Skip to main content

GABAergic Control of the Hypothalamic–Pituitary–Adrenal (HPA) Axis: Role of Extrasynaptic GABAA Receptors

  • Chapter
  • First Online:
Book cover Extrasynaptic GABAA Receptors

Part of the book series: The Receptors ((REC,volume 27))

  • 1021 Accesses

Abstract

The body’s physiological response to stress is mediated by the hypothalamic–pituitary–adrenal (HPA) axis, the activity of which is tightly regulated by GABAergic inhibition. Parvocellular neurosecretory neurons located in the paraventricular nucleus (PVN) of the hypothalamus which release corticotropin-releasing hormone (CRH) govern the output of the HPA axis. CRH neurons are innervated by a high density of GABAergic terminals and are regulated by robust GABAergic inhibition. Furthermore, numerous other brain regions, including the hippocampus, prefrontal cortex, bed nucleus of the stria terminalis (BNST), and amygdala, exert control over the HPA axis via indirect GABAergic connections onto CRH neurons. CRH neurons express numerous γ-aminobutyric-acid type-A receptor (GABAAR) subunits and are regulated by both phasic and tonic GABAergic inhibition, mediated by synaptic and extrasynaptic GABAARs, respectively. The GABAergic control of the HPA axis is highly plastic and is altered by both acute and chronic stress. Here, I review the role of extrasynaptic GABAARs in the regulation of the HPA axis and the physiological response to stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta GB, Otero Losada ME, Rubio MC (1992) Changes in GABAergic function after chronic chemical stress. Gen Pharmacol 23:241–244

    PubMed  CAS  Google Scholar 

  • Agis-Balboa RC, Pinna G, Zhubi A, Maloku E, Veldic M, Costa E, Guidotti A (2006) Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis. Proc Natl Acad Sci U S A 103:14602–14607

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ahima RS, Harlan RE (1990) Charting of type II glucocorticoid receptor-like immunoreactivity in the rat central nervous system. Neuroscience 39:579–604

    PubMed  CAS  Google Scholar 

  • Akinci MK, Johnston GA (1993) Sex differences in acute swim stress-induced changes in the binding of MK-801 to the NMDA subclass of glutamate receptors in mouse forebrain. J Neurochem 61:2290–2293

    PubMed  CAS  Google Scholar 

  • Alon T, Zhou L, Perez CA, Garfield AS, Friedman JM, Heisler LK (2009) Transgenic mice expressing green fluorescent protein under the control of the corticotropin-releasing hormone promoter. Endocrinology 150:5626–5632

    PubMed  CAS  PubMed Central  Google Scholar 

  • Anacker C, Pariante CM (2012) Can adult neurogenesis buffer stress responses and depressive behaviour? Mol Psychiatry 17:9–10

    PubMed  CAS  Google Scholar 

  • Anacker C, Zunszain PA, Carvalho LA, Pariante CM (2011a) The glucocorticoid receptor: pivot of depression and of antidepressant treatment? Psychoneuroendocrinology 36:415–425

    CAS  Google Scholar 

  • Anacker C, Zunszain PA, Cattaneo A, Carvalho LA, Garabedian MJ, Thuret S, Price J, Pariante CM (2011b) Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Mol Psychiatry 16:738–750

    CAS  Google Scholar 

  • Arnsten AF (2009) Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci 10:410–422

    PubMed  CAS  PubMed Central  Google Scholar 

  • Aronsson M, Fuxe K, Dong Y, Agnati LF, Okret S, Gustafsson JA (1988) Localization of glucocorticoid receptor mRNA in the male rat brain by in situ hybridization. Proc Natl Acad Sci U S A 85:9331–9335

    PubMed  CAS  PubMed Central  Google Scholar 

  • Arriza JL, Simerly RB, Swanson LW, Evans RM (1988) The neuronal mineralocorticoid receptor as a mediator of glucocorticoid response. Neuron 1:887–900

    PubMed  CAS  Google Scholar 

  • Barbaccia ML, Concas A, Roscetti G, Bolacchi F, Mostallino MC, Purdy RH, Biggio G (1996a) Stress-induced increase in brain neuroactive steroids: antagonism by abecarnil. Pharmacol Biochem Behav 54:205–210

    CAS  Google Scholar 

  • Barbaccia ML, Roscetti G, Trabucchi M, Mostallino MC, Concas A, Purdy RH, Biggio G (1996b) Time-dependent changes in rat brain neuroactive steroid concentrations and GABA(A) receptor function after acute stress. Neuroendocrinology 63:166–172

    CAS  Google Scholar 

  • Belelli D, Casula A, Ling A, Lambert JJ (2002) The influence of subunit composition on the interaction of neurosteroids with GABA(A) receptors. Neuropharmacology 43:651–661

    PubMed  CAS  Google Scholar 

  • Bitran D, Shiekh M, Mcleod M (1995) Anxiolytic effect of progesterone is mediated by the neurosteroid allopregnanolone at brain gaba(A) receptors. J Neuroendocrinol 7:171–177

    PubMed  CAS  Google Scholar 

  • Boudaba C, Szabo K, Tasker JG (1996) Physiological mapping of local inhibitory inputs to the hypothalamic paraventricular nucleus. J Neurosci 16:7151–7160

    PubMed  CAS  Google Scholar 

  • Bowers G, Cullinan WE, Herman JP (1998) Region-specific regulation of glutamic acid decarboxylase (GAD) mRNA expression in central stress circuits. J Neurosci 18:5938–5947

