Skip to main content

The Role of Extrasynaptic GABAA Receptors in Focal Epilepsy

  • Chapter
  • First Online:
Extrasynaptic GABAA Receptors

Part of the book series: The Receptors ((REC,volume 27))

  • 962 Accesses

Abstract

Focal epilepsy can result from both genetic and environmental factors. Acquired focal epilepsy occurs following a specific brain insult such as stroke, head injury or prolonged seizures (status epilepticus). The time from the insult to the development of seizures is termed the epileptogenic period during which there are changes in connectivity, neurotransmission and neuronal excitability.

Epileptogenesis has conventionally been viewed as being associated with increased excitation and a loss of inhibition. This view has been reappraised in recent years due to a better understanding of the multifaceted roles of GABAergic signalling. There is growing evidence that loss of synaptic GABAA receptor-mediated inhibition observed in animal models of temporal lobe epilepsy is accompanied by compensatory upregulation of tonic currents mediated by extrasynaptic GABAA receptors.

Here, we provide evidence for such a change in GABAA receptor-mediated inhibition during epileptogenesis and speculate on the possible functional impact that such a shift in inhibition will have. In particular, we argue that shifts from phasic to tonic inhibition in the hippocampus will lead to a maintenance of “inhibition” of the network but will alter network gain, decreasing network stability. Furthermore, changes in the subunit composition of extrasynaptic GABAA receptors during epileptogenesis have implications for targeted pharmacotherapy of epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Azouz R (2005) Dynamic spatiotemporal synaptic integration in cortical neurons: neuronal gain, revisited. J Neurophysiol 94:2785–2796

    Article  PubMed  Google Scholar 

  • Borden LA (1996) GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int 29:335–356

    Article  PubMed  CAS  Google Scholar 

  • Brooks-Kayal AR, Shumate MD, Jin H, Rikhter TY, Coulter DA (1998) Selective changes in single cell GABA(A) receptor subunit expression and function in temporal lobe epilepsy. Nat Med 4:1166–1172

    Article  PubMed  CAS  Google Scholar 

  • Brown N, Kerby J, Bonnert TP, Whiting PJ, Wafford KA (2002) Pharmacological characterization of a novel cell line expressing human alpha(4)beta(3)delta GABA(A) receptors. Br J Pharmacol 136:965–974

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Buckmaster PS, Yamawaki R, Zhang GUOF (2002) Axon arbors and synaptic connections of a vulnerable population of interneurons in the dentate gyrus in vivo. J Comp Neurol 445:360–373

    Article  PubMed  Google Scholar 

  • Carvalho TP, Buonomano DV (2009) Differential effects of excitatory and inhibitory plasticity on synaptically driven neuronal input-output functions. Neuron 61:774–785

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chavas J, Marty A (2003) Coexistence of excitatory and inhibitory GABA synapses in the cerebellar interneuron network. J Neurosci 23:2019–2031

    PubMed  CAS  Google Scholar 

  • Chen X, Shu S, Schwartz LC, Sun C, Kapur J, Bayliss DA (2010) Homeostatic regulation of synaptic excitability: tonic GABA(A) receptor currents replace I(h) in cortical pyramidal neurons of HCN1 knock-out mice. J Neurosci 30:2611–2622

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R (2002) On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 298:1418–1421

    Article  PubMed  CAS  Google Scholar 

  • Connelly WM, Fyson SJ, Errington AC, McCafferty CP, Cope DW, Di Giovanni G, Crunelli V (2013) GABAB receptors regulate extrasynaptic GABAA receptors. J Neurosci 33:3780–3785

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Connors BW (1984) Initiation of synchronized neuronal bursting in neocortex. Nature 310:685–687

    Article  PubMed  CAS  Google Scholar 

  • Conti F, Minelli A, Melone M (2004) GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications. Brain Res Brain Res Rev 45:196–212

    Article  PubMed  CAS  Google Scholar 

  • Cossart R, Dinocourt C, Hirsch JC, Merchan-Perez A, De Felipe J, Ben-Ari Y, Esclapez M, Bernard C (2001) Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nat Neurosci 4:52–62

    Article  PubMed  CAS  Google Scholar 

  • D’Ambrosio R, Fender JS, Fairbanks JP, Simon EA, Born DE, Doyle DL, Miller JW (2005) Progression from frontal-parietal to mesial-temporal epilepsy after fluid percussion injury in the rat. Brain 128:174–188

