Skip to main content

Biophysical Properties of Recombinant γ2- and δ-subunit Containing GABAA Receptors

  • Chapter
  • First Online:
Extrasynaptic GABAA Receptors

Part of the book series: The Receptors ((REC,volume 27))

  • 974 Accesses

Abstract

GABAA receptors mediate the majority of GABAergic signaling in the mammalian brain and are thus primarily responsible for maintaining inhibitory tone. GABAA receptors mediate two modes of inhibitory neurotransmission, phasic synaptic inhibition and tonic extra- or perisynaptic inhibition. Phasic inhibition is mediated primarily by activation of subsynaptic αβγ2 receptors, whereas tonic inhibition is mediated primarily by extrasynaptic or perisynaptic αβδ GABAA receptors. The biophysical properties of γ2 and δ subunit-containing receptors are complex yet quite different, consistent with the unique demands of phasic and tonic inhibitory systems. Mutations in GABAA receptor genes (GABRs) have been associated with genetic epilepsies in humans. However, genetic epilepsies are more commonly associated with γ-aminobutyric acid-A receptor γ2 (GABRG2) mutations than γ-aminobutyric acid-A receptor δ (GABRD) mutations, suggesting considerable differences in the role of αβγ2 and αβδ receptors in regulating thalamocortical excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelotti TP, Macdonald RL (1993) Assembly of GABAA receptor subunits: alpha 1 beta 1 and alpha 1 beta 1 gamma 2S subunits produce unique ion channels with dissimilar single-channel properties. J Neurosci 13:1429–1440

    PubMed  CAS  Google Scholar 

  • Angelotti TP, Uhler MD, Macdonald RL (1993) Assembly of GABAA receptor subunits: analysis of transient single cell expression utilizing a fluorescent substrate/marker gene combination. J Neurosci 13:1418–1428

    PubMed  CAS  Google Scholar 

  • Attwell D, Barbour B, Szatkowski M (1993) Nonvesicular release of neurotransmitter. Neuron 11:401–407

    PubMed  CAS  Google Scholar 

  • Audenaert D, Schwartz E, Claeys KG, Claes L, Deprez L, Suls A, Van Dyck T, Lagae L, Van Broeckhoven C, Macdonald RL, De Jonghe P (2006) The GABRG2 gene and febrile seizures: extension of the mutational spectrum. Neurology 67:687–690

    PubMed  CAS  Google Scholar 

  • Bach-y-Rita P (2001) Nonsynaptic diffusion neurotransmission in the brain: functional considerations. Neurochem Res 26:871–873

    PubMed  CAS  Google Scholar 

  • Backus KH, Arigoni M, Drescher U, Scheurer L, Malherbe P, Mohler H, Benson JA (1993) Stoichiometry of a recombinant GABAA receptor deduced from mutation-induced rectification. Neuroreport 5:285–288

    PubMed  CAS  Google Scholar 

  • Barberis A, Mozrzymas JW, Ortinski PI, Vicini S (2007) Desensitization and binding properties determine distinct alpha1beta2gamma2 and alpha3beta2gamma2 GABA(A) receptor-channel kinetic behavior. Eur J Neurosci 25:2726–2740

    PubMed  PubMed Central  Google Scholar 

  • Barrera NP, Henderson RM, Edwardson JM (2008a) Determination of the architecture of ionotropic receptors using AFM imaging. Pflugers Arch 456:199–209

    CAS  Google Scholar 

  • Barrera NP, Betts J, You H, Henderson RM, Martin IL, Dunn SM, Edwardson JM (2008b) Atomic force microscopy reveals the stoichiometry and subunit arrangement of the alpha4beta3delta GABA(A) receptor. Mol Pharmacol 73:960–967

    CAS  Google Scholar 

  • Baulac S, Huberfeld G, Gourfinkel-An I, Mitropoulou G, Beranger A, Prud’homme JF, Baulac M, Brice A, Bruzzone R, LeGuern E (2001) First genetic evidence of GABAA receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Nat Genet 28:46–48

    PubMed  CAS  Google Scholar 

  • Baumann SW, Baur R, Sigel E (2001) Subunit arrangement of gamma-aminobutyric acid type A receptors. J Biol Chem 276:36275–36280

    PubMed  CAS  Google Scholar 

  • Baumann SW, Baur R, Sigel E (2002) Forced subunit assembly in alpha1beta2gamma2 GABAA receptors Insight into the absolute arrangement. J Biol Chem 277:46020–46025