    PubMed  CAS  Google Scholar 

  • Braga MF, Aroniadou-Anderjaska V, Manion ST, Hough CJ, Li H (2003) Stress impairs [alpha]1A adrenoceptor-mediated noradrenergic facilitation of GABAergic transmission in the basolateral amygdala. Neuropsychopharmacology 29:45–58

    Google Scholar 

  • Brunton PJ, Russell JA (2008) Attenuated hypothalamo-pituitary-adrenal axis responses to immune challenge during pregnancy: the neurosteroid opioid connection. J Physiol 586:369–375

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brunton PJ, Russell JA (2011) Allopregnanolone and suppressed hypothalamo-pituitary-adrenal axis stress responses in late pregnancy in the rat. Stress 14:6–12

    PubMed  CAS  Google Scholar 

  • Brunton PJ, Russell JA, Douglas AJ (2008) Adaptive responses of the maternal hypothalamic-pituitary-adrenal axis during pregnancy and lactation. J Neuroendocrinol 20:764–776

    PubMed  CAS  Google Scholar 

  • Brunton PJ, McKay AJ, Ochedalski T, Piastowska A, Rebas E, Lachowicz A, Russell JA (2009) Central opioid inhibition of neuroendocrine stress responses in pregnancy in the rat is induced by the neurosteroid allopregnanolone. J Neurosci 29:6449–6460

    PubMed  CAS  Google Scholar 

  • Buckingham JC (1979) Corticotrophin releasing factor. Pharmacol Rev 31:253–275

    PubMed  CAS  Google Scholar 

  • Budziszewska B, Zajac A, Basta-Kaim A, Leskiewicz M, Steczkowska M, Lason W, Kacinski M (2010) Effects of neurosteroids on the human corticotropin-releasing hormone gene. Pharmacol Rep 62:1030–1040

    PubMed  CAS  Google Scholar 

  • Campeau S, Watson SJ (1997) Neuroendocrine and behavioral responses and brain pattern of c-fos induction associated with audiogenic stress. J Neuroendocrinol 9:577–588

    PubMed  CAS  Google Scholar 

  • Charalampopoulos I, Remboutsika E, Margioris AN, Gravanis A (2008) Neurosteroids as modulators of neurogenesis and neuronal survival. Trends Endocrinol Metab 19:300–307

    PubMed  CAS  Google Scholar 

  • Choi DC, Furay AR, Evanson NK, Ostrander MM, Ulrich-Lai YM, Herman JP (2007) Bed nucleus of the stria terminalis subregions differentially regulate hypothalamic-pituitary-adrenal axis activity: implications for the integration of limbic inputs. J Neurosci 27:2025–2034

    PubMed  CAS  Google Scholar 

  • Christiansen AM, Herman JP, Ulrich-Lai YM (2011) Regulatory interactions of stress and reward on rat forebrain opioidergic and GABAergic circuitry. Stress 14:205–215

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cohen S J-D (2007) PSychological stress and disease. JAMA 298:1685–1687

    PubMed  CAS  Google Scholar 

  • Coulter DA, Carlson GC (2007) Functional regulation of the dentate gyrus by GABA-mediated inhibition. Prog Brain Res 163:235–243

    PubMed  CAS  Google Scholar 

  • Crawley JN, Glowa JR, Majewska MD, Paul SM (1986) Anxiolytic activity of an endogenous adrenal steroid. Brain Res 398:382–385

    PubMed  CAS  Google Scholar 

  • Cullinan WE (2000) GABA(A) receptor subunit expression within hypophysiotropic CRH neurons: a dual hybridization histochemical study. J Comp Neurol 419:344–351

    PubMed  CAS  Google Scholar 

  • Cullinan WE, Wolfe TJ (2000) Chronic stress regulates levels of mRNA transcripts encoding beta subunits of the GABA(A) receptor in the rat stress axis. Brain Res 887:118–124

    PubMed  CAS  Google Scholar 

  • Cullinan WE, Herman JP, Watson SJ (1993) Ventral subicular interaction with the hypothalamic paraventricular nucleus: evidence for a relay in the bed nucleus of the stria terminalis. J Comp Neurol 332:1–20

    PubMed  CAS  Google Scholar 

  • Cullinan WE, Ziegler DR, Herman JP (2008) Functional role of local GABAergic influences on the HPA axis. Brain Struct Funct 213:63–72

    PubMed  CAS  Google Scholar 

  • Czeh B, Simon M, van der Hart MG, Schmelting B, Hesselink MB, Fuchs E (2005) Chronic stress decreases the number of parvalbumin-immunoreactive interneurons in the hippocampus: prevention by treatment with a substance P receptor (NK1) antagonist. Neuropsychopharmacology 30:67–79

    PubMed  CAS  Google Scholar 

  • Dallman MF, Akana SF, Jacobson L, Levin N, Cascio CS, Shinsako J (1987) Characterization of corticosterone feedback regulation of ACTH secretion. Ann N Y Acad Sci 512:402–414

    PubMed  CAS  Google Scholar 

  • de Groote L, Linthorst AC (2007) Exposure to novelty and forced swimming evoke stressor-dependent changes in extracellular GABA in the rat hippocampus. Neuroscience 148:794–805

