar 

  • Mizutani M, Pino PA, Saederup N, Charo IF, Ransohoff RM, Cardona AE (2012) The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood. J Immunol 188:29–36

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moller T (2010) Neuroinflammation in Huntington’s disease. J Neural Transm 117:1001–1008

    PubMed  Google Scholar 

  • Morgan TE, Davis DA, Iwata N, Tanner JA, Snyder D, Ning Z et al (2011) Glutamatergic neurons in rodent models respond to nanoscale particulate urban air pollutants in vivo and in vitro. Environ Health Perspect 119:1003–1009

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morganti JM, Nash KR, Grimmig BA, Ranjit S, Small B, Bickford PC et al (2012) The soluble isoform of CX3CL1 is necessary for neuroprotection in a mouse model of Parkinson’s disease. J Neurosci 32:14592–14601

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mount MP, Lira A, Grimes D, Smith PD, Faucher S, Slack R et al (2007) Involvement of interferon-gamma in microglial-mediated loss of dopaminergic neurons. J Neurosci 27:3328–3337

    CAS  PubMed  Google Scholar 

  • Muller N, Schwarz MJ (2007) The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry 12:988–1000

    CAS  PubMed  Google Scholar 

  • Nadeau S, Filali M, Zhang J, Kerr BJ, Rivest S, Soulet D et al (2011) Functional recovery after peripheral nerve injury is dependent on the pro-inflammatory cytokines IL-1beta and TNF: implications for neuropathic pain. J Neurosci 31:12533–12542

    CAS  PubMed  Google Scholar 

  • Naert G, Rivest S (2011) The role of microglial cell subsets in Alzheimer’s disease. Curr Alzheimer Res 8:151–155

    CAS  PubMed  Google Scholar 

  • Narantuya D, Nagai A, Sheikh AM, Masuda J, Kobayashi S, Yamaguchi S et al (2010) Human microglia transplanted in rat focal ischemia brain induce neuroprotection and behavioral improvement. PLoS One 5:e11746

    PubMed Central  PubMed  Google Scholar 

  • Neumann H, Takahashi K (2007) Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. J Neuroimmunol 184:92–99

    CAS  PubMed  Google Scholar 

  • Neumann H, Wekerle H (2013) Brain microglia: watchdogs with pedigree. Nat Neurosci 16:253–255

    CAS  PubMed  Google Scholar 

  • Neumann J, Gunzer M, Gutzeit HO, Ullrich O, Reymann KG, Dinkel K (2006) Microglia provide neuroprotection after ischemia. FASEB J 20(6):714–716

    CAS  PubMed  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    CAS  PubMed  Google Scholar 

  • Norden DM, Godbout JP (2013) Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol Appl Neurobiol 39:19–34

    CAS  PubMed Central  PubMed  Google Scholar 

  • Orr CF, Rowe DB, Mizuno Y, Mori H, Halliday GM (2005) A possible role for humoral immunity in the pathogenesis of Parkinson’s disease. Brain 128:2665–2674

    PubMed  Google Scholar 

  • Ouchi Y, Yoshikawa E, Sekine Y, Futatsubashi M, Kanno T, Ogusu T et al (2005) Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 57:168–175

    CAS  PubMed  Google Scholar 

  • Pabon MM, Bachstetter AD, Hudson CE, Gemma C, Bickford PC (2011) CX3CL1 reduces neurotoxicity and microglial activation in a rat model of Parkinson’s disease. J Neuroinflammation 8:9

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palazuelos J, Aguado T, Pazos MR, Julien B, Carrasco C, Resel E et al (2009) Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain 132:3152–3164

    PubMed  Google Scholar 

  • Panaro MA, Cianciulli A (2012) Current opinions and perspectives on the role of immune system in the pathogenesis of Parkinson’s disease. Curr Pharm Des 18:200–208

    CAS  PubMed  Google Scholar 

  • Parkhurst CN, Gan WB (2010) Microglia dynamics and function in the CNS. Curr Opin Neurobiol 20:595–600

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peng J, Stevenson FF, Oo ML, Andersen JK (2009) Iron-enhanced paraquat-mediated dopaminergic cell death due to increased oxidative stress as a consequence of microglial activation. Free Radic Biol Med 46:312–320

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perry VH (2004) The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain Behav Immun 18:407–413

    CAS  PubMed  Google Scholar 

  • Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6:193–201

    PubMed  Google Scholar 

  • Perry VH, Teeling J (2013) Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol 35:601–612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Phani S, Re DB, Przedborski S (2012) The role of the innate immune system in ALS. Front Pharmacol 3:150

    PubMed Central  PubMed  Google Scholar 

  • Prinz M, Mildner A (2011) Microglia in the CNS: immigrants from another world. Glia 59:177–187

