Skip to main content

Extrasynaptic GABAA Receptors: Subunit Composition, Distribution, and Regulation

  • Chapter
  • First Online:
Extrasynaptic GABAA Receptors

Part of the book series: The Receptors ((REC,volume 27))

Abstract

Among the multiple GABAA receptor (GABAAR) subtypes that are assembled from the 18 subunits encoded in the mammalian genome, several of them, notably those containing the subunits α4, α5, α6, and δ are preferentially located outside of the postsynaptic density and are activated tonically by GABA. Owing to their subunit composition, these extrasynaptic GABAAR have specific functional properties and pharmacological profiles that distinguish them from “postsynaptic” receptors. In this chapter, we summarize anatomical, developmental, and cell biological evidence that extrasynaptic GABAAR represent a specialized subset of GABAAR with specific functional roles and regulation mechanisms. Anatomically, the regional and cellular distribution of the subunits forming extrasynaptic GABAAR explains their enrichment in cerebellum, thalamus, hippocampus, dentate gyrus, striatum, olfactory bulb, and possibly spinal cord. Little is known about the ontogeny of these receptors during central nervous system (CNS) development and neurogenesis, but it is likely that extrasynaptic receptors on progenitor cells and differentiating neurons differ from their adult counterparts, notably owing to late onset of α6 and δ subunit expression. On the cell biological level, the extrasynaptic localization of receptors containing the α4, α5, and δ subunits depends on structural motifs that either prevent interaction with the postsynaptic scaffolding molecule gephyrin or allow interaction with radixin, a member of the ezrin/radixin/moesin family of actin-interacting proteins. Importantly, there is evidence indicating that regulation of GABAAR trafficking and cell-surface expression, mediated in part by protein phosphorylation mechanisms, allows for rapid changes in the ratio of extrasynaptic/postsynaptic receptors upon physiological and pathophysiological stimuli. A better understanding of the subcellular localization and regulation of extrasynaptic GABAAR will be required to unravel their multiple contributions to the control of neuronal network activity and behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramian AM, Comenencia-Ortiz E, Vithlani M, Tretter EV, Sieghart W, Davies PA, Moss SJ (2010) Protein kinase C phosphorylation regulates membrane insertion of GABAA receptor subtypes that mediate tonic inhibition. J Biol Chem 285:41795–41805

    PubMed  CAS  PubMed Central  Google Scholar 

  • Absalom N, Eghorn LF, Villumsen IS, Karim N, Bay T, Olsen JV, Knudsen GM, Bräuner-Osborne H, Frølund B, Clausen RP, Chebib M, Wellendorph P (2014) α4βδ GABAA receptors are high-affinity targets for γ-hydroxybutyric acid (GHB). Proc Natl Acad Sci U S A 87(2):220–228

    Google Scholar 

  • Ade KK, Janssen MJ, Ortinski PI, Vicini S (2008) Differential tonic GABA conductances in striatal medium spiny neurons. J Neurosci 30:1185–1197

    Google Scholar 

  • Armstrong CM, Krook-Magnuson E, Soltesz I (2012) Neurogliaform and Ivy cells: a major family of nNOS expressing GABAergic neurons. Front Neural Circuits 6:23

    PubMed  CAS  PubMed Central  Google Scholar 

  • Baer K, Essrich C, Benson JA, Benke D, Bluethmann H, Fritschy JM, Luscher B (1999) Postsynaptic clustering of γ-aminobutyric acid type A receptors by the γ3 subunit in vivo. Proc Natl Acad Sci U S A 96:12860–12865

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bahn S, Harvey RJ, Darlison MG, Wisden W (1996) Conservation of γ-aminobutyric acid type A receptor α6 subunit gene expression in cerebellar granule cells. J Neurochem 66:1810–1818

    PubMed  CAS  Google Scholar 

  • Balic E, Rudolph U, Fritschy JM, Mohler H, Benke D (2009) The α5(H105R) mutation impairs α5 selective binding properties by altered positioning of the α5 subunit in GABAA receptors containing two distinct types of α subunits. J Neurochem 110:244–254

    PubMed  CAS  Google Scholar 

  • Bannai H, Lévi S, Schweizer C, Inoue T, Launey T, Racine V, Sibarita JB, Mikoshiba K, Triller A (2009) Activity-dependent tuning of inhibitory neurotransmission based on GABAAR diffusion dynamics. Neuron 62:670–682

    PubMed  CAS  Google Scholar 

  • Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Biggio G, Braestrup C, Bateson AN, Langer SZ (1998) International Union of Pharmacology. XV. Subtypes of γ-aminobutyric acidA receptors: classification on the basis of subunit structure and function. Pharmacol Rev 50:291–313

    PubMed  CAS  Google Scholar 

  • Baude A, Sequier JM, McKernan RM, Oliver KR, Somogyi P (1992) Differential subcellular distribution of the alpha6 subunit versus the alpha1 and beta2/3 subunits of the GABAA/benzodiazepine receptor complex in granule cells of the cerebellar cortex. Neuroscience 51:739–748

    PubMed  CAS  Google Scholar 

  • Behar TN, Schaffner AE, Scott CA, Greene CL, Barker JL (2000) GABAA receptor antagonists modulate postmitotic cell migration in slice cultures of embryonic rat cortex. Cereb Cortex 10:899–909

    PubMed  CAS  Google Scholar 

  • Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABAA receptor. Nat Rev Neurosci 6:565–575