    PubMed  CAS  Google Scholar 

  • Baur R, Minier F, Sigel E (2006) A GABA(A) receptor of defined subunit composition and positioning: concatenation of five subunits. FEBS Lett 580:1616–1620

    PubMed  CAS  Google Scholar 

  • Benke D, Honer M, Michel C, Mohler H (1996) GABAA receptor subtypes differentiated by their gamma-subunit variants: prevalence, pharmacology and subunit architecture. Neuropharmacology 35:1413–1423

    PubMed  CAS  Google Scholar 

  • Bianchi MT, Macdonald RL (2001a) Mutation of the 9′ leucine in the GABA(A) receptor gamma2L subunit produces an apparent decrease in desensitization by stabilizing open states without altering desensitized states. Neuropharmacology 41:737–744

    CAS  Google Scholar 

  • Bianchi MT, Macdonald RL (2001b) Agonist trapping by GABAA receptor channels. J Neurosci 21:9083–9091

    CAS  Google Scholar 

  • Bianchi MT, Macdonald RL (2002) Slow phases of GABA(A) receptor desensitization: structural determinants and possible relevance for synaptic function. J Physiol 544:3–18

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bianchi MT, Haas KF, Macdonald RL (2001) Structural determinants of fast desensitization and desensitization-deactivation coupling in GABAA receptors. J Neurosci 21:1127–1136

    PubMed  CAS  Google Scholar 

  • Bianchi MT, Haas KF, Macdonald RL (2002a) Alpha1 and alpha6 subunits specify distinct desensitization, deactivation and neurosteroid modulation of GABA(A) receptors containing the delta subunit. Neuropharmacology 43:492–502

    CAS  Google Scholar 

  • Bianchi MT, Song L, Zhang H, Macdonald RL (2002b) Two different mechanisms of disinhibition produced by GABAA receptor mutations linked to epilepsy in humans. J Neurosci 22:5321–5327

    CAS  Google Scholar 

  • Bianchi MT, Botzolakis EJ, Haas KF, Fisher JL, Macdonald RL (2007) Microscopic kinetic determinants of macroscopic currents: insights from coupling and uncoupling of GABAA receptor desensitization and deactivation. J Physiol 584:769–787

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bollan K, Robertson LA, Tang H, Connolly CN (2003) Multiple assembly signals in gamma-aminobutyric acid (type A) receptor subunits combine to drive receptor construction and composition. Bio Chem Soc Trans 31:875–879

    CAS  Google Scholar 

  • Bonnert TP, McKernan RM, Farrar S, le Bourdelles B, Heavens RP, Smith DW, Hewson L, Rigby MR, Sirinathsinghji DJ, Brown N, Wafford KA, Whiting PJ (1999) Theta, a novel gamma-aminobutyric acid type A receptor subunit. Proc Natl Acad Sci U S A 96:9891–9896

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bormann J, Hamill OP, Sakmann B (1987) Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones. J Physiol 385:243–286

    PubMed  CAS  PubMed Central  Google Scholar 

  • Botzolakis EJ, Maheshwari A, Feng HJ, Lagrange AH, Shaver JF, Kassebaum J, Venkataraman R, Baudenbacher FJ, Macdonald RL (2008) Achieving synaptically relevant pulses of neurotransmitter using PDMS microfluidics. J Neurosci Methods 177:294–302

    PubMed  PubMed Central  Google Scholar 

  • Brickley SG, Cull-Candy SG, Farrant M (1996) Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol 497(Pt 3):753–759

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brickley SG, Revilla V, Cull-Candy SG, Wisden W, Farrant M (2001) Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature 409:88–92

    PubMed  CAS  Google Scholar 

  • Bright DP, Renzi M, Bartram J, McGee TP, Mackenzi G, Hosie AM, Farrant J, Brickley SG (2011) Profound desensitization by ambient GABA limits activation of δ-containing GABAA receptors during spillover. J Neurosci 31:753–763

    PubMed  CAS  PubMed Central  Google Scholar 

  • Burgard EC, Tietz EI, Neelands TR, Macdonald RL (1996) Properties of recombinant gamma-aminobutyric acid A receptor isoforms containing the alpha 5 subunit subtype. Mol Pharmacol 50:119–127

    PubMed  CAS  Google Scholar 

  • Burkat PM, Yang J, Gingrich KJ (2001) Dominant gating governing transient GABA(A) receptor activity: a first latency and Po/o analysis. J Neurosci 21:7026–7036

    PubMed  CAS  Google Scholar 

  • Burzomato V, Beato M, Groot-Kormelink PJ, Colquhoun D, Sivilotti LG (2004) Single-channel behavior of heteromeric alpha1beta glycine receptors: an attempt to detect a conformational change before the channel opens. J Neurosci 24:10924–10940