    PubMed  Google Scholar 

  • Ponomarev ED, Maresz K, Tan Y, Dittel BN (2007) CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J Neurosci 27(40):10714–10721

    CAS  PubMed  Google Scholar 

  • Puntener U, Booth SG, Perry VH, Teeling JL (2012) Long-term impact of systemic bacterial infection on the cerebral vasculature and microglia. J Neuroinflammation 9:146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Purisai MG, McCormack AL, Cumine S, Li J, Isla MZ, Di Monte DA (2007) Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration. Neurobiol Dis 25:392–400

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qin L, Liu Y, Cooper C, Liu B, Wilson B, Hong JS (2002) Microglia enhance beta-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J Neurochem 83:973–983

    CAS  PubMed  Google Scholar 

  • Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS et al (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462

    PubMed Central  PubMed  Google Scholar 

  • Raivich G (2005) Like cops on the beat: the active role of resting microglia. Trends Neurosci 28:571–573

    CAS  PubMed  Google Scholar 

  • Ramsey CP, Tansey MG (2014) A survey from 2012 of evidence for the role of neuroinflammation in neurotoxin animal models of Parkinson’s disease and potential molecular targets. Exp Neurol 256:126–132

    CAS  PubMed  Google Scholar 

  • Ransohoff RM, Cardona AE (2010) The myeloid cells of the central nervous system parenchyma. Nature 468:253–262

    CAS  PubMed  Google Scholar 

  • Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    CAS  PubMed  Google Scholar 

  • Ransohoff RM, Prinz M (2013) Editors’ preface: microglia–a new era dawns. Glia 61:1–2

    PubMed  Google Scholar 

  • Reale M, Iarlori C, Thomas A, Gambi D, Perfetti B, Di Nicola M et al (2009) Peripheral cytokines profile in Parkinson’s disease. Brain Behav Immun 23:55–63

    CAS  PubMed  Google Scholar 

  • Richardson JR, Quan Y, Sherer TB, Greenamyre JT, Miller GW (2005) Paraquat neurotoxicity is distinct from that of MPTP and rotenone. Toxicol Sci 88:193–201

    CAS  PubMed  Google Scholar 

  • Rogers J, Luber-Narod J, Styren SD, Civin WH (1988) Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol Aging 9:339–349

    CAS  PubMed  Google Scholar 

  • Ros-Bernal F, Hunot S, Herrero MT, Parnadeau S, Corvol JC, Lu L et al (2011) Microglial glucocorticoid receptors play a pivotal role in regulating dopaminergic neurodegeneration in parkinsonism. Proc Natl Acad Sci U S A 108:6632–6637

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanchez-Moreno C, Dashe JF, Scott T, Thaler D, Folstein MF, Martin A (2004) Decreased levels of plasma vitamin C and increased concentrations of inflammatory and oxidative stress markers after stroke. Stroke 35:163–168

    CAS  PubMed  Google Scholar 

  • Santiago-Lopez D, Bautista-Martinez JA, Reyes-Hernandez CI, Aguilar-Martinez M, Rivas-Arancibia S (2010) Oxidative stress, progressive damage in the substantia nigra and plasma dopamine oxidation, in rats chronically exposed to ozone. Toxicol Lett 197:193–200

    CAS  PubMed  Google Scholar 

  • Sasaki A, Yamaguchi H, Ogawa A, Sugihara S, Nakazato Y (1997) Microglial activation in early stages of amyloid beta protein deposition. Acta Neuropathol (Berl) 94:316–322

    CAS  Google Scholar 

  • Shi M, Bradner J, Hancock AM, Chung KA, Quinn JF, Peskind ER et al (2011) Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Ann Neurol 69:570–580

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimizu K, Ohtaki K, Matsubara K, Aoyama K, Uezono T, Saito O et al (2001) Carrier-mediated processes in blood–brain barrier penetration and neural uptake of paraquat. Brain Res 906:135–142

    CAS  PubMed  Google Scholar 

  • Sierra A, Abiega O, Shahraz A, Neumann H (2013) Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 7:6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simard AR, Rivest S (2006) Neuroprotective properties of the innate immune system and bone marrow stem cells in Alzheimer’s disease. Mol Psychiatry 11:327–335

    CAS  PubMed  Google Scholar 

  • Simard AR, Soulet D, Gowing G, Julien JP, Rivest S (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49:489–502

    CAS  PubMed  Google Scholar 

  • Sironi F, Trotta L, Antonini A, Zini M, Ciccone R, Della Mina E et al (2010) alpha-Synuclein multiplication analysis in Italian familial Parkinson disease. Parkinsonism Relat Disord 16:228–231

    PubMed  Google Scholar 

  • Smith JA, Das A, Ray SK, Banik NL (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87:10–20