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalby NO (2003) Inhibition of γ-aminobutyric acid uptake: anatomy, physiology and effects against epileptic seizures. Eur J Pharmacol 479:127–137

    Article  PubMed  CAS  Google Scholar 

  • Dibbens LM, Feng H-J, Richards MC, Harkin LA, Hodgson BL, Scott D, Jenkins M, Petrou S, Sutherland GR, Scheffer IE, Berkovic SF, Macdonald RL, Mulley JC (2004) GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum Mol Genet 13:1315–1319

    Article  PubMed  CAS  Google Scholar 

  • Esclapez M, Houser CR (1999) Up-regulation of GAD65 and GAD67 in remaining hippocampal GABA neurons. J Comp Neurol 412:488–505

    Article  PubMed  CAS  Google Scholar 

  • Eugène E, Depienne C, Baulac S, Baulac M, Fritschy JM, Le Guern E, Miles R, Poncer JC (2007) GABA(A) receptor gamma 2 subunit mutations linked to human epileptic syndromes differentially affect phasic and tonic inhibition. J Neurosci 27:14108–14116

    Article  PubMed  Google Scholar 

  • Farrant M, Kaila K (2007) The cellular, molecular and ionic basis of GABA(A) receptor signalling. Prog Brain Res 160:59–87

    Article  PubMed  CAS  Google Scholar 

  • Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 6:215–229

    Article  PubMed  CAS  Google Scholar 

  • Feng H, Mathews GC, Kao C, Macdonald RL (2008) Alterations of GABA A -receptor function and allosteric modulation during development of status epilepticus. J Neurophysiol 99:1285–1293

    Article  PubMed  Google Scholar 

  • Feng H-J, Kang J-Q, Song L, Dibbens L, Mulley J, Macdonald RL (2006) Delta subunit susceptibility variants E177A and R220H associated with complex epilepsy alter channel gating and surface expression of alpha4beta2delta GABAA receptors. J Neurosci 26:1499–1506

    Article  PubMed  CAS  Google Scholar 

  • Frahm C, Stief F, Zuschratter W, Draguhn A (2003) Unaltered control of extracellular GABA-concentration through GAT-1 in the hippocampus of rats after pilocarpine-induced status epilepticus. Epilepsy Res 52:243–252

    Article  PubMed  CAS  Google Scholar 

  • Friedman LK, Pellegrini-Giampietro DE, Sperber EF, Bennett VL, Moshe SL, Zukin RS (1994) Kainate-induced status epilepticus alters glutamate and GABAA receptor gene expression in adult rat hippocampus: an in situ hybridization study. J Neurosci 14:2697–2707

    PubMed  CAS  Google Scholar 

  • Fritschy JM, Kiener T, Bouilleret V, Loup F (1999) GABAergic neurons and GABA(A)-receptors in temporal lobe epilepsy. Neurochem Int 34:435–445

    Article  PubMed  CAS  Google Scholar 

  • Glykys J, Mody I (2007) The main source of ambient GABA responsible for tonic inhibition in the mouse hippocampus. J Physiol 582:1163–1178

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Glykys J, Mann EO, Mody I (2008) Which GABA(A) receptor subunits are necessary for tonic inhibition in the hippocampus? J Neurosci 28:1421–1426

    Article  PubMed  CAS  Google Scholar 

  • Glykys J, Dzhala VI, Kuchibhotla KV, Feng G, Kuner T, Augustine G, Bacskai BJ, Staley KJ (2009) Differences in cortical versus subcortical GABAergic signaling: a candidate mechanism of electroclinical uncoupling of neonatal seizures. Neuron 63:657–672

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Goodkin HP, Joshi S, Mtchedlishvili Z, Brar J, Kapur J (2008) Subunit-specific trafficking of GABA(A) receptors during status epilepticus. J Neurosci 28:2527–2538

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gutnick MJ, Connors BW, Prince DA (1982) Mechanisms of neocortical epileptogenesis in vitro. J Neurophysiol 48:1321–1335

    PubMed  CAS  Google Scholar 

  • Héja L, Barabás P, Nyitrai G, Kékesi KA, Lasztóczi B, Toke O, Tárkányi G, Madsen K, Schousboe A, Dobolyi A, Palkovits M, Kardos J (2009) Glutamate uptake triggers transporter-mediated GABA release from astrocytes. PLoS ONE 4:e7153