    PubMed  CAS  Google Scholar 

  • Celentano JJ, Wong RK (1994) Multiphasic desensitization of the GABAA receptor in outside-out patches. Biophys J 66:1039–1050

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chakrapani S, Bailey TD, Auerbach A (2004) Gating dynamics of the acetylcholine receptor extracellular domain. J Gen Physiol 123:341–356

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chang Y, Wang R, Barot S, Weiss DS (1996) Stoichiometry of a recombinant GABAA receptor. J Neurosci 16:5415–5424

    PubMed  CAS  Google Scholar 

  • Clements JD (1996) Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci 19:163–171

    PubMed  CAS  Google Scholar 

  • Connolly CN, Krishek BJ, McDonald BJ, Smart TG, Moss SJ (1996) Assembly and cell surface expression of heteromeric and homomeric gamma-aminobutyric acid type A receptors. J Biol Chem 271:89–96

    PubMed  CAS  Google Scholar 

  • Connolly CN, Kittler JT, Thomas P, Uren JM, Brandon NJ, Smart TG, Moss SJ (1999) Cell surface stability of gamma-aminobutyric acid type A receptors Dependence on protein kinase C activity and subunit composition. J Biol Chem 274:36565–36572

    PubMed  CAS  Google Scholar 

  • Cope DW, Di Giovanni G, Fyson SJ, Orban G, Errington AC, Lorincz ML, Gould TM, Carter DA, Crunelli V (2009) Enhanced tonic GABAA inhibition in typical absence epilepsy. Nat Med 15:1392–1398

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dallwig R, Deitmer JW, Backus KH (1999) On the mechanism of GABA-induced currents in cultured rat cortical neurons. Pflugers Arch 437:289–297

    PubMed  CAS  Google Scholar 

  • Davies PA, Hanna MC, Hales TG, Kirkness EF (1997) Insensitivity to anaesthetic agents conferred by a class of GABA(A) receptor subunit. Nature 385:820–823

    PubMed  CAS  Google Scholar 

  • Davies PA, Wang W, Hales TG, Kirkness EF (2003) A novel class of ligand-gated ion channel is activated by Zn2 +. J Biol Chem 278:712–717

    PubMed  CAS  Google Scholar 

  • Dibbens LM, Feng HJ, Richards MC, Harkin LA, Hodgson BL, Scott D, Jenkins M, Petrou S, Sutherland GR, Scheffer IE, Berkovic SF, Macdonald RL, Mulley JC (2004) GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum Mol Genet 13:1315–1319

    PubMed  CAS  Google Scholar 

  • Ellgaard L, Frickel EM (2003) Calnexin, calreticulin, and ERp57: teammates in glycoprotein folding. Cell Biochem Biophys 39:223–247

    PubMed  CAS  Google Scholar 

  • Eugene E, Depienne C, Baulac S, Baulac M, Fritschy JM, Le Guern E, Miles R, Poncer JC (2007) GABA(A) receptor gamma 2 subunit mutations linked to human epileptic syndromes differentially affect phasic and tonic inhibition. J Neurosci 27:14108–14116

    PubMed  CAS  Google Scholar 

  • Farrar SJ, Whiting PJ, Bonnert TP, McKernan RM (1999) Stoichiometry of a ligand-gated ion channel determined by fluorescence energy transfer. J Biol Chem 274:10100–10104

    PubMed  CAS  Google Scholar 

  • Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 6:215–229

    PubMed  CAS  Google Scholar 

  • Feng HJ, Macdonald RL (2004) Multiple actions of propofol on alphabetagamma and alphabetadelta GABAA receptors. Mol Pharmacol 66:1517–1524

    PubMed  CAS  Google Scholar 

  • Feng HJ, Bianchi MT, Macdonald RL (2004) Pentobarbital differentially modulates alpha1beta3delta and alpha1beta3gamma2L GABAA receptor currents. Mol Pharmacol 66:988–1003

    PubMed  CAS  Google Scholar 

  • Feng HJ, Kang JQ, Song L, Dibbens L, Mulley J, Macdonald RL (2006) Delta subunit susceptibility variants E177A and R220H associated with complex epilepsy alter channel gating and surface expression of alpha4beta2delta GABAA receptors. J Neurosci 26:1499–1506

    PubMed  CAS  Google Scholar 

  • Feng HJ, Mathews GC, Kao C, Macdonald RL (2008) Alterations of GABA A-receptor function and allosteric modulation during development of status epilepticus. J Neurophysiol 99:1285–1293