    PubMed  CAS  Google Scholar 

  • de Kloet ER, Vreugdenhil E, Oitzl MS, Joels M (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19:269–301

    PubMed  CAS  Google Scholar 

  • De Souza EB, Goeders NE, Kuhar MJ (1986) Benzodiazepine receptors in rat brain are altered by adrenalectomy. Brain Res 381:176–181

    PubMed  CAS  Google Scholar 

  • de Weerth C, Buitelaar JK (2005) Cortisol awakening response in pregnant women. Psychoneuroendocrinology 30:902–907

    PubMed  CAS  Google Scholar 

  • Decavel C, van den Pol AN (1990) GABA: a dominant neurotransmitter in the hypothalamus. J Comp Neurol 302:1019–1037

    PubMed  CAS  Google Scholar 

  • Decavel C, van den Pol AN (1992) Converging GABA- and glutamate-immunoreactive axons make synaptic contact with identified hypothalamic neurosecretory neurons. J Comp Neurol 316:104–116

    PubMed  CAS  Google Scholar 

  • Do Rego JL, Seong JY, Burel D, Leprince J, Luu-The V, Tsutsui K, Tonon MC, Pelletier G, Vaudry H (2009) Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front Neuroendocrinol 30:259–301

    PubMed  CAS  Google Scholar 

  • Dong E, Matsumoto K, Uzunova V, Sugaya I, Takahata H, Nomura H, Watanabe H, Costa E, Guidotti A (2001) Brain 5alpha-dihydroprogesterone and allopregnanolone synthesis in a mouse model of protracted social isolation. Proc Natl Acad Sci U S A 98:2849–2854

    PubMed  CAS  PubMed Central  Google Scholar 

  • Duveau V, Laustela S, Barth L, Gianolini F, Vogt KE, Keist R, Chandra D, Homanics GE, Rudolph U, Fritschy JM (2011) Spatiotemporal specificity of GABAA receptor-mediated regulation of adult hippocampal neurogenesis. Eur J Neurosci 34:362–373

    PubMed  PubMed Central  Google Scholar 

  • Earnheart JC, Schweizer C, Crestani F, Iwasato T, Itohara S, Mohler H, Luscher B (2007) GABAergic control of adult hippocampal neurogenesis in relation to behavior indicative of trait anxiety and depression states. J Neurosci 27:3845–3854

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eechaute WP, Dhooge WS, Gao CQ, Calders P, Rubens R, Weyne J, Kaufman JM (1999) Progesterone-transforming enzyme activity in the hypothalamus of the male rat. J Steroid Biochem Mol Biol 70:159–167

    PubMed  CAS  Google Scholar 

  • Egli RE, Winder DG (2003) Dorsal and ventral distribution of excitable and synaptic properties of neurons of the bed nucleus of the stria terminalis. J Neurophysiol 90:405–414

    PubMed  Google Scholar 

  • Fenelon VS, Herbison AE (1995) Characterisation of GABAA receptor gamma subunit expression by magnocellular neurones in rat hypothalamus. Brain Res Mol Brain Res 34:45–56

    PubMed  CAS  Google Scholar 

  • Fritschy JM, Mohler H (1995) GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol 359:154–194

    PubMed  CAS  Google Scholar 

  • Finlay JM, Zigmond MJ, Abercrombie ED (1995) Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: Effects of diazepam. Neuroscience 64(3):619–628

    PubMed  CAS  Google Scholar 

  • Gao CQ, Dhooge WS, Kaufman JM, Weyne JJ, Eechaute WP (2002) Hypothalamic 5 alpha-reductase and 3 alpha-oxidoreductase activity in the male rat. J Steroid Biochem Mol Biol 80:91–98

    PubMed  CAS  Google Scholar 

  • Glykys J, Mann EO, Mody I (2008) Which GABA(A) receptor subunits are necessary for tonic inhibition in the hippocampus? J Neurosci 28:1421–1426

    PubMed  CAS  Google Scholar 

  • Goeders NE, De Souza EB, Kuhar MJ (1986) Benzodiazepine receptor GABA ratios: regional differences in rat brain and modulation by adrenalectomy. Eur J Pharmacol 129:363–366

    PubMed  CAS  Google Scholar 

  • Gould E, Mcewen BS, Tanapat P, Galea LA, Fuchs E (1997) Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci 17:2492–2498

    PubMed  CAS  Google Scholar 

  • Graziano P (2011) Neurosteroid biosynthesis upregulation: a novel promising therapy for anxiety disorders and PTSD, Anxiety Disorders, Prof. Vladimir Kalinin (Ed.), ISBN: 978-953-307-592-1, In Tech, DOI: 10.5772/18472. Available from: http://www.intechopen.com/books/anxiety-disorders/neurosteroid-biosynthesis-upregulation-a-novel promising-therapy-for-anxiety-disorders-and-ptsd

  • Gruen RJ, Wenberg K, Elahi R, Friedhoff AJ (1995) Alterations in GABAA receptor binding in the prefrontal cortex following exposure to chronic stress. Brain Res 684:112–114

    PubMed  CAS  Google Scholar 

  • Gunn BG, Brown AR, Lambert JJ, Belelli D (2011) Neurosteroids and GABA(A) receptor interactions: a focus on stress. Front Neurosci 5:131