    Article  PubMed  PubMed Central  Google Scholar 

  • Heja L, Nyitrai G, Kekesi O, Dobolyi A, Szabo P, Fiath R, Ulbert I, Pal-Szenthe B, Palkovits M, Kardos J (2012) Astrocytes convert network excitation to tonic inhibition of neurons. BMC Biol 10:26

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Houser CR, Esclapez M (2003) Downregulation of the alpha5 subunit of the GABA(A) receptor in the pilocarpine model of temporal lobe epilepsy. Hippocampus 13:633–645

    Article  PubMed  CAS  Google Scholar 

  • Houston CM, McGee TP, MacKenzie G, Troyano-Cuturi K, Rodriguez PM, Kutsarova E, Diamanti E, Hosie AM, Franks NP, Brickley SG (2012) Are extrasynaptic GABAA receptors important targets for sedative/hypnotic drugs? J Neurosci 32:3887–3897

    Article  PubMed  CAS  Google Scholar 

  • Huberfeld G, Wittner L, Clemenceau S, Baulac M, Kaila K, Miles R, Rivera C (2007) Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy. J Neurosci 27:9866–9873

    Article  PubMed  CAS  Google Scholar 

  • Huberfeld G, Menendez de la Prida L, Pallud J, Cohen I, Le Van Quyen M, Adam C, Clemenceau S, Baulac M, Miles R (2011) Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy. Nat Neurosci 14:627–634

    Article  PubMed  CAS  Google Scholar 

  • Hunt RF, Scheff SW, Smith BN (2009) Posttraumatic epilepsy after controlled cortical impact injury in mice. Exp Neurol 215:243–252

    Article  PubMed  Google Scholar 

  • Jin X, Huguenard JR, Prince DA (2005) Impaired Cl extrusion in layer V pyramidal neurons of chronically injured epileptogenic neocortex. J Neurophysiol 93:2117–2126

    Article  PubMed  CAS  Google Scholar 

  • Kapur J, Macdonald RL (1997) Rapid seizure-induced reduction of benzodiazepine and Zn2+ sensitivity of hippocampal dentate granule cell GABA A receptors. J Neurosci 17:7532–7540

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kersanté F, Rowley S, Pavlov I, Gutièrrez-Mecinas M, Semyanov A, Reul J, Walker MC, Linthorst ACE (2013) A functional role for both GABA transporter-1 and GABA transporter-3 in the modulation of extracellular GABA and GABAergic tonic conductances in the rat hippocampus. J Physiol 591(Pt 10):2429–2441

    Article  PubMed  PubMed Central  Google Scholar 

  • Kharatishvili I, Nissinen JP, McIntosh TK, Pitkänen A (2006) A model of posttraumatic epilepsy induced by lateral fluid-percussion brain injury in rats. Neuroscience 140:685–697

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Buckmaster PS (2003) Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy. J Neurosci 23:2440–2452

    PubMed  CAS  Google Scholar 

  • Lamsa K, Taira T (2003) Use-dependent shift from inhibitory to excitatory GABAA receptor action in SP-O interneurons in the rat hippocampal CA3 area. J Neurophysiol 90:1983–1995

    Article  PubMed  CAS  Google Scholar 

  • Lee T-S, Bjørnsen LP, Paz C, Kim JH, Spencer SS, Spencer DD, Eid T, De Lanerolle NC (2006) GAT1 and GAT3 expression are differently localized in the human epileptogenic hippocampus. Acta Neuropathol 111:351–363

    Article  PubMed  CAS  Google Scholar 

  • Leroy C, Poisbeau P, Keller AF, Nehlig A (2004) Pharmacological plasticity of GABA(A) receptors at dentate gyrus synapses in a rat model of temporal lobe epilepsy. J Physiol 557:473–487

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Loup F, Wieser H-G, Yonekawa Y, Aguzzi A, Fritschy J-M (2000) Selective alterations in GABAA receptor subtypes in human temporal lobe epilepsy. Neuron 20:5401–5419

    CAS  Google Scholar 

  • Maguire JL, Stell BM, Rafizadeh M, Mody I (2005) Ovarian cycle-linked changes in GABA(A) receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat Neurosci 8:797–804

    Article  PubMed  CAS  Google Scholar 

  • Martina M, Royer S, Paré D (2001) Cell-type-specific GABA responses and chloride homeostasis in the cortex and amygdala. J Neurophysiol 86:2887–2895