    PubMed  Google Scholar 

  • Fisher JL, Macdonald RL (1997a) Single channel properties of recombinant GABAA receptors containing gamma 2 or delta subtypes expressed with alpha 1 and beta 3 subtypes in mouse L929 cells. J Physiol 505(Pt 2):283–297

    CAS  Google Scholar 

  • Fisher JL, Macdonald RL (1997b) Functional properties of recombinant GABA(A) receptors composed of single or multiple beta subunit subtypes. Neuropharmacology 36:1601–1610

    CAS  Google Scholar 

  • Fisher JL, Zhang J, Macdonald RL (1997) The role of alpha1 and alpha6 subtype amino-terminal domains in allosteric regulation of gamma-aminobutyric acida receptors. Mol Pharmacol 52:714–724

    PubMed  CAS  Google Scholar 

  • Frugier G, Coussen F, Giraud MF, Odessa MF, Emerit MB, Boue-Grabot E, Garret M (2007) A gamma 2(R43Q) mutation, linked to epilepsy in humans, alters GABAA receptor assembly and modifies subunit composition on the cell surface. J Biol Chem 282:3819–3828

    PubMed  CAS  Google Scholar 

  • Glavinovic MI (1999) Monte carlo simulation of vesicular release, spatiotemporal distribution of glutamate in synaptic cleft and generation of postsynaptic currents. Pflugers Arch 437:462–470

    PubMed  CAS  Google Scholar 

  • Glykys J, Mann EO, Mody I (2008) Which GABA(A) receptor subunits are necessary for tonic inhibition in the hippocampus? J Neurosci 28:1421–1426

    PubMed  CAS  Google Scholar 

  • Gorrie GH, Vallis Y, Stephenson A, Whitfield J, Browning B, Smart TG, Moss SJ (1997) Assembly of GABAA receptors composed of alpha1 and beta2 subunits in both cultured neurons and fibroblasts. J Neurosci 17:6587–6596

    PubMed  CAS  Google Scholar 

  • Green WN, Millar NS (1995) Ion-channel assembly. Trends Neurosci 18:280–287

    PubMed  CAS  Google Scholar 

  • Grover LM, Lambert NA, Schwartzkroin PA, Teyler TJ (1993) Role of HCO3- ions in depolarizing GABAA receptor-mediated responses in pyramidal cells of rat hippocampus. J Neurophysiol 69:1541–1555

    PubMed  CAS  Google Scholar 

  • Haas KF, Macdonald RL (1999) GABAA receptor subunit gamma2 and delta subtypes confer unique kinetic properties on recombinant GABAA receptor currents in mouse fibroblasts. J Physiol 514(Pt 1):27–45

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hales TG, Tang H, Bollan KA, Johnson SJ, King DP, McDonald NA, Cheng A, Connolly CN (2005) The epilepsy mutation, gamma2(R43Q) disrupts a highly conserved inter-subunit contact site, perturbing the biogenesis of GABAA receptors. Mol Cell Neurosci 29:120–127

    PubMed  CAS  Google Scholar 

  • Hamann M, Rossi DJ, Attwell D (2002) Tonic and spillover inhibition of granule cells control information flow through cerebellar cortex. Neuron 33:625–633

    PubMed  CAS  Google Scholar 

  • Harkin LA, Bowser DN, Dibbens LM, Singh R, Phillips F, Wallace RH, Richards MC, Williams DA, Mulley JC, Berkovic SF, Scheffer IE, Petrou S (2002) Truncation of the GABA(A)-receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. Am J Hum Genet 70:530–536

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hedblom E, Kirkness EF (1997) A novel class of GABAA receptor subunit in tissues of the reproductive system. J Biol Chem 272:15346–15350

    PubMed  CAS  Google Scholar 

  • Herb A, Wisden W, Luddens H, Puia G, Vicini S, Seeburg PH (1992) The third gamma subunit of the gamma-aminobutyric acid type A receptor family. Proc Natl Acad Sci U S A 89:1433–1437

    PubMed  CAS  PubMed Central  Google Scholar 

  • Horn R, Vandenberg CA (1984) Statistical properties of single sodium channels. J Gen Physiol 84:505–534

    PubMed  CAS  Google Scholar 

  • Huang X, Tian M, Hernandez C, Hu N, Macdonald RL (2012) The Dravet syndrome-associated GABRG2 nonsense mutation, Q40X, activated NMD and generated a truncated subunit that was partially rescued by aminoglycoside-induced stop codon read-through. Neurobiol Dis 48:115–123