    PubMed  PubMed Central  Google Scholar 

  • Hasler G, van der Veen JW, Grillon C, Drevets WC, Shen J (2010) Effect of acute psychological stress on prefrontal GABA concentration determined by proton magnetic resonance spectroscopy. Am J Psychiatry 167:1226–1231

    PubMed  PubMed Central  Google Scholar 

  • Herman JP, Cullinan WE (1997) Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 20:78–84

    PubMed  CAS  Google Scholar 

  • Herman JP, Patel PD, Akil H, Watson SJ (1989) Localization and regulation of glucocorticoid and mineralocorticoid receptor messenger RNAs in the hippocampal formation of the rat. Mol Endocrinol 3:1886–1894

    PubMed  CAS  Google Scholar 

  • Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, Cullinan WE (2003) Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol 24:151–180

    PubMed  CAS  Google Scholar 

  • Herman JP, Mueller NK, Figueiredo H (2004) Role of GABA and glutamate circuitry in hypothalamo-pituitary-adrenocortical stress integration. Ann N Y Acad Sci 1018:35–45

    PubMed  CAS  Google Scholar 

  • Herman JP, Ostrander MM, Mueller NK, Figueiredo H (2005) Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry 29:1201–1213

    PubMed  CAS  Google Scholar 

  • Hewitt SA, Wamsteeker JI, Kurz EU, Bains JS (2009) Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis. Nat Neurosci 12:438–443

    PubMed  CAS  Google Scholar 

  • Hill MN, Tasker JG (2012) Endocannabinoid signaling, glucocorticoid-mediated negative feedback, and regulation of the hypothalamic-pituitary-adrenal axis. Neuroscience 204:5–16

    PubMed  CAS  PubMed Central  Google Scholar 

  • Holm MM, Nieto-Gonzalez JL, Vardya I, Henningsen K, Jayatissa MN, Wiborg O, Jensen K (2011) Hippocampal GABAergic dysfunction in a rat chronic mild stress model of depression. Hippocampus 21:422–433

    PubMed  CAS  Google Scholar 

  • Hosie AM, Wilkins ME, da Silva HM, Smart TG (2006) Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444:486–489

    PubMed  CAS  Google Scholar 

  • Hosie AM, Clarke L, da SH, Smart TG (2009) Conserved site for neurosteroid modulation of GABA A receptors. Neuropharmacology 56:149–154

    Google Scholar 

  • Houston CM, McGee TP, Mackenzie G, Troyano-Cuturi K, Rodriguez PM, Kutsarova E, Diamanti E, Hosie AM, Franks NP, Brickley SG (2012) Are extrasynaptic GABAA receptors important targets for sedative/hypnotic drugs? J Neurosci 32:3887–3897

    PubMed  CAS  Google Scholar 

  • Hu W, Zhang M, Czeh B, Flugge G, Zhang W (2010) Stress impairs GABAergic network function in the hippocampus by activating nongenomic glucocorticoid receptors and affecting the integrity of the parvalbumin-expressing neuronal network. Neuropsychopharmacology 35:1693–1707

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jacobson L (2005) Hypothalamic-pituitary-adrenocortical axis regulation. Endocrinol Metab Clin North Am 34:271–292, vii

    PubMed  CAS  Google Scholar 

  • Jacobson L, Sapolsky R (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr Rev 12:118–134

    PubMed  CAS  Google Scholar 

  • Jakab RL, Horvath TL, Leranth C, Harada N, Naftolin F (1993) Aromatase immunoreactivity in the rat brain: gonadectomy-sensitive hypothalamic neurons and an unresponsive “limbic ring” of the lateral septum-bed nucleus-amygdala complex. J Steroid Biochem Mol Biol 44:481–498

    PubMed  CAS  Google Scholar 

  • Jankord R, Herman JP (2008) Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann N Y Acad Sci 1148:64–73

    PubMed  PubMed Central  Google Scholar 

  • Joels M, Karst H, Alfarez D, Heine VM, Qin Y, van RE, Verkuyl M, Lucassen PJ, Krugers HJ (2004) Effects of chronic stress on structure and cell function in rat hippocampus and hypothalamus. Stress 7:221–231

    Google Scholar 

  • Jones A, Korpi ER, McKernan RM, Pelz R, Nusser Z, Makela R, Mellor JR, Pollard S, Bahn S, Stephenson FA, Randall AD, Sieghart W, Somogyi P, Smith AJ, Wisden W (1997) Ligand-gated ion channel subunit partnerships: GABAA receptor alpha6 subunit gene inactivation inhibits delta subunit expression. J Neurosci 17:1350–1362

    PubMed  CAS  Google Scholar 

  • Kammerer M, Adams D, Castelberg BV, Glover V (2002) Pregnant women become insensitive to cold stress. BMC Pregnancy Childbirth 2:8

    PubMed  PubMed Central  Google Scholar 

  • Kammerer M, Taylor A, Glover V (2006) The HPA axis and perinatal depression: a hypothesis. Arch Womens Ment Health 9:187–196

    PubMed  CAS  Google Scholar 

  • Larsen PJ, Seier V, Fink-Jensen A, Holst JJ, Warberg J, Vrang N (2003) Cocaine- and amphetamine-regulated transcript is present in hypothalamic neuroendocrine neurones and is released to the hypothalamic-pituitary portal circuit. J Neuroendocrinol 15:219–226