    PubMed  CAS  Google Scholar 

  • Belelli D, Peden DR, Rosahl TW, Wafford KA, Lambert JJ (2005) Extrasynaptic GABAA receptors of thalamocortical neurons: a molecular target for hypnotics. J Neurosci 25:11513–11520

    PubMed  CAS  Google Scholar 

  • Ben-Ari Y (2002) Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci 3:728–739

    PubMed  CAS  Google Scholar 

  • Benke D, Mertens S, Trzeciak A, Gillessen D, Mohler H (1991) Identification and immunohistochemical mapping of GABAA receptor subtypes containing the δ-subunit in rat brain. FEBS Lett 283:145–149

    PubMed  CAS  Google Scholar 

  • Benke D, Michel C, Mohler H (1997) GABAA receptors containing the α4-subunit: prevalence, distribution, pharmacology, and subunit architecture in situ. J Neurochem 69:806–814

    PubMed  CAS  Google Scholar 

  • Benson JA, Low K, Keist R, Mohler H, Rudolph U (1998) Pharmacology of recombinant gamma-aminobutyric acidA receptors rendered diazepam-insensitive by point-mutated α-subunits. FEBS Lett 431:400–404

    PubMed  CAS  Google Scholar 

  • Bohlhalter S, Weinmann O, Mohler H, Fritschy JM (1996) Laminar compartmentalization of ­GABAA-receptor subtypes in the spinal cord. J Neurosci 16:283–297

    PubMed  CAS  Google Scholar 

  • Bonin RP, Martin LJ, Macdonald JF, Orser BA (2007) α5−GABAAreceptors regulate the intrinsic excitability of mouse hippocampal pyramidal neurons. J Neurophysiol 98:2244–2254

    PubMed  CAS  Google Scholar 

  • Bosman LWJ, Rosahl TW, Brussaard AB (2002) Neonatal development of the rat visual cortex: synaptic function of GABAA receptor α subunits. J Physiol 545:169–181

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brickley SG, Mody I (2012) Extrasynaptic GABAA receptors: their function in the CNS and implications for disease. Neuron 12:23–34

    Google Scholar 

  • Brünig I, Scotti E, Sidler C, Fritschy JM (2002a) Intact sorting, targeting, and clustering of γ-aminobutyric acid A receptor subtypes in hippocampal neurons in vitro. J Comp Neurol 443:43–45

    Google Scholar 

  • Brünig I, Suter A, Knuesel I, Luscher B, Fritschy JM (2002b) GABAergic presynaptic terminals are required for postsynaptic clustering of dystrophin, but not of GABAA receptors and gephyrin. J Neurosci 22:4805–4813

    Google Scholar 

  • Caraiscos VB, Newell JG, You-Ten KE, Elliott EM, Rosahl TW, Wafford KA, MacDonald JF, Orser BA (2004a) Selective enhancement on tonic GABAergic inhibition in murine hippocampal neurons by low concentrations of the volatile anesthetic isoflurane. J Neurosci 24:8454–8458

    CAS  Google Scholar 

  • Caraiscos VB, Elliott EM, You-Ten KE, Cheng VY, Belelli D, Newell JG, Jackson MF, Lambert JJ, Rosahl TW, Wafford KA, MacDonald JF, Orser BA (2004b) Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by α5 subunit-containing γ-aminobutyric acid type A receptors. Proc Natl Acad Sci U S A 101:3662–3667

    CAS  Google Scholar 

  • Chandra D, Jia F, Liang J, Peng Z, Suryanarayanan A, Werner DF, Spigelman I, Houser CR, Olsen RW, Harrison NL, Homanics GE (2006) GABAA receptor α4 subunits mediate extrasynaptic inhibition in thalamus and dentate gyrus and the action of gaboxadol. Proc Natl Acad Sci U S A 103:15230–15235

    PubMed  CAS  PubMed Central  Google Scholar 

  • Crestani F, Keist R, Fritschy JM, Benke D, Vogt K, Prut L, Bluethmann H, Mohler H, Rudolph U (2002) Trace fear conditioning involves hippocampal α5 GABAA receptors. Proc Natl Acad Sci U S A 99:8980–8985

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cuzon VC, Yeh PW, Cheng Q, Yeh HH (2006) Ambient GABA promotes cortical entry of tangentially migrating cells derived from the medial ganglionic eminence. Cereb Cortex 16:1377–1388

    PubMed  Google Scholar 

  • Devor A, Fritschy JM, Yarom Y (2001) Spatial distribution and subunit composition of GABAA receptors in the inferior olivary nucleus. J Neurophysiol 85:1686–1696

    PubMed  CAS  Google Scholar 

  • Duveau V, Laustela S, Barth L, Gianolini F, Vogt KE, Keist R, Chandra D, Homanics GE, Rudolph U, Fritschy JM (2011) Spatiotemporal specificity of GABAA receptor-mediated regulation of adult hippocampal neurogenesis. Eur J Neurosci 34:362–373

    PubMed  PubMed Central  Google Scholar 

  • Enz R, Brandstatter JH, Wassle H, Bormann J (1996) Immunocytochemical localization of the GABAC receptor rho subunits in the mammalian retina. J Neurosci 16:4479–4490

    PubMed  CAS  Google Scholar 

  • Fagiolini M, Fritschy JM, Löw K, Möhler H, Rudolph U, Hensch TK (2004) Specific GABAA circuits for visual cortical plasticity. Science 303:1681–1683

    PubMed  CAS  Google Scholar 

  • Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of ­GABAA receptors. Nat Rev Neurosci 6:215–229