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jones MV, Westbrook GL (1995) Desensitized states prolong GABAA channel responses to brief agonist pulses. Neuron 15:181–191

    PubMed  CAS  Google Scholar 

  • Jones MV, Westbrook GL (1996) The impact of receptor desensitization on fast synaptic transmission. Trends Neurosci 19:96–101

    PubMed  CAS  Google Scholar 

  • Kanaumi GF, Ueno S, Ishi A, Haga Y, Hamachi A, Yonetani M, Itoh M, Takashima S, Kaneko S, Mitsudome A, Hirose S (2004) Possible pathogenesis of severe myoclonic epilepsy in infancy: a novel nonsense mutation of GABRG2 leading to aggregation of GABAA receptors in neurons. Neurology Asia 9 (Suppl 1):151

    Google Scholar 

  • Kananura C, Haug K, Sander T et al. (2002) A splice-site mutation in GABRG2 associated with childhood absence epilepsy and febrile convulsions. Arch Neurol 59:1137–1141

    PubMed  Google Scholar 

  • Kang JQ, Macdonald RL (2004) The GABAA receptor gamma2 subunit R43Q mutation linked to childhood absence epilepsy and febrile seizures causes retention of alpha1beta2gamma2S receptors in the endoplasmic reticulum. J Neurosci 24:8672–8677

    PubMed  CAS  Google Scholar 

  • Kash TL, Jenkins A, Kelley JC, Trudell JR, Harrison NL (2003) Coupling of agonist binding to channel gating in the GABA(A) receptor. Nature 421:272–275

    PubMed  CAS  Google Scholar 

  • Kaur KH, Baur R, Sigel E (2009) Unanticipated structural and functional properties of delta subunit containing GABAA receptors. J Biol Chem 284:7889–7896

    PubMed  CAS  PubMed Central  Google Scholar 

  • Keramidas A, Harrison NL (2008) Agonist-dependent single channel current and gating in alpha4beta2delta and alpha1beta2gamma2S GABAA receptors. J Gen Physiol 131:163–181

    PubMed  CAS  PubMed Central  Google Scholar 

  • Khan ZU, Gutierrez A, De Blas AL (1994) Short and long form gamma 2 subunits of the GABAA/benzodiazepine receptors. J Neurochem 63:1466–1476

    PubMed  CAS  Google Scholar 

  • Kim DY, Fenoglio KA, Kerrigan JF, Rho JM (2009) Bicarbonate contributes to GABAA receptor-mediated neuronal excitation in surgically resected human hypothalamic hamartomas. Epilepsy Res 83:89–93

    PubMed  CAS  Google Scholar 

  • Kirkness EF, Fraser CM (1993) A strong promoter element is located between alternative exons of a gene encoding the human gamma-aminobutyric acid-type A receptor beta 3 subunit (GABRB3). J Biol Chem 268:4420–4428

    PubMed  CAS  Google Scholar 

  • Klausberger T, Ehya N, Fuchs K, Fuchs T, Ebert V, Sarto I, Sieghart W (2001) Detection and binding properties of GABA(A) receptor assembly intermediates. J Biol Chem 276:16024–16032

    PubMed  CAS  Google Scholar 

  • Knight AR, Hartnett C, Marks C, Brown M, Gallager D, Tallman J, Ramabhadran TV (1998) Molecular size of recombinant alpha1beta1 and alpha1beta1gamma2 GABAA receptors expressed in Sf9 cells. Receptors Channels 6:1–18

    PubMed  CAS  Google Scholar 

  • Korn SJ, Horn R (1988) Statistical discrimination of fractal and Markov models of single-channel gating. Biophys J 54:871–877

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lagrange AH, Botzolakis EJ, Macdonald RL (2007) Enhanced macroscopic desensitization shapes the response of alpha4 subtype-containing GABAA receptors to synaptic and extrasynaptic GABA. J Physiol 578:655–676

    PubMed  CAS  PubMed Central  Google Scholar 

  • Langosch D, Thomas L, Betz H (1988) Conserved quaternary structure of ligand-gated ion channels: the postsynaptic glycine receptor is a pentamer. Proc Natl Acad Sci U S A 85:7394–7398

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lape R, Colquhoun D, Sivilotti LG (2008) On the nature of partial agonism in the nicotinic receptor superfamily. Nature 454:722–727