    PubMed  CAS  Google Scholar 

  • Lee HH, Walker JA, Williams JR, Goodier RJ, Payne JA, Moss SJ (2007) Direct protein kinase C-dependent phosphorylation regulates the cell surface stability and activity of the potassium chloride cotransporter KCC2. J Biol Chem 282:29777–29784

    PubMed  CAS  Google Scholar 

  • Lee HH, Deeb TZ, Walker JA, Davies PA, Moss SJ (2011) NMDA receptor activity downregulates KCC2 resulting in depolarizing GABA(A) receptor-mediated currents. Nat Neurosci 14:736–743

    PubMed  CAS  PubMed Central  Google Scholar 

  • Levy BH, Tasker JG (2012) Synaptic regulation of the hypothalamic-pituitary-adrenal axis and its modulation by glucocorticoids and stress. Front Cell Neurosci 6:24

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li X, Bertics PJ, Karavolas HJ (1997) Regional distribution of cytosolic and particulate 5alpha-dihydroprogesterone 3alpha-hydroxysteroid oxidoreductases in female rat brain. J Steroid Biochem Mol Biol 60:311–318

    PubMed  CAS  Google Scholar 

  • Liu GX, Cai GQ, Cai YQ, Sheng ZJ, Jiang J, Mei Z, Wang ZG, Guo L, Fei J (2007) Reduced anxiety and depression-like behaviors in mice lacking GABA transporter subtype 1. Neuropsychopharmacol 32:1531–1539

    CAS  Google Scholar 

  • Lloyd RB, Nemeroff CB (2011) The role of corticotropin-releasing hormone in the pathophysiology of depression: therapeutic implications. Curr Top Med Chem 11:609–617

    PubMed  CAS  Google Scholar 

  • Lopez JF, Akil H, Watson SJ (1999) Neural circuits mediating stress. Biol Psychiatry 46:1461–1471

    PubMed  CAS  Google Scholar 

  • Luther JA, Daftary SS, Boudaba C, Gould GC, Halmos KC, Tasker JG (2002) Neurosecretory and non-neurosecretory parvocellular neurones of the hypothalamic paraventricular nucleus express distinct electrophysiological properties. J Neuroendocrinol 14:929–932

    PubMed  CAS  Google Scholar 

  • Maguire J, Mody I (2007) Neurosteroid synthesis-mediated regulation of GABA(A) receptors: relevance to the ovarian cycle and stress. J Neurosci 27:2155–2162

    PubMed  CAS  Google Scholar 

  • Maguire J, Mody I (2009) Steroid hormone fluctuations and GABA(A)R plasticity. Psychoneuroendocrinology 34(Suppl 1):S84–S90

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mahan AL, Ressler KJ (2012) Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci 35(1):24–35

    PubMed  CAS  PubMed Central  Google Scholar 

  • Majewska MD, Bisserbe JC, Eskay RL (1985) Glucocorticoids are modulators of GABAA receptors in brain. Brain Res 339:178–182

    PubMed  CAS  Google Scholar 

  • Maldonado-Aviles JG, Curley AA, Hashimoto T, Morrow AL, Ramsey AJ, O’Donnell P, Volk DW, Lewis DA (2009) Altered markers of tonic inhibition in the dorsolateral prefrontal cortex of subjects with schizophrenia. Am J Psychiatry 166:450–459

    PubMed  PubMed Central  Google Scholar 

  • Marowsky A, Rudolph U, Fritschy JM, Arand M (2012) Tonic inhibition in principal cells of the amygdala: a central role for alpha3 subunit-containing GABAA receptors. J Neurosci 32:8611–8619

    PubMed  CAS  Google Scholar 

  • Matsumoto K, Nomura H, Murakami Y, Taki K, Takahata H, Watanabe H (2003) Long-term social isolation enhances picrotoxin seizure susceptibility in mice: up-regulatory role of endogenous brain allopregnanolone in GABAergic systems. Pharmacol Biochem Behav 75:831–835

    PubMed  CAS  Google Scholar 

  • Mcewen BS (2001) Plasticity of the hippocampus: adaptation to chronic stress and allostatic load. Ann N Y Acad Sci 933:265–277

    PubMed  CAS  Google Scholar 

  • Mcewen BS, Eiland L, Hunter RG, Miller MM (2012) Stress and anxiety: structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology 62:3–12

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miklos IH, Kovacs KJ (2002) GABAergic innervation of corticotropin-releasing hormone (CRH)-secreting parvocellular neurons and its plasticity as demonstrated by quantitative immunoelectron microscopy. Neuroscience 113:581–592

    PubMed  CAS  Google Scholar 

  • Mody I, Maguire J (2011) The reciprocal regulation of stress hormones and GABA(A) receptors. Front Cell Neurosci 6:4

    PubMed  Google Scholar 

  • Motohashi N, Okamoto Y, Osada M, Yamawaki S (1993) Acute swim stress increases benzodiazepine receptors, but not GABAA or GABAB receptors, in the rat cerebral cortex. Neurochem Int 23:327–330

    PubMed  CAS  Google Scholar 

  • Naert G, Maurice T, Tapia-Arancibia L, Givalois L (2007) Neuroactive steroids modulate HPA axis activity and cerebral brain-derived neurotrophic factor (BDNF) protein levels in adult male rats. Psychoneuroendocrinology 32:1062–1078

    PubMed  CAS  Google Scholar 

  • Olah S, Komlosi G, Szabadics J, Varga C, Toth E, Barzo P, Tamas G (2007) Output of neurogliaform cells to various neuron types in the human and rat cerebral cortex. Front Neural Circuits 1:4

    PubMed  PubMed Central  Google Scholar 

  • Olah S, Fule M, Komlosi G, Varga C, Baldi R, Barzo P, Tamas G (2009) Regulation of cortical microcircuits by unitary GABA-mediated volume transmission. Nature 461:1278–1281

    PubMed  CAS  PubMed Central  Google Scholar 

  • Orchinik M, Weiland NG, Mcewen BS (1994) Adrenalectomy selectively regulates GABAA receptor subunit expression in the hippocampus. Mol Cell Neurosci 5:451–458.