    PubMed  CAS  Google Scholar 

  • Ferguson C, Hardy SL, Werner DF, Hileman SM, Delorey TM, Homanics GE (2007) New insight into the role of the β3 subunit of the GABAA-R in development, behavior, body weight regulation, and anesthesia revealed by conditional gene knockout. BMC Neuroscience 8:85

    PubMed  PubMed Central  Google Scholar 

  • Fillman SG, Duncan CE, Webster MJ, Elashoff M, Weickert CS (2010) Developmental co-regulation of the β and γ GABAA receptor subunits with distinct α subunits in the human dorsolateral prefrontal cortex. Int J Dev Neurosci 28:513–519

    PubMed  CAS  Google Scholar 

  • Fritschy JM, Mohler H (1995) GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol 359:154–194

    PubMed  CAS  Google Scholar 

  • Fritschy JM, Paysan J, Enna A, Mohler H (1994) Switch in the expression of rat GABAA-receptor subtypes during postnatal development: an immunohistochemical study. J Neurosci 14:5302–5324

    PubMed  CAS  Google Scholar 

  • Fritschy JM, Weinmann O, Wenzel A, Benke D (1998) Synapse-specific localization of NMDA- and GABAA-receptor subunits revealed by antigen-retrieval immunohistochemistry. J Comp Neurol 390:194–210

    PubMed  CAS  Google Scholar 

  • Fritschy JM, Panzanelli P, Kralic JE, Vogt KE, Sassoè-Pognetto M (2006) Differential dependence of axo-dendritic and axo-somatic GABAergic synapses on GABAA receptors containing the α1 subunit in Purkinje cells. J Neurosci 26:3245–3255

    PubMed  CAS  Google Scholar 

  • Fritschy JM, Harvey RJ, Schwarz G (2008) Gephyrin, where do we stand, where do we go? Trends Neurosci 31:257–264

    PubMed  CAS  Google Scholar 

  • Fritschy JM, Panzanelli P, Tyagarajan SK (2012) Molecular and functional heterogeneity of GABAergic synapses. Cell Mol Life Sci 69:2485–2499

    PubMed  CAS  Google Scholar 

  • Glykys J, Mody I (2007) The main source of ambient GABA responsible for tonic inhibition in the mouse hippocampus. J Physiol 582:1163–1178

    PubMed  CAS  PubMed Central  Google Scholar 

  • Glykys J, Peng Z, Chandra D, Homanics GE, Houser CR, Mody I (2007) A new naturally occurring GABAA receptor subunit partnership with high sensitivity to ethanol. Nat Neurosci 10:40–48

    PubMed  CAS  Google Scholar 

  • Glykys J, Mann EO, Mody I (2008) Which GABAA receptor subunits are necessary for tonic inhibition in the hippocampus? J Neurosci 28:1421–1426

    PubMed  CAS  Google Scholar 

  • Grasshoff C, Jurd R, Rudolph U, Antkowiak B (2007) Modulation of presynaptic β3-containing GABAA receptors limits the immobilizing actions of GABAergic anesthetics. Mol Pharmacol 72:780–787

    PubMed  CAS  Google Scholar 

  • Gunn BG, Brown AR, Lambert JJ, Belelli D (2011) Neurosteroids and GABAA receptor interactions: a focus on stress. Front Neurosci 5:131

    PubMed  PubMed Central  Google Scholar 

  • Gunther U, Benson J, Benke D, Fritschy JM, Reyes GH, Knoflach F, Crestani F, Aguzzi A, Arigoni M, Lang Y, Bluethmann H, Mohler H, Luscher B (1995) Benzodiazepine-insensitive mice generated by targeted disruption of the γ2-subunit gene of γ-aminobutyric acid type A receptors. Proc Natl Acad Sci U S A 92:7749–7753

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gutierrez A, Khan ZU, Deblas AL (1996) Immunocytochemical localization of the alpha6 subunit of the gamma-aminobutyric acidA receptor in the rat nervous system. J Comp Neurol 365:504–510

    PubMed  CAS  Google Scholar 

  • Hajos N, Nusser Z, Rancz EA, Freund TF, Mody I (2000) Cell type-and synapse-specific variability in synaptic GABAA receptor occupancy. Eur J Neurosci 12:810–818

    PubMed  CAS  Google Scholar 

  • Halonen LM, Sinkkonen ST, Chandra D, Homanics GE, Korpi ER (2009) Brain regional distribution of GABAA receptors exhibiting atypical GABA agonism: roles of receptor subunits. Neurochem Int 55:389–396

    PubMed  CAS  PubMed Central  Google Scholar 

  • Harney SC, Frenguelli BG, Lambert JJ (2003) Phosphorylation influences neurosteroid modulation of synaptic GABAA receptors in rat CA1 and dentate gyrus neurons. Neuropharmacology 45:873–883

    PubMed  CAS  Google Scholar 

  • Herd MB, Belelli D, Lambert JJ (2007) Neurosteroid modulation of synaptic and extrasynaptic GABAA receptors. Pharmacol Ther 116:20–34

    PubMed  CAS  Google Scholar 

  • Herd MB, Haythornthwaite AR, Rosahl TW, Wafford KA, Homanics GE, Lambert JJ, Belelli D (2008) The expression of GABAA β subunit isoforms in synaptic and extrasynaptic receptor populations of mouse dentate gyrus granule cells. J Physiol (London) 586:989–1004