    CAS  PubMed  Google Scholar 

  • Sorce S, Krause KH (2009) NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal 11:2481–2504

    CAS  PubMed  Google Scholar 

  • Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O’Callaghan JP (2006) Deficiency of TNF receptors suppresses microglial activation and alters the susceptibility of brain regions to MPTP-induced neurotoxicity: role of TNF-alpha. FASEB J 20:670–682

    CAS  PubMed  Google Scholar 

  • Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O’Callaghan JP (2002) Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson’s disease. FASEB J 16:1474–1476

    CAS  PubMed  Google Scholar 

  • Sriram K, O’Callaghan JP (2007) Divergent roles for tumor necrosis factor-alpha in the brain. J Neuroimmune Pharmacol 2:140–153

    PubMed  Google Scholar 

  • Stertz L, Magalhaes PV, Kapczinski F (2013) Is bipolar disorder an inflammatory condition? The relevance of microglial activation. Curr Opin Psychiatry 26:19–26

    PubMed  Google Scholar 

  • Streit WJ (2002) Microglia and the response to brain injury. Ernst Schering Res Found Workshop (39):11–24

    Google Scholar 

  • Streit WJ (2006) Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci 29:506–510

    CAS  PubMed  Google Scholar 

  • Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57:563–581

    CAS  PubMed  Google Scholar 

  • Streit WJ, Xue QS (2009) Life and death of microglia. J Neuroimmune Pharmacol 4:371–379

    PubMed  Google Scholar 

  • Suzumura A (2013) Neuron-microglia interaction in neuroinflammation. Curr Protein Pept Sci 14:16–20

    CAS  PubMed  Google Scholar 

  • Tabas I, Glass CK (2013) Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science 339:166–172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taetzsch T, Block ML (2013) Pesticides, microglial NOX2, and Parkinson’s disease. J Biochem Mol Toxicol 27:137–149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi K, Rochford CD, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201:647–657

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M et al (2011) Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect 119:866–872

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teismann P, Vila M, Choi DK, Tieu K, Wu DC, Jackson-Lewis V et al (2003) COX-2 and neurodegeneration in Parkinson’s disease. Ann N Y Acad Sci 991:272–277

    CAS  PubMed  Google Scholar 

  • Tremblay ME, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A (2011) The role of microglia in the healthy brain. J Neurosci 31:16064–16069

    CAS  PubMed  Google Scholar 

  • Trinh J, Farrer M (2013) Advances in the genetics of Parkinson disease. Nat Rev Neurol 9:445–454

    CAS  PubMed  Google Scholar 

  • Turola E, Furlan R, Bianco F, Matteoli M, Verderio C (2012) Microglial microvesicle secretion and intercellular signaling. Front Physiol 3:149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Turrin NP, Rivest S (2006) Molecular and cellular immune mediators of neuroprotection. Mol Neurobiol 34:221–242

    CAS  PubMed  Google Scholar 

  • van Rossum D, Hanisch UK (2004) Microglia. Metab Brain Dis 19:393–411

    PubMed  Google Scholar 

  • Varnum MM, Ikezu T (2012) The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s disease brain. Arch Immunol Ther Exp (Warsz) 60:251–266

    CAS  Google Scholar 

  • Varvel NH, Grathwohl SA, Baumann F, Liebig C, Bosch A, Brawek B et al (2012) Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proc Natl Acad Sci U S A 109:18150–18155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vinet J, Weering HR, Heinrich A, Kalin RE, Wegner A, Brouwer N et al (2012) Neuroprotective function for ramified microglia in hippocampal excitotoxicity. J Neuroinflammation 9:27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang A, Costello S, Cockburn M, Zhang X, Bronstein J, Ritz B (2011) Parkinson’s disease risk from ambient exposure to pesticides. Eur J Epidemiol 26:547–555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weisskopf MG, Knekt P, O’Reilly EJ, Lyytinen J, Reunanen A, Laden F et al (2010) Persistent organochlorine pesticides in serum and risk of Parkinson disease. Neurology 74:1055–1061

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wenk GL (2003) Neuropathologic changes in Alzheimer’s disease. J Clin Psychiatry 64(suppl 9):7–10

    PubMed  Google Scholar 

  • Wilkinson BL, Landreth GE (2006) The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer’s disease. J Neuroinflammation 3:30

    PubMed Central  PubMed  Google Scholar 

  • Wilms H, Rosenstiel P, Sievers J, Deuschl G, Zecca L, Lucius R (2003) Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease. FASEB J 17:500–502

    CAS  PubMed  Google Scholar 

  • Wolf Y, Yona S, Kim KW, Jung S (2013) Microglia, seen from the CX3CR1 angle. Front Cell Neurosci 7:26

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wong WT (2013) Microglial aging in the healthy CNS: phenotypes, drivers, and rejuvenation. Front Cell Neurosci 7:22