    PubMed  CAS  Google Scholar 

  • Orchinik M, Weiland NG, Mcewen BS (1995) Chronic exposure to stress levels of corticosterone alters GABAA receptor subunit mRNA levels in rat hippocampus. Brain Res Mol Brain Res 34:29–37

    PubMed  CAS  Google Scholar 

  • Otero Losada ME (1988) Changes in central GABAergic function following acute and repeated stress. Br J Pharmacol 93:483–490

    PubMed  CAS  PubMed Central  Google Scholar 

  • Owens MJ, Ritchie JC, Nemeroff CB (1992) 5 alpha-pregnane-3 alpha, 21-diol-20-one (THDOC) attenuates mild stress-induced increases in plasma corticosterone via a non-glucocorticoid mechanism: comparison with alprazolam. Brain Res 573:353–355

    PubMed  CAS  Google Scholar 

  • Pariante CM, Lightman SL (2008) The HPA axis in major depression: classical theories and new developments. Trends Neurosci 31:464–468

    PubMed  CAS  Google Scholar 

  • Park JB, Skalska S, Son S, Stern JE (2007) Dual GABAA receptor-mediated inhibition in rat presympathetic paraventricular nucleus neurons. J Physiol 582:539–551

    PubMed  CAS  PubMed Central  Google Scholar 

  • Park JB, Jo JY, Zheng H, Patel KP, Stern JE (2009) Regulation of tonic GABA inhibitory function, presympathetic neuronal activity and sympathetic outflow from the paraventricular nucleus by astroglial GABA transporters. J Physiol 587:4645–4660

    PubMed  CAS  PubMed Central  Google Scholar 

  • Patchev VK, Shoaib M, Holsboer F, Almeida OF (1994) The neurosteroid tetrahydroprogesterone counteracts corticotropin-releasing hormone-induced anxiety and alters the release and gene expression of corticotropin-releasing hormone in the rat hypothalamus. Neuroscience 62:265–271

    PubMed  CAS  Google Scholar 

  • Payne JA, Rivera C, Voipio J, Kaila K (2003) Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci 26:199–206

    PubMed  CAS  Google Scholar 

  • Pinna G, Dong E, Matsumoto K, Costa E, Guidotti A (2003) In socially isolated mice, the reversal of brain allopregnanolone down-regulation mediates the anti-aggressive action of fluoxetine. Proc Natl Acad Sci U S A 100:2035–2040

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000) GABA(A) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101:815–850

    PubMed  CAS  Google Scholar 

  • Purdy RH, Morrow AL, Moore PH, Paul SM (1991) Stress-induced elevations of gamma-aminobutyric-acid type-A receptor-active steroids in the Rat-Brain. Proc Natl Acad Sci U S A 88:4553–4557

    PubMed  CAS  PubMed Central  Google Scholar 

  • Radley JJ, Gosselink KL, Sawchenko PE (2009) A discrete GABAergic relay mediates medial prefrontal cortical inhibition of the neuroendocrine stress response. J Neurosci 29:7330–7340

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reddy DS (2003) Is there a physiological role for the neurosteroid THDOC in stress-sensitive conditions? Trends Pharmacol Sci 24:103–106

    PubMed  CAS  Google Scholar 

  • Reddy DS, Rogawski MA (2002) Stress-induced deoxycorticosterone-derived neurosteroids modulate GABA(A) receptor function and seizure susceptibility. J Neurosci 22:3795–3805

    PubMed  CAS  Google Scholar 

  • Reul JM, de Kloet ER (1985) Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinol 117:2505–2511

    CAS  Google Scholar 

  • Reul JM, de Kloet ER (1986) Anatomical resolution of two types of corticosterone receptor sites in rat brain with in vitro autoradiography and computerized image analysis. J Steroid Biochem 24:269–272

    PubMed  CAS  Google Scholar 

  • Reznikov LR, Reagan LP, Fadel JR (2008) Activation of phenotypically distinct neuronal subpopulations in the anterior subdivision of the rat basolateral amygdala following acute and repeated stress. J Comp Neurol 508:458–472

    PubMed  Google Scholar 

  • Reznikov LR, Reagan LP, Fadel JR (2009) Effects of acute and repeated restraint stress on GABA efflux in the rat basolateral and central amygdala. Brain Res 1256:61–68

    PubMed  CAS  Google Scholar 

  • Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K + /Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255

    PubMed  CAS  Google Scholar 

  • Rivera C, Voipio J, Kaila K (2005) Two developmental switches in GABAergic signalling: the K + -Cl- cotransporter KCC2 and carbonic anhydrase CAVII. J Physiol 562:27–36