    PubMed  CAS  PubMed Central  Google Scholar 

  • Herd MB, Foister N, Chandra D, Peden DR, Homanics GE, Brown VJ, Balfour DJ, Lambert JJ, Belelli D (2009) Inhibition of thalamic excitability by 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol: a selective role for delta-GABAA receptors. Eur J Neurosci 29:1177–1187

    PubMed  PubMed Central  Google Scholar 

  • Hines RM, Davies PA, Moss SJ, Maguire J (2012) Functional regulation of GABAA receptors in nervous system pathologies. Cur Opin Neurobiol 22(3):552–558

    CAS  Google Scholar 

  • Homanics GE, Ferguson C, Quinlan JJ, Daggett J, Snyder K, Lagenaur C, Mi ZP, Wang XH, Grayson DR, Firestone LL (1997a) Gene knockout of the α6 subunit of the γ-aminobutyric acid type A receptor: lack of effect on responses to ethanol, pentobarbital, and general anesthetics. Mol Pharmacol 51:588–596

    CAS  Google Scholar 

  • Homanics GE, Delorey TM, Firestone LL, Quinlan JJ, Handforth A, Harrison NL, Krasowski MD, Rick CEM, Korpi ER, Makela R, Brilliant MH, Hagiwara N, Ferguson C, Snyder K, Olsen RW (1997b) Mice devoid of γ-aminobutyrate type A receptor β3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc Natl Acad Sci U S A 94:4143–4148

    CAS  Google Scholar 

  • Hosie AM, Wilkins ME, da Silva HM, Smart TG (2006) Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444:486–489

    PubMed  CAS  Google Scholar 

  • Hutcheon B, Morley P, Poulter MO (2000) Developmental change in GABAA receptor desensitization kinetics and its role in synapse function in rat cortical neurons. J Physiol 522:3–17

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jia F, Pignataro L, Schofield CM, Yue M, Harrison NL, Goldstein PA (2005) An extrasynaptic GABAA receptor mediates tonic inhibition in thalamic VB neurons. J Neurophysiol 94:4491–4501

    PubMed  CAS  Google Scholar 

  • Jia F, Yue M, Chandra D, Keramidas A, Goldstein PA, Homanics GE, Harrison NL (2008) Taurine is a potent activator of extrasynaptic GABAA receptors in the thalamus. J Neurosci 28:106–115

    PubMed  CAS  Google Scholar 

  • Jones A, Korpi ER, McKernan RM, Pelz R, Nusser Z, Makela R, Mellor JR, Pollard S, Bahn S, Stephenson FA, Randall AD, Sieghart W, Somogyi P, Smith AJH, Wisden W (1997) Ligand-gated ion channel subunit partnerships: GABAA receptor α6 subunit gene inactivation inhibits δ subunit expression. J Neurosci 17:1350–1362

    PubMed  CAS  Google Scholar 

  • Jones SM, Palmer MJ (2009) Activation of the tonic GABAC receptor current in retinal bipolar cell terminals by nonvesicular GABA release. J Neurophysiol 102:691–699

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kasugai Y, Swinny JD, Roberts JD, Dalezios Y, Fukazawa Y, Sieghart W, Shigemoto R, Somogyi P (2010) Quantitative localisation of synaptic and extrasynaptic GABAA receptor subunits on hippocampal pyramidal cells by freeze-fracture replica immunolabelling. Eur J Neurosci 32:1868–1888

    PubMed  Google Scholar 

  • Kaur KH, Baur R, Sigel E (2009) Unanticipated structural and functional properties of δ-subunit-containing GABAA receptors. J Biol Chem 284:7889–7896

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kralic JE, Sidler C, Parpan F, Homanics G, Morrow AL, Fritschy JM (2006) Compensatory alteration of inhibitory synaptic circuits in thalamus and cerebellum of GABAA receptor α1 subunit knockout mice. J Comp Neurol 495:408–421

    PubMed  CAS  Google Scholar 

  • Lagier S, Panzanelli P, Russo RE, Nissant A, Bathellier B, Sassoè-Pognetto M, Fritschy JM, Lledo PM (2007) GABAergic inhibition at dendrodendritic synapses tunes γ oscillations in the olfactory bulb. Proc Natl Acad Sci U S A 104:7259–7264

    PubMed  CAS  PubMed Central  Google Scholar 

  • Laurie DJ, Wisden W, Seeburg PH (1992) The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci 12:4151–4172

    PubMed  CAS  Google Scholar 

  • Liu X, Wang Q, Haydar TF, Bordey A (2005) Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation on GFAP-expressing progenitors. Nat Neurosci 8(9):1179–1187

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lledo PM, Alonso A, Grubb MS (2006) Adult neurogenesis and fuctional plasticity in neuronal circuits. Nat Rev Neurosci 7:179–193

    PubMed  CAS  Google Scholar 

  • Loebrich S, Bahring R, Katsuno T, Tsukita S, Kneussel M (2006) Activated radixin is essential for GABAA receptor α5 subunit anchoring at the actin cytoskeleton. EMBO J 25:987–999

    PubMed  CAS  PubMed Central  Google Scholar 

  • Long P, Mercer A, Begum R, Stephens GJ, Sihra TS, Jovanovic JN (2009) Nerve terminal GABAA receptors activate Ca2 +/calmodulin-dependent signaling to inhibit voltage-gated Ca2 + influx and glutamate release. J Biol Chem 284:8726–8737

    PubMed  CAS  PubMed Central  Google Scholar 

  • Loturco JJ, Owens DF, Heath MJS, Davis MBE, Kriegstein AR (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15:1287–1298