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woodcock T, Morganti-Kossmann MC (2013) The role of markers of inflammation in traumatic brain injury. Front Neurol 4:18

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu DC, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H et al (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci U S A 100:6145–6150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu XF, Block ML, Zhang W, Qin L, Wilson B, Zhang WQ et al (2005) The role of microglia in paraquat-induced dopaminergic neurotoxicity. Antioxid Redox Signal 7:654–661

    CAS  PubMed  Google Scholar 

  • Xiao Q, Zhao W, Beers DR, Yen AA, Xie W, Henkel JS et al (2007) Mutant SOD1(G93A) microglia are more neurotoxic relative to wild-type microglia. J Neurochem 102:2008–2019

    CAS  PubMed  Google Scholar 

  • Xing B, Bachstetter AD, Van Eldik LJ (2011) Microglial p38alpha MAPK is critical for LPS-induced neuron degeneration, through a mechanism involving TNFalpha. Mol Neurodegener 6:84

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiong J, Kielian T (2013) Microglia in Juvenile Neuronal Ceroid Lipofuscinosis (JNCL) are primed towards a proinflammatory phenotype. J Neurochem 127:245–258

    CAS  PubMed  Google Scholar 

  • Yadav S, Gupta SP, Srivastava G, Srivastava PK, Singh MP (2012) Role of secondary mediators in caffeine-mediated neuroprotection in maneb- and paraquat-induced Parkinson’s disease phenotype in the mouse. Neurochem Res 37:875–884

    CAS  PubMed  Google Scholar 

  • Yanagisawa D, Kitamura Y, Takata K, Hide I, Nakata Y, Taniguchi T (2008) Possible involvement of P2X7 receptor activation in microglial neuroprotection against focal cerebral ischemia in rats. Biol Pharm Bull 31:1121–1130

    CAS  PubMed  Google Scholar 

  • Yankner BA (1989) Amyloid and Alzheimer’s disease–cause or effect? Neurobiol Aging 10:470–471, discussion 477–478

    CAS  PubMed  Google Scholar 

  • Yankner BA, Duffy LK, Kirschner DA (1990) Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 250:279–282

    CAS  PubMed  Google Scholar 

  • Ye L, Huang Y, Zhao L, Li Y, Sun L, Zhou Y et al (2013) IL-1beta and TNF-alpha induce neurotoxicity through glutamate production: a potential role for neuronal glutaminase. J Neurochem 125:897–908

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yong VW, Rivest S (2009) Taking advantage of the systemic immune system to cure brain diseases. Neuron 64:55–60

    CAS  PubMed  Google Scholar 

  • Zecca L, Zucca FA, Wilms H, Sulzer D (2003) Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci 26:578–580

    CAS  PubMed  Google Scholar 

  • Zhang D, Sun L, Zhu H, Wang L, Wu W, Xie J et al (2012) Microglial LOX-1 reacts with extracellular HSP60 to bridge neuroinflammation and neurotoxicity. Neurochem Int 61:1021–1035

    CAS  PubMed  Google Scholar 

  • Zhang H, Li Y, Yu J, Guo M, Meng J, Liu C et al (2013) Rho kinase inhibitor Fasudil regulates microglia polarization and function. Neuroimmunomodulation 20:313–322

    CAS  PubMed  Google Scholar 

  • Zhang W, Dallas S, Zhang D, Guo JP, Pang H, Wilson B et al (2007) Microglial PHOX and Mac-1 are essential to the enhanced dopaminergic neurodegeneration elicited by A30P and A53T mutant alpha-synuclein. Glia 55:1178–1188

    PubMed  Google Scholar 

  • Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML et al (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19:533–542

    CAS  PubMed  Google Scholar 

  • Zhang W, Wang T, Pei Z, Miller DS, Wu X, Yang M et al. (in press) a-Synuclein activates microglia: a process leading to disease progression in Parkinson’s disease? J Neurosci

    Google Scholar 

  • Zhang W, Wang T, Qin L, Gao HM, Wilson B, Ali SF et al (2004) Neuroprotective effect of dextromethorphan in the MPTP Parkinson’s disease model: role of NADPH oxidase. FASEB J 18:589–591

    CAS  PubMed  Google Scholar 

  • Zhou H, Zhang F, Chen SH, Zhang D, Wilson B, Hong JS et al (2012) Rotenone activates phagocyte NADPH oxidase by binding to its membrane subunit gp91phox. Free Radic Biol Med 52:303–313

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Knut Biber Ph.D. or Michelle L. Block Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Biber, K., Block, M.L. (2014). Neuroprotection Versus Neurotoxicity. In: Tremblay, MÈ., Sierra, A. (eds) Microglia in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1429-6_6

Download citation

Publish with us

Policies and ethics