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rodriguez Manzanares PA, Isoardi NA, Carrer HF, Molina VA (2005) Previous stress facilitates fear memory, attenuates GABAergic inhibition, and increases synaptic plasticity in the rat basolateral amygdala. J Neurosci 25:8725–8734

    PubMed  Google Scholar 

  • Roland BL, Sawchenko PE (1993) Local origins of some GABAergic projections to the paraventricular and supraoptic nuclei of the hypothalamus in the rat. J Comp Neurol 332:123–143

    PubMed  CAS  Google Scholar 

  • Roozendaal B, Mcewen BS, Chattarji S (2009) Stress, memory and the amygdala. Nat Rev Neurosci 10:423–433

    PubMed  CAS  Google Scholar 

  • Rosenkranz JA, Venheim ER, Padival M (2010) Chronic stress causes amygdala hyperexcitability in rodents. Biological Psychiatry 67:1128–1136

    PubMed  PubMed Central  Google Scholar 

  • Saalmann YB, Kirkcaldie MT, Waldron S, Calford MB (2007) Cellular distribution of the GABAA receptor-modulating 3alpha-hydroxy, 5alpha-reduced pregnane steroids in the adult rat brain. J Neuroendocrinol 19:272–284

    PubMed  CAS  Google Scholar 

  • Sarkar J, Wakefield S, Mackenzie G, Moss SJ, Maguire J (2011) Neurosteroidogenesis is required for the physiological response to stress: role of neurosteroid-sensitive GABAA receptors. J Neurosci 31:18198–18210

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schloesser RJ, Manji HK, Martinowich K (2009) Suppression of adult neurogenesis leads to an increased hypothalamo-pituitary-adrenal axis response. Neuroreport 20:553–557

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schulte HM, Weisner D, Allolio B (1990) The corticotrophin releasing hormone test in late pregnancy: lack of adrenocorticotrophin and cortisol response. Clin Endocrinol (Oxf) 33:99–106

    CAS  Google Scholar 

  • Serra M, Pisu MG, Littera M, Papi G, Sanna E, Tuveri F, Usala L, Purdy RH, Biggio G (2000) Social isolation-induced decreases in both the abundance of neuroactive steroids and GABA(A) receptor function in rat brain. J Neurochem 75:732–740

    PubMed  CAS  Google Scholar 

  • Serra M, Mostallino MC, Talani G, Pisu MG, Carta M, Mura ML, Floris I, Maciocco E, Sanna E, Biggio G (2006) Social isolation-induced increase in alpha and delta subunit gene expression is associated with a greater efficacy of ethanol on steroidogenesis and GABA receptor function. J Neurochem 98:122–133

    PubMed  CAS  Google Scholar 

  • Skerritt JH, Trisdikoon P, Johnston GA (1981) Increased GABA binding in mouse brain following acute swim stress. Brain Res 215:398–403

    PubMed  CAS  Google Scholar 

  • Skilbeck KJ, Johnston GA, Hinton T (2010) Stress and GABA receptors. J Neurochem 112:1115–1130

    PubMed  CAS  Google Scholar 

  • Sperk G, Schwarzer C, Tsunashima K, Fuchs K, Sieghart W (1997) GABA(A) receptor subunits in the rat hippocampus.1. Immunocytochemical distribution of 13 subunits. Neuroscience 80:987–1000

    PubMed  CAS  Google Scholar 

  • Stell BM, Brickley SG, Tang CY, Farrant M, Mody I (2003) Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABA(A) receptors. Proc Natl Acad Sci U S A 100:14439–14444

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sur C, Farrar SJ, Kerby J, Whiting PJ, Atack JR, McKernan RM (1999) Preferential coassembly of alpha 4 and delta subunits of the gamma-aminobutyric acid(A) receptor in rat thalamus. Mol Pharmacol 56:110–115

    PubMed  CAS  Google Scholar 

  • Tamas G, Lorincz A, Simon A, Szabadics J (2003) Identified sources and targets of slow inhibition in the neocortex. Science 299:1902–1905

    PubMed  CAS  Google Scholar 

  • Tan H, Zhong P, Yan Z (2004) Corticotropin-releasing factor and acute stress prolongs serotonergic regulation of GABA transmission in prefrontal cortical pyramidal neurons. J Neurosci 24:5000–5008

    PubMed  CAS  Google Scholar 

  • Tanapat P, Galea LA, Gould E (1998) Stress inhibits the proliferation of granule cell precursors in the developing dentate gyrus. Int J Dev Neurosci 16:235–239

    PubMed  CAS  Google Scholar 

  • Tasker JG, Dudek FE (1993) Local inhibitory synaptic inputs to neurones of the paraventricular nucleus in slices of rat hypothalamus. J Physiol 469:179–192

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tasker JG, Di S, Malcher-Lopes R (2005) Rapid central corticosteroid effects: evidence for membrane glucocorticoid receptors in the brain. Integr Comp Biol 45:665–671

    PubMed  CAS  Google Scholar 

  • Ulrich-Lai YM, Herman JP (2009) Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10:397–409

    PubMed  CAS  Google Scholar 

  • Ventura-Silva AP, Pego JM, Sousa JC, Marques AR, Rodrigues AJ, Marques F, Cerqueira JJ, Almeida OF, Sousa N (2012) Stress shifts the response of the bed nucleus of the stria terminalis to an anxiogenic mode. Eur J Neurosci 36(10):3396–3406