    PubMed  CAS  Google Scholar 

  • Luscher B, Hauselman R, Leitgeb S, Rulicke T, Fritschy JM (1997) Neuronal subtype-specific expression directed by the GABAA-receptor δ-subunit gene promoter in transgenic mice and in cultured cells. Mol Brain Res 51:197–211

    PubMed  CAS  Google Scholar 

  • Maeda A, Katafuchi T, Oba Y, Shiokawa H, Yoshimura M (2010) Enhancement of GABAergic tonic currents by midazolam and noradrenaline in rat substantia gelatinosa neurons in vitro. Anesthesiology 113:429–437

    PubMed  CAS  Google Scholar 

  • Maguire J, Mody I (2008) GABAAR plasticity during pregnancy: relevance to postpartum depression. Neuron 59:207–213

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mann EO, Mody I (2010) Control of hippocampal gamma oscillation freIquency by tonic inhibition and excitation of interneurons. Nat Neurosci 13:205–212

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maric D, Liu QY, Maric I, Chaudry S, Chang YH, Smith SV, Sieghart W, Fritschy JM, Barker JL (2001) GABA expression dominates neuronal lineage progression in the embryonic rat neocortex and facilitates neurite outgrowth via GABAA autoreceptor/Cl channels. J Neurosci 21:2343–2360

    PubMed  CAS  Google Scholar 

  • Marowsky A, Fritschy JM, Vogt KE (2004) Functional mapping of GABAA receptor subtypes in the amygdala. Eur J Neurosci 20:1280–1289

    Google Scholar 

  • Marowsky A, Rudolph U, Fritschy JM, Arand M (2012) Tonic inhibition in principal cells of the amygdala: a central role for α3 subunit-containing GABAA receptors. J Neurosci 32:8611–8619

    PubMed  CAS  Google Scholar 

  • Mellor JR, Merlo D, Jones A, Wisden W, Randall AD (1998) Mouse cerebellar granule cell differentiation: electrical activity regulates the GABAA receptor α6 subunit gene. J Neurosci 18:2822–2833

    PubMed  CAS  Google Scholar 

  • Mihalek RM, Banerjee PK, Korpi ER, Quinlan JJ (1999) Attenuated sensitivity to neuroactive steroids in γ-aminobutyrate type A receptor δ subunit knockout mice. Proc Natl Acad Sci U S A 96:12905–12910

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mitchell EA, Gentet LJ, Dempster J, Belelli D (2007) GABAA and glycine receptor-mediated transmission in rat lamina II neurones: relevance to the analgesic actions of neuroactive steroids. J Physiol 583:1021–1040

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mortensen M, Smart TG (2006) Extrasynaptic αβ subunit GABAA receptors on rat hippocampal pyramidal neurons. J Physiol 577:841–856

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mortensen M, Ebert B, Wafford K, Smart TG (2010) Distinct activities of GABA agonists at synaptic- and extrasynaptic-type GABAA receptors. J Physiol 588:1251–1268

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mukherjee J, Kretschmannova K, Gouzer G, Maric HM, Ramsden SL, Tretter V, Harvey K, Davies PA, Triller A, Schindelin H, Moss SJ (2011) The residence time of GABAARs at inhibitory synapses is determined by direct binding of the receptor α1 subunit to gephyrin. J Neurosci 31:14677–14687

    PubMed  CAS  PubMed Central  Google Scholar 

  • Muller E, Le-Corronc H, Legendre P (2008) Extrasynaptic and postsynaptic receptors in glycinergic and GABAergic neurotransmission: a division of labor? Front Mol Neurosci 1:3

    PubMed  PubMed Central  Google Scholar 

  • Muller T, Fritschy JM, Grosche J, Pratt GD, Mohler H, Kettenmann H (1994) Developmental regulation of voltage-gated K+-channel and GABAA-receptor expression in Bergmann glial cells. J Neurosci 14:2503–2514

    PubMed  CAS  Google Scholar 

  • Nishikawa K, Kubo K, Obata H, Yanagawa Y, Saito S (2011) The influence of manipulations to alter ambient GABA concentrations on the hypnotic and immobilizing actions produced by sevoflurane, propofol, and midazolam. Neuropharmacol 61:172–180

    CAS  Google Scholar 

  • Nissant A, Pallotto M (2011) Integration and maturation of newborn neurons in the adult olfactory bulb—from synapses to function. Eur J Neurosci 33:1069–1077

    PubMed  Google Scholar 

  • Nusser Z, Somogyi P (1994) Compartmentalised distribution of immunoreactivity for GABAA receptors on the surface of neurons in relation to single or multiple sources of GABAergic synapses. J Neurochem 63(Suppl. 1):S39

    Google Scholar 

  • Nusser Z, Roberts JDB, Baude A, Richards JG, Sieghart W, Somogyi P (1995) Immunocytochemical localization of the α1 and β2/3 subunits of the GABAA receptor in relation to specific ­GABAergic synapses in the dentate gyrus. Eur J Neurosci 7:630–646

    PubMed  CAS  Google Scholar 

  • Nusser Z, Sieghart W, Stephenson FA, Somogyi P (1996a) The α6 subunit of the GABAA receptor is concentrated in both inhibitory and excitatory synapses on cerebellar granule cells. J Neurosci 16:103–114