    PubMed  CAS  PubMed Central  Google Scholar 

  • Levitan ES, Schofield PR, Burt DR, Rhee LM, Wisden W, Kohler M, Fujita N, Rodriguez HF, Stephenson A, Darlison MG (1988) Structural and functional basis for GABAA receptor heterogeneity. Nature 335:76–79

    PubMed  CAS  Google Scholar 

  • Lo WY, Botzolakis EJ, Tang X, Macdonald RL (2008) A conserved Cys-loop receptor aspartate residue in the M3-M4 cytoplasmic loop is required for GABAA receptor assembly. J Biol Chem 283:29740–29752

    PubMed  CAS  PubMed Central  Google Scholar 

  • Macdonald RL, Rogers CJ, Twyman RE (1989) Kinetic properties of the GABAA receptor main conductance state of mouse spinal cord neurones in culture. J Physiol 410:479–499

    PubMed  CAS  PubMed Central  Google Scholar 

  • Macdonald RL, Kang JQ, Gallagher MJ, Feng HJ (2006) GABA(A) receptor mutations associated with generalized epilepsies. Adv Pharmacol 54:147–169

    PubMed  CAS  Google Scholar 

  • Maconochie DJ, Zempel JM, Steinbach JH (1994) How quickly can GABAA receptors open? Neuron 12:61–71

    PubMed  CAS  Google Scholar 

  • Mamalaki C, Barnard EA, Stephenson FA (1989) Molecular size of the gamma-aminobutyric acid A receptor purified from mammalian cerebral cortex. J Neurochem 52:124–134

    PubMed  CAS  Google Scholar 

  • Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254:432–437

    PubMed  CAS  Google Scholar 

  • McKernan RM, Whiting PJ (1996) Which GABAA-receptor subtypes really occur in the brain? Trends Neurosci 19:139–143

    PubMed  CAS  Google Scholar 

  • McManus OB, Weiss DS, Spivak CE, Blatz AL, Magleby KL (1988) Fractal models are inadequate for the kinetics of four different ion channels. Biophys J 54:859–870

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mercik K, Pytel M, Cherubini E, Mozrzymas JW (2006) Effect of extracellular pH on recombinant alpha1beta2gamma2 and alpha1beta2 GABAA receptors. Neuropharmacology 51:305–314

    PubMed  CAS  Google Scholar 

  • Mortensen M, Ebert B, Wafford K, Smart TG (2004a) Distinct activities of agonists at synaptic and extrasynaptic type GABAA receptors. J Physiol 558:1251–1268

    Google Scholar 

  • Mortensen M, Kristiansen U, Ebert B, Frølund B, Krogsgaard-Larsen P, Smart TG (2004b) Activation of single heteromeric GABA(A) receptor ion channels by full and partial agonists. J Physiol 557:389–413

    CAS  Google Scholar 

  • Mozrzymas JW, Barberis A, Mercik K, Zarnowska ED (2003) Binding sites, singly bound states, and conformation coupling shape GABA-evoked currents. J Neurophysiol 89:871–883

    PubMed  CAS  Google Scholar 

  • Nayeem N, Green TP, Martin IL, Barnard EA (1994) Quaternary structure of the native GABAA receptor determined by electron microscopic image analysis. J Neurochem 62:815–818

    PubMed  CAS  Google Scholar 

  • Neelands TR, Macdonald RL (1999) Incorporation of the pi subunit into functional gamma-aminobutyric Acid(A) receptors. Mol Pharmacol 56:598–610

    PubMed  CAS  Google Scholar 

  • Neelands TR, Fisher JL, Bianchi MT, Macdonald RL (1999) Spontaneous and gamma-aminobutyric acid (GABA)-activated GABA(A) receptor channels formed by epsilon subunit-containing isoforms. Mol Pharmacol 55:168–178

    PubMed  CAS  Google Scholar 

  • Newland CF, Colquhoun D, Cull-Candy SG (1991) Single channels activated by high concentrations of GABA in superior cervical ganglion neurones of the rat. J Physiol 432:203–233

    PubMed  CAS  PubMed Central  Google Scholar 

  • Noda M, Takahashi H, Tanabe T, Toyosato M, Kikyotani S, Furutani Y, Hirose T, Takashima H, Inayama S, Miyata T, Numa S (1983) Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 302:528–532

    PubMed  CAS  Google Scholar 

  • Nusser Z, Sieghart W, Somogyi P (1998) Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J Neurosci 18:1693–1703

    PubMed  CAS  Google Scholar 

  • Ohlson J, Pedersen JS, Haussler D, Ohman M (2007) Editing modifies the GABA(A) receptor subunit alpha3. RNA 13:698–703