    PubMed  CAS  Google Scholar 

  • Mathern GW, Mendoza D, Lozada A, Pretorius JK, Dehnes Y, Danbolt NC, Nelson N, Leite JP, Chimelli L, Born DE, Sakamoto AC, Assirati JA, Fried I, Peacock WJ, Ojemann GA, Adelson PD (1999) Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. Neurology 52:453–472

    Article  PubMed  CAS  Google Scholar 

  • Minelli A, DeBiasi S, Brecha NC, Zuccarello LV, Conti F (1996) GAT-3, a high-affinity GABA plasma membrane transporter, is localized to astrocytic processes, and it is not confined to the vicinity of GABAergic synapses in the cerebral cortex. J Neurosci 16:6255–6264

    PubMed  CAS  Google Scholar 

  • Mody I, Pearce RA (2004) Diversity of inhibitory neurotransmission through GABA(A) receptors. Trends Neurosci 27:569–575

    Article  PubMed  CAS  Google Scholar 

  • Mortensen M, Smart TG (2006) Extrasynaptic alphabeta subunit GABAA receptors on rat hippocampal pyramidal neurons. J Physiol 577:841–856

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mtchedlishvili Z, Lepsveridze E, Xu H, Kharlamov EA, Lu B, Kelly KM (2010) Increase of GABAA receptor-mediated tonic inhibition in dentate granule cells after traumatic brain injury. Neurobiol Dis 38:464–475

    Article  PubMed  CAS  Google Scholar 

  • Muñoz A, Méndez P, DeFelipe J, Alvarez-Leefmans FJ (2007) Cation-chloride cotransporters and GABA-ergic innervation in the human epileptic hippocampus. Epilepsia 48:663–673

    Article  PubMed  Google Scholar 

  • Naylor DE, Liu H, Wasterlain CG (2005) Trafficking of GABA(A) receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. J Neurosci 25:7724–7733

    Article  PubMed  CAS  Google Scholar 

  • Palma E, Amici M, Sobrero F, Spinelli G, Di Angelantonio S, Ragozzino D, Mascia A, Scoppetta C, Esposito V, Miledi R, Eusebi F (2006) Anomalous levels of Cl– transporters in the hippocampal subiculum from temporal lobe epilepsy patients make GABA excitatory. Proc Natl Acad Sci U S A 103:8465–8468

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Patrylo PR, Spencer DD, Williamson A, Ortinski PI, Turner JR, Barberis A, Motamedi G, Yasuda RP, Wolfe B, Kellar KJ, Vicini S, Mcnay EC, Mccrimmon RJ, Sherwin RS (2001) GABA uptake and heterotransport are impaired in the dentate gyrus of epileptic rats and humans with temporal lobe sclerosis. J Neurophysiol 85:1533–1542

    PubMed  CAS  Google Scholar 

  • Pavlov I, Savtchenko LP, Kullmann DM, Semyanov A, Walker MC (2009) Outwardly rectifying tonically active GABAA receptors in pyramidal cells modulate neuronal offset, not gain. J Neurosci 29:15341–15350

    Article  PubMed  CAS  Google Scholar 

  • Pavlov I, Huusko N, Drexel M, Kirchmair E, Sperk G, Pitkänen A, Walker MC (2011) Progressive loss of phasic, but not tonic, GABA(A) receptor-mediated inhibition in dentate granule cells in a model of post-traumatic epilepsy in rats. Neuroscience 194:208–219

    Article  PubMed  CAS  Google Scholar 

  • Peng Z, Huang CS, Stell BM, Mody I, Houser CR (2004) Altered expression of the delta subunit of the GABAA receptor in a mouse model of temporal lobe epilepsy. J Neurosci 24:8629–8639

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer M, Draguhn A, Meierkord H, Heinemann U (1996) Effects of gamma-aminobutyric acid (GABA) agonists and GABA uptake inhibitors on pharmacosensitive and pharmacoresistant epileptiform activity in vitro. Br J Pharmacol 119:569–577

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rajasekaran K, Joshi S, Sun C, Mtchedlishvilli Z, Kapur J (2010) Receptors with low affinity for neurosteroids and GABA contribute to tonic inhibition of granule cells in epileptic animals. Neurobiol Dis 40:490–501

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ribak CE, Tong WM, Brecha NC (1996) GABA plasma membrane transporters, GAT-1 and GAT-3, display different distributions in the rat hippocampus. J Comp Neurol 367:595–606