    CAS  Google Scholar 

  • Nusser Z, Sieghart W, Benke D, Fritschy JM, Somogyi P (1996b) Differential synaptic localization of two major γ-aminobutyric acid type A receptor α subunits on hippocampal pyramidal neurons. Proc Natl Acad Sci U S A 93:11939–11944

    CAS  Google Scholar 

  • Nusser Z, Sieghart W, Somogyi P (1998) Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J Neurosci 18:1693–1703

    PubMed  CAS  Google Scholar 

  • Nusser Z, Ahmad Z, Tretter V, Fuchs K, Wisden W, Sieghart W, Somogyi P (1999) Alterations in the expression of GABAA receptor subunits in cerebellar granule cells after the disruption of the α6 subunit gene. Eur J Neurosci 11:1685–1697

    PubMed  CAS  Google Scholar 

  • Pallotto M, Nissant A, J-M F, Rudolph U, Sassoè-Pognetto M, Panzanelli P, Lledo PM (2012) Early formation of GABAergic synapses governs the development of adult-born neurons in the olfactory bulb. J Neurosci 32: 9103–9115

    PubMed  CAS  Google Scholar 

  • Panzanelli P, Homanics GE, Ottersen OP, Fritschy JM, Sassoè-Pognetto M (2004) Pre- and postsynaptic GABAA receptors at reciprocal dendrodendritic synapses in the olfactory bulb. Eur J Neurosci 20:2945–2952

    PubMed  Google Scholar 

  • Panzanelli P, Gunn BG, Schlatter MC, Benke D, Tyagarajan SK, Scheiffele P, Belelli D, Lambert JJ, Rudolph U, Fritschy JM (2011) Distinct mechanisms regulate GABAA receptor and gephyrin clustering at perisomatic and axo-axonic synapses on CA1 pyramidal cells. J Physiol 589:4959–4980

    PubMed  CAS  PubMed Central  Google Scholar 

  • Patrizi A, Scelfo B, Viltono L, Briatore F, Fukaya M, Watanabe M, Strata P, Varoqueaux F, Brose N, Fritschy JM, Sassoè-Pognetto M (2008) Synapse formation and clustering of neuroligin-2 in the absence of GABAA receptors. Proc Natl Acad Sci U S A 105:13151–13156

    PubMed  CAS  PubMed Central  Google Scholar 

  • Paul J, Zeilhofer HU, Fritschy JM (2012) Selective distribution of GABAA receptor subtypes in mouse spinal dorsal horn neurons and primary afferents. J Comp Neurol 520(17):3895–3911. doi:10.1002/cne.23129

    PubMed  CAS  Google Scholar 

  • Paysan J, Bolz J, Mohler H, Fritschy JM (1994) The GABAA-receptor alpha1-subunit: an early marker of cortical parcellation. J Comp Neurol 350:133–149

    PubMed  CAS  Google Scholar 

  • Paysan J, Kossel A, Bolz J, Fritschy JM (1997) Area-specific regulation of γ-aminobutyric acid A receptor subtypes by thalamic afferents in developing rat neocortex. Proc Natl Acad Sci USA 94:6995–7000

    PubMed  CAS  PubMed Central  Google Scholar 

  • Peden DR, Petitjean CM, Herd MB, Durakoglugil M, Rosahl TW, Wafford K, Homanics GE, Belelli D, Fritschy JM, Lambert JJ (2008) Developmental maturation of synaptic and extrasynaptic GABAA receptors in mouse thalamic ventrobasal neurones. J Physiol 586:965–987

    PubMed  CAS  PubMed Central  Google Scholar 

  • Peng Z, Hauer B, Mihalek RM, Homanics GE, Sieghart W, Olsen RW, Houser CR (2002) GABAA receptor changes in δ subunit-deficient mice: altered expression of α4 and γ2 subunits in the forebrain. J Comp Neurol 446:179–197

    PubMed  CAS  Google Scholar 

  • Peng ZC, Huang CS, Stell BM, Mody I, Houser CR (2004) Altered expression of the d subunit of the GABAA receptor in a mouse model of temporal lobe epilepsy. J Neurosci 24:8629–8639

    PubMed  CAS  Google Scholar 

  • Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000) GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101:815–850

    PubMed  CAS  Google Scholar 

  • Porcello DM, Huntsman MM, Mihalek RM, Homanics GE, Huguenard JR (2003) Intact synaptic GABAergic inhibition and altered neurosteroid modulation of thalamic relay neurons in mice lacking δ subunit. J Neurophysiol 89:1378–1386

    PubMed  CAS  Google Scholar 

  • Poulopoulos A, Aramuni G, Meyer G, Soykan T, Hoon M, Papadopoulos T, Zhang M, Paarmann I, Fuchs C, Harvey K, Jedlicka P, Schwarzacher SW, Betz H, Harvey RJ, Brose N, Zhang W, Varoqueaux F (2009) Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin. Neuron 63:628–642

    PubMed  CAS  Google Scholar 

  • Poulter MO, Barker JL, O’Carroll AM, Lolait SJ, Mahan LC (1992) Differential and transient expression of GABAA receptor alpha-subunit mRNAs in the developing rat CNS. J Neurosci 12:2888–2900

    PubMed  CAS  Google Scholar 

  • Prenosil GA, Schneider Gasser EM, Rudolph U, Keist R, Fritschy JM, Vogt KE (2006) Specific subtypes of GABAA receptors mediate phasic and tonic forms of inhibition in hippocampal pyramidal neurons. J Neurophysiol 96:846–857