    PubMed  Google Scholar 

  • Verkuyl JM, Joels M (2003) Effect of adrenalectomy on miniature inhibitory postsynaptic currents in the paraventricular nucleus of the hypothalamus. J Neurophysiol 89:237–245

    PubMed  CAS  Google Scholar 

  • Verkuyl JM, Hemby SE, Joels M (2004) Chronic stress attenuates GABAergic inhibition and alters gene expression of parvocellular neurons in rat hypothalamus. Eur J Neurosci 20:1665–1673

    PubMed  Google Scholar 

  • Verkuyl JM, Karst H, Joels M (2005) GABAergic transmission in the rat paraventricular nucleus of the hypothalamus is suppressed by corticosterone and stress. Eur J Neurosci 21:113–121

    PubMed  Google Scholar 

  • Wamsteeker JI, Bains JS (2010) A synaptocentric view of the neuroendocrine response to stress. Eur J Neurosci 32:2011–2021

    PubMed  Google Scholar 

  • Watts AG (2005) Glucocorticoid regulation of peptide genes in neuroendocrine CRH neurons: a complexity beyond negative feedback. Front Neuroendocrinol 26:109–130

    PubMed  CAS  Google Scholar 

  • Weizman A, Weizman R, Kook KA, Vocci F, Deutsch SI, Paul SM (1990) Adrenalectomy prevents the stress-induced decrease in in vivo [3H]Ro15-1788 binding to GABAA benzodiazepine receptors in the mouse. Brain Res 519:347–350

    PubMed  CAS  Google Scholar 

  • Wilson MA, Biscardi R (1994) Sex differences in GABA/benzodiazepine receptor changes and corticosterone release after acute stress in rats. Exp Brain Res 101:297–306

    PubMed  CAS  Google Scholar 

  • Wilson MA, Biscardi R (1997) Influence of gender and brain region on neurosteroid modulation of GABA responses in rats. Life Sci 60:1679–1691

    PubMed  CAS  Google Scholar 

  • Wohlfarth KM, Bianchi MT, Macdonald RL (2002) Enhanced neurosteroid potentiation of ternary GABA(A) receptors containing the delta subunit. J Neurosci 22:1541–1549

    PubMed  CAS  Google Scholar 

  • Yoneda Y, Kanmori K, Ida S, Kuriyama K (1983) Stress-induced alterations in metabolism of gamma-aminobutyric acid in rat brain. J Neurochem 40:350–356

    PubMed  CAS  Google Scholar 

  • Zheng G, Zhang X, Chen Y, Zhang Y, Luo W, Chen J (2007) Evidence for a role of GABAA receptor in the acute restraint stress-induced enhancement of spatial memory. Brain Res 1181:61–73

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie Maguire .

Editor information

Editors and Affiliations

Concluding Remarks

Concluding Remarks

This review clearly demonstrates a role for extrasynaptic GABAARs in the regulation of the HPA axis at the level of CRH neurons as well as in other brain regions controlling HPA axis function, including the hippocampus, prefrontal cortex, BNST, and amygdala. Given the widespread anatomical distribution of extrasynaptic GABAARs and the differing impact of these numerous brain regions on the regulation of the HPA axis , it is difficult to interpret the net effect of these receptors on HPA axis function. Furthermore, the neurosteroid sensitivity of extrasynaptic GABAARs provides another level of complexity for the role of these receptors in the regulation of the stress response. Despite the complex role of extrasynaptic GABAARs in the regulation of the HPA axis, it is evident that these receptors influence HPA axis function. Our limited knowledge of the role of extrasynaptic GABAARs is largely due to the sparse number of studies investigating the synaptic regulation of the HPA axis, which is gaining considerable interest in the scientific community (Levy and Tasker 2012; Wamsteeker and Bains 2010) , let alone the limited number of studies directly investigating the role of extrasynaptic receptors in the regulation of the HPA axis. Additional studies are required to fully appreciate the contribution of extrasynaptic GABAARs on the regulation of the HPA axis.

Stress is known to either worsen or trigger illnesses ranging from the common cold to cancer (for review, see Cohen 2007) . Furthermore, hyperexcitability of the HPA axis has been implicated in the pathophysiology of numerous disorders, including depression (for review, see Lloyd and Nemeroff 2011; Pariante and Lightman 2008) . Therefore, insights into the regulation of the HPA axis may identify novel targets for therapeutic intervention, such as extrasynaptic GABAARs. Very few studies have investigated which GABAAR subtypes play a role in the regulation of the HPA axis. However, this book chapter has highlighted the importance of GABAergic inhibition on HPA axis function. Additional studies are required to fully appreciate the mechanisms regulating HPA axis function. However, we are optimistic that HPA axis modulation may be a feasible therapeutic target. Given the evidence that there may be independent mechanisms regulating basal glucocorticoid secretion and stress-induced glucocorticoid (Kammerer et al. 2006; Sarkar et al. 2011) , we support revisiting HPA axis modulation as a therapeutic target.

Acknowledgments

J.M. is funded by NS073574.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Maguire, J. (2014). GABAergic Control of the Hypothalamic–Pituitary–Adrenal (HPA) Axis: Role of Extrasynaptic GABAA Receptors. In: Errington, A., Di Giovanni, G., Crunelli, V. (eds) Extrasynaptic GABAA Receptors. The Receptors, vol 27. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1426-5_12

Download citation

Publish with us

Policies and ethics