    PubMed  CAS  PubMed Central  Google Scholar 

  • Olsen RW, Sieghart W (2009) GABA(A) receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 56:141–148

    PubMed  CAS  PubMed Central  Google Scholar 

  • Olsen RW, Tobin AJ (1990) Molecular biology of GABAA receptors. FASEB J 4:1469–1480

    PubMed  CAS  Google Scholar 

  • Pan Y, Ripps H, Qian H (2006) Random assembly of GABA rho1 and rho2 subunits in the formation of heteromeric GABA(C) receptors. Cell Mol Neurobiol 26:289–305

    PubMed  CAS  Google Scholar 

  • Perkins KL, Wong RK (1997) The depolarizing GABA response. Can J Physiol Pharmacol 75:516–519

    PubMed  CAS  Google Scholar 

  • Picton AJ, Fisher JL (2007) Effect of the alpha subunit subtype on the macroscopic kinetic properties of recombinant GABA(A) receptors. Brain Res 1165:40–49

    PubMed  CAS  PubMed Central  Google Scholar 

  • Plested AJ, Groot-Kormelink PJ, Colquhoun D, Sivilotti LG (2007) Single-channel study of the spasmodic mutation alpha1A52S in recombinant rat glycine receptors. J Physiol 581:51–73

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schofield PR, Seeburg PH (1989) Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338:582–585

    PubMed  CAS  Google Scholar 

  • Quirk K, Gillard NP, Ragan CI, Whiting PJ, McKernan RM (1994) gamma-Aminobutyric acid type A receptors in the rat brain can contain both gamma 2 and gamma 3 subunits, but gamma 1 does not exist in combination with another gamma subunit. Mol Pharmacol 45:1061–1070

    PubMed  CAS  Google Scholar 

  • Rothberg BS, Magleby KL (2000) Voltage and Ca2+ activation of single large-conductance Ca2+-activated K+ channels described by a two-tiered allosteric gating mechanism. J Gen Physiol 116:75–99

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rula EY, Lagrange AH, Jacobs MM, Hu N, Macdonald RL, Emeson RB (2008) Developmental modulation of GABA(A) receptor function by RNA editing. J Neurosci 28:6196–6201

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sancar F, Czajkowski C (2004) A GABAA receptor mutation linked to human epilepsy (gamma2R43Q) impairs cell surface expression of alphabetagamma receptors. J Biol Chem 279:47034–47039

    PubMed  CAS  Google Scholar 

  • Sansom MS, Ball FG, Kerry CJ, McGee R, Ramsey RL, Usherwood PN (1989) Markov, fractal, diffusion, and related models of ion channel gating A comparison with experimental data from two ion channels. Biophys J 56:1229–1243

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sarto-Jackson I, Sieghart W (2008) Assembly of GABA(A) receptors (review). Mol Membr Biol 25:302–310

    PubMed  CAS  Google Scholar 

  • Saxena NC, Macdonald RL (1994) Assembly of GABAA receptor subunits: role of the delta subunit. J Neurosci 14:7077–7086

    PubMed  CAS  Google Scholar 

  • Saxena NC, Macdonald RL (1996) Properties of putative cerebellar gamma-aminobutyric acid A receptor isoforms. Mol Pharmacol 49:567–579

    PubMed  CAS  Google Scholar 

  • Schofield PR, Darlison MG, Fujita N, Burt DR, Stephenson FA, Rodriguez H, Rhee LM, Ramachandran J, Reale V, Glencorse TA (1987) Sequence and functional expression of the GABA A receptor shows a ligand-gated receptor super-family. Nature 328:221–227

    PubMed  CAS  Google Scholar 

  • Schoppa NE, Sigworth FJ (1998) Activation of Shaker potassium channels III An activation gating model for wild-type and V2 mutant channels. J Gen Physiol 111:313–342

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schwartzkroin PA, Prince DA (1980) Changes in excitatory and inhibitory synaptic potentials leading to epileptogenic activity. Brain Res 183:61–76

    PubMed  CAS  Google Scholar 

  • Shivers BD, Killisch I, Sprengel R, Sontheimer H, Kohler M, Schofield PR, Seeburg PH (1989) Two novel GABAA receptor subunits exist in distinct neuronal subpopulations. Neuron 3:327–337

    PubMed  CAS  Google Scholar 

  • Sigg D, Bezanilla F (2003) A physical model of potassium channel activation: from energy landscape to gating kinetics. Biophys J 84:3703–3716

    PubMed  CAS  PubMed Central  Google Scholar 

  • Simon J, Wakimoto H, Fujita N, Lalande M, Barnard EA (2004) Analysis of the set of GABA(A) receptor genes in the human genome. J Biol Chem 279:41422–41435