    PubMed  CAS  Google Scholar 

  • Rudolph U, Crestani F, Benke D, Brünig I, Benson J, Fritschy JM, Martin JR, Bluethmann H, Mohler H (1999) Benzodiazepine actions mediated by specific γ-aminobutyric acidA receptor subtypes. Nature 401:796–800

    PubMed  CAS  Google Scholar 

  • Santhakumar V, Jones RT, Mody I (2010) Developmental regulation and neuroprotective effects of striatal tonic GABAA currents. Neuroscience 167:644–655

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sassoè-Pognetto M, Panzanelli P, Sieghart W, Fritschy JM (2000) Co-localization of multiple ­GABAA receptor subtypes with gephyrin at postsynaptic sites. J Comp Neurol 420:481–498

    PubMed  Google Scholar 

  • Schlicker K, McCall MA, Schmidt M (2009) GABAC receptor-mediated inhibition is altered but not eliminated in the superior colliculus of GABACρ1 knockout mice. J Neurophysiol 101:2974–2983

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schneider Gasser EM, Duveau V, Prenosil GA, Fritschy JM (2007) Reorganization of GABA- ergic circuits maintains GABAA receptor-mediated transmission onto CA1 interneurons in α1ℜsubunit-null mice. Eur J Neurosci 25:3287–3304

    PubMed  Google Scholar 

  • Schwarzer C, Berresheim U, Pirker S, Wieselthaler A, Fuchs K, Sieghart W, Sperk G (2001) Distribution of the major γ-aminobutyric acid A receptor subunits in the basal ganglia and associated limbic brain areas of the adult rat. J Comp Neurol 433:526–549

    PubMed  CAS  Google Scholar 

  • Schweizer C, Balsiger S, Bluethmann H, Mansuy IM, Fritschy JM, Mohler H, Luscher B (2003) The γ2 subunit of GABAA receptors is required for maintenance of receptors at mature synapses. Mol Cell Neurosci 24:442–450

    PubMed  CAS  Google Scholar 

  • Serafini R, Ma W, Maric D, Maric I, Lahjouji F, Sieghart W, Barker JL (1998a) Initially expressed early rat embryonic GABAA receptor Cl ion channels exhibit heterogeneous channel properties. Eur J Neurosci 10:1771–1783

    CAS  Google Scholar 

  • Serafini R, Maric D, Maric I, Ma W, Fritschy JM, Zhang L, Barker JL (1998b) Dominant GABAA receptor/Cl- channel kinetics correlate with the relative expressions of α2, α3, α5 and β3 subunits in embryonic rat neurons. Eur J Neurosci 10:334–349

    CAS  Google Scholar 

  • Serwanski DR, Miralles CP, Christie SB, Mehta AK, Li X, De Blas AL (2006) Synaptic and nonsynaptic localization of GABAA receptors containing the α5 subunit in the rat brain. J Comp Neurol 499:458–470

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shrivastava AN, Triller A, Sieghart W, Sarto-Jackson I (2011) Regulation of GABAA receptor dynamics by interaction with purinergic P2X(2) receptors. J Biol Chem 286:14455–14468

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sieghart W, Sperk G (2002) Subunit composition, distribution and function of GABAA receptor subtypes. Curr Top Med Chem 2:795–816

    PubMed  CAS  Google Scholar 

  • Smith SS, Shen H, Gong QH, Zhou X (2007) Neurosteroid regulation of GABAA receptors: focus on the α4 and subunits. Pharmacol Ther 116:58–76

    PubMed  CAS  PubMed Central  Google Scholar 

  • Smith SS, Aoki C, Shen H (2009) Puberty, steroids and GABAA receptor plasticity. Psychoneuroendocrinology 34:S91–S103

    Google Scholar 

  • Soltesz I, Roberts JDB, Takagi H, Richards JG, Mohler H, Somogyi P (1990) Synaptic and non-synaptic localization of benzodiazepine/GABAA receptors/Cl channel complex using monoclonal antibodies in the dorsal lateral geniculate nucleus of the cat. Eur J Neurosci 2:414–429

    PubMed  CAS  Google Scholar 

  • Somogyi P, Takagi H, Richards JG, Mohler H (1989) Subcellular localization of benzodiazepine/GABAA receptors in the cerebellum of rat, cat, and monkey using monoclonal antibodies. J Neurosci 9:2197–2209

    PubMed  CAS  Google Scholar 

  • Somogyi P, Fritschy JM, Benke D, Roberts JDB, Sieghart W (1996) The γ2 subunit of the GABAA-receptor is concentrated in synaptic junctions containing the α1 and β2/3 subunits in hippocampus, cerebellum and globus pallidus. Neuropharmacology 35:1425–1444

    PubMed  CAS  Google Scholar 

  • Sun C, Sieghart W, Kapur J (2004) Distribution of α1, α4, γ2, and δ subunits of GABAA receptors in hippocampal granule cells. Brain Res 1029:207–216.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sur C, Farrar SJ, Kerby J, Whiting PJ, Atack JR, McKernan RM (1999) Preferential coassembly of α4 and δ subunits of the γ-aminobutyric acidA receptor in rat thalamus. Mol Pharmacol 56:110–115

    PubMed  CAS  Google Scholar 

  • Suryanarayanan A, Liang J, Meyer EM, Lindemeyer AK, Chandra D, Homanics GE, Sieghart W, Olsen RW, Spigelman I (2011) Subunit compensation and plasticity of synaptic GABAA receptors induced by ethanol in α4 subunit knockout mice. Front Neurosci 5:110