    PubMed  CAS  Google Scholar 

  • Taylor PM, Thomas P, Gorrie GH, Connolly CN, Smart TG, Moss SJ (1999) Identification of amino acid residues within GABA(A) receptor beta subunits that mediate both homomeric and heteromeric receptor expression. J Neurosci 19:6360–6371

    PubMed  CAS  Google Scholar 

  • Taylor PM, Connolly CN, Kittler JT, Gorrie GH, Hosie A, Smart TG, Moss SJ (2000) Identification of residues within GABA(A) receptor alpha subunits that mediate specific assembly with receptor beta subunits. J Neurosci 20:1297–1306

    PubMed  CAS  Google Scholar 

  • Tian M, Macdonald RL (2012) The intronic GABRG2 mutation, IVS6 + 2TàG, associated with CAE altered γ2 subunit mRNA intron splicing and activated nonsense-mediated mRNA decay and altered splicing. J Neurosci 32:5937–5952

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tretter V, Ehya N, Fuchs K, Sieghart W (1997) Stoichiometry and assembly of a recombinant GABAA receptor subtype. J Neurosci 17:2728–2737

    PubMed  CAS  Google Scholar 

  • Twyman RE, Macdonald RL (1992) Neurosteroid regulation of GABAA receptor single-channel kinetic properties of mouse spinal cord neurons in culture. J Physiol 456:215–245

    PubMed  CAS  PubMed Central  Google Scholar 

  • Twyman RE, Rogers CJ, Macdonald RL (1989a) Differential regulation of gamma-aminobutyric acid receptor channels by diazepam and phenobarbital. Ann Neurol 25:213–220

    CAS  Google Scholar 

  • Twyman RE, Rogers CJ, Macdonald RL (1989b) Pentobarbital and picrotoxin have reciprocal actions on single GABAA receptor channels. Neurosci Lett 96:89–95

    CAS  Google Scholar 

  • Twyman RE, Rogers CJ, Macdonald RL (1990) Intraburst kinetic properties of the GABAA receptor main conductance state of mouse spinal cord neurones in culture. J Physiol 423:193–220

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ventriglia F, Di MV (2003) Stochastic fluctuations of the quantal EPSC amplitude in computer simulated excitatory synapses of hippocampus. Biosystems 71:195–204

    PubMed  Google Scholar 

  • Wallace RH, Marini C, Petrou S, Harkin LA, Bowser DN, Panchal RG, Williams DA, Sutherland GR, Mulley JC, Scheffer IE, Berkovic SF (2001) Mutant GABAA receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet 28:49–52

    PubMed  CAS  Google Scholar 

  • Wanamaker CP, Green WN (2007) Endoplasmic reticulum chaperones stabilize nicotinic receptor subunits and regulate receptor assembly. J Biol Chem 282:31113–31123

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weiss DS, Magleby KL (1989) Gating scheme for single GABA-activated Cl- channels determined from stability plots, dwell-time distributions, and adjacent-interval durations. J Neurosci 9:1314–1324

    PubMed  CAS  Google Scholar 

  • Whiting P, McKernan RM, Iversen LL (1990) Another mechanism for creating diversity in gamma-aminobutyrate type A receptors: RNA splicing directs expression of two forms of gamma 2 phosphorylation site. Proc Natl Acad Sci U S A 87:9966–9970

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ymer S, Schofield PR, Draguhn A, Werner P, Kohler M, Seeburg PH (1989a) GABAA receptor beta subunit heterogeneity: functional expression of cloned cDNAs. EMBO J 8:1665–1670

    CAS  Google Scholar 

  • Ymer S, Schofield PR, Shivers BD, Pritchett DB, Luddens H, Kohler M, Werner P, Sontheimer H, Kettenmann H, Seeburg PH (1989b) Molecular studies of the GABAA receptor. J Protein Chem 8:352–355

    CAS  Google Scholar 

  • Zagotta WN, Hoshi T, Aldrich RW (1994) Shaker potassium channel gating III: evaluation of kinetic models for activation. J Gen Physiol 103:321–362

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Macdonald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Macdonald, R., Botzolakis, E. (2014). Biophysical Properties of Recombinant γ2- and δ-subunit Containing GABAA Receptors. In: Errington, A., Di Giovanni, G., Crunelli, V. (eds) Extrasynaptic GABAA Receptors. The Receptors, vol 27. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1426-5_3

Download citation

Publish with us

Policies and ethics