    PubMed  CAS  PubMed Central  Google Scholar 

  • Thomas P, Mortensen M, Hosie AM, Smart TG (2005) Dynamic mobility of functional GABAA receptors at inhibitory synapses. Nat Neurosci 8:889–897

    PubMed  CAS  Google Scholar 

  • Thomson AM, Jovanovic JN (2010) Mechanisms underlying synapse-specific clustering of ­GABAA receptors. Eur J Neurosci 31:2193–2203

    PubMed  Google Scholar 

  • Tia S, Wang JF, Kotchabhakdi N, Vicini S (1996) Developmental changes of inhibitory synaptic currents in cerebellar granule neurons—role of GABAA receptor α6 subunit. J Neurosci 16:3630–3640

    PubMed  CAS  Google Scholar 

  • Tretter V, Hauer B, Nusser Z, Mihalek RM, Hoger H, Homanics GE, Somogyi P, Sieghart W (2001) Targeted disruption of the GABAA receptor δ subunit gene leads to an up-regulation of γ2 subunit-containing receptors in cerebellar granule cells. J Biol Chem 276:10532–10538

    PubMed  CAS  Google Scholar 

  • Tretter V, Jacob TC, Mukherjee J, Fritschy JM, Pangalos MN, Moss SJ (2008) The clustering of GABAA receptor subtypes at inhibitory synapses is facilitated via the direct binding of receptor α2 subunits to gephyrin. J Neurosci 28:1356–1365

    PubMed  CAS  Google Scholar 

  • Tretter V, Kerschner B, Milenkovic I, Ramsden SL, Ramerstorfer J, Saiepour L, Maric HM, Moss SJ, Schindelin H, Harvey RJ, Sieghart W, Harvey K (2011) Molecular basis of the GABAA receptor α3 subunit interaction with gephyrin. J Biol Chem 286:42105–42114

    PubMed  PubMed Central  Google Scholar 

  • Trigo FF, Marty A, Stell BM (2008) Axonal GABAA receptors. Eur J Neurosci 28:841–848

    PubMed  Google Scholar 

  • Varecka L, Wu CH, Rotter A, Frostholm A (1994) GABAA-benzodiazepine receptor α6 subunit mRNA in granule cells of the cerebellar cortex and cochlear nuclei: expression in developing and mutant mice. J Comp Neurol 339:341–352

    PubMed  CAS  Google Scholar 

  • Vargas-Caballero M, Martin LJ, Salter MW, Orser BA, Paulsen O (2010) α5 Subunit-containing GABAA receptors mediate a slowly decaying inhibitory synaptic current in CA1 pyramidal neurons following Schaffer collateral activation. Neuropharmacology 58:668–675

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wafford KA, van Niel MB, Ma QP, Horridge E, Herd MB, Peden DR, Belelli D, Lambert JJ (2009) Novel compounds selectively enhance delta subunit containing GABAA receptors and increase tonic currents in thalamus. Neuropharmacology 56:182–189

    PubMed  CAS  Google Scholar 

  • Wang DD, Krueger DD, Bordey A (2003) GABA depolarizes neuronal progenitors of the postnatal subventricular zone via GABAA receptor activation. J Physiol 550:785–800

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wei ZW, Zhang N, Peng ZC, Houser CR, Mody I (2003) Perisynaptic localization of δ subunit-containing GABAA receptors and their activation by GABA spillover in the mouse dentate gyrus. J Neurosci 23:10650–10661

    PubMed  CAS  Google Scholar 

  • Wieland HA, Luddens H, Seeburg PH (1992) A single histidine in GABAA receptors is essential for benzodiazepine agonist binding. J Biol Chem 267:1426–1429

    PubMed  CAS  Google Scholar 

  • Wu X, Wu Z, Ning G, Guo Y, Ali R, Macdonald R, De Blas A, Luscher B, Chen G (2012) γ-Aminobutyric acid type A (GABAA) receptor α subunits play a direct role in synaptic versus extrasynaptic targeting. J Biol Chem 287(33):27417–27430

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xu G, Broadbelt KG, Haynes RL, Folkerth RD, Borenstein NS, Belliveau RA, Trachtenberg FL, Volpe JJ, Kinney HC (2011) Late development of the GABAergic system in the human cerebral cortex and white matter. J Neurophatol Exp Neurol 70:841–858

    CAS  Google Scholar 

  • Zarnowska ED, Keist R, Rudolph U, Pearce RA (2009) GABAA receptor α5 subunits contribute to GABA, slow synaptic inhibition in mouse hippocampus. J Neurophysiol 101:1179–1191

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zheng F, Adelsberger H, Müller MR, Fritschy JM, Werner S, Alzheimer C (2009) Activin tunes GABAergic neurotransmission and modulates anxiety-like behavior. Mol Psychiatry 14:332–346

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Fritschy .

Editor information

Editors and Affiliations

Conclusions

Conclusions

This brief overview highlights how most of the knowledge available to date on extrasynaptic GABAAR is derived from pharmacological and functional studies, whereas much remains to be done to elucidate their precise cellular and subcellular localization, their contribution to CNS development, and the mechanisms underlying their regulation under physiological and pathophysiological conditions.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fritschy, JM., Panzanelli, P. (2014). Extrasynaptic GABAA Receptors: Subunit Composition, Distribution, and Regulation. In: Errington, A., Di Giovanni, G., Crunelli, V. (eds) Extrasynaptic GABAA Receptors. The Receptors, vol 27. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1426-5_2

Download citation

Publish with us

Policies and ethics