    Article  PubMed  CAS  Google Scholar 

  • Rivera C, Li H, Thomas-Crusells J, Lahtinen H, Viitanen T, Nanobashvili A, Kokaia Z, Airaksinen MS, Voipio J, Kaila K, Saarma M (2002) BDNF-induced TrkB activation down-regulates the K+ –Cl cotransporter KCC2 and impairs neuronal Cl extrusion. J Cell Biol 159:747–752

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sabau A, Frahm C, Pfeiffer M, Breustedt J, Piechotta A, Numberger M, Engel D, Heinemann U, Draguhn A (1999) Age-dependence of the anticonvulsant effects of the GABA uptake inhibitor tiagabine in vitro. Eur J Pharmacol 383:259–266

    Article  PubMed  CAS  Google Scholar 

  • Schwartzkroin PA, Prince DA (1977) Penicillin-induced epileptilorm activity in the hippocampal in vitro preparation. Ann Neurol 1:463–469

    Article  PubMed  CAS  Google Scholar 

  • Schwarzer C, Tsunashima K, Wanzenböck C, Fuchs K, Sieghart W, Sperk G (1997) GABA(A) receptor subunits in the rat hippocampus II: altered distribution in kainic acid-induced temporal lobe epilepsy. Neuroscience 80:1001–1017

    Article  PubMed  CAS  Google Scholar 

  • Scimemi A, Semyanov A, Sperk G, Kullmann DM, Walker MC (2005) Multiple and plastic receptors mediate tonic GABAA receptor currents in the hippocampus. J Neurosci 25:10016–10024

    Article  PubMed  CAS  Google Scholar 

  • Scimemi A, Andersson A, Heeroma JH, Strandberg J, Rydenhag B, McEvoy AW, Thom M, Asztely F, Walker MC (2006) Tonic GABA(A) receptor-mediated currents in human brain. Eur J Neurosci 24:1157–1160

    Article  PubMed  Google Scholar 

  • Serwanski DR, Miralles CP, Christie SB, Mehta AK, Li X, De Blas AL (2006) Synaptic and nonsynaptic localization of GABAA receptors containing the alpha5 subunit in the rat brain. J Comp Neurol 499:458–470

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shao L-R, Dudek FE (2005) Changes in mIPSCs and sIPSCs after kainate treatment: evidence for loss of inhibitory input to dentate granule cells and possible compensatory responses. J Neurophysiol 94:952–960

    Article  PubMed  CAS  Google Scholar 

  • Shen H, Gong QH, Aoki C, Yuan M, Ruderman Y, Dattilo M, Williams K, Smith SS (2007) Reversal of neurosteroid effects at alpha4beta2delta GABAA receptors triggers anxiety at puberty. Nat Neurosci 10:469–477

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shen H, Sabaliauskas N, Sherpa A, Fenton AA, Stelzer A, Aoki C, Smith SS (2010) A critical role for alpha4betadelta GABAA receptors in shaping learning deficits at puberty in mice. Science 327:1515–1518

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Silver RA (2010) Neuronal arithmetic. Nat Rev Neurosci 11:474–489

    Article  PubMed  CAS  Google Scholar 

  • Sloviter RS (1991) Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus 1:41–66

    Article  PubMed  CAS  Google Scholar 

  • Song I, Savtchenko L, Semyanov A (2011) Tonic excitation or inhibition is set by GABA(A) conductance in hippocampal interneurons. Nat Commun 2:376

    Article  PubMed  PubMed Central  Google Scholar 

  • Sperk G, Schwarzer C, Heilman J, Furtinger S, Reimer RJ, Edwards RH, Nelson N (2003) Expression of plasma membrane GABA transporters but not of the vesicular GABA transporter in dentate granule cells after kainic acid seizures. Hippocampus 13:806–815

    Article  PubMed  CAS  Google Scholar 

  • Stief F, Piechotta A, Gabriel S, Schmitz D, Draguhn A (2005) Functional GABA uptake at inhibitory synapses in CA1 of chronically epileptic rats. Epilepsy Res 66:199–202

    Article  PubMed  CAS  Google Scholar 

  • Succol F, Fiumelli H, Benfenati F, Cancedda L, Barberis A (2012) Intracellular chloride concentration influences the GABAA receptor subunit composition. Nat Commun 3:738

    Article  PubMed  PubMed Central  Google Scholar 

  • Swartz BE, Houser CR, Tomiyasu U, Walsh GO, DeSalles A, Rich JR, Delgado-Escueta A (2006) Hippocampal cell loss in posttraumatic human epilepsy. Epilepsia 47:1373–1382

    Article  PubMed  Google Scholar 

  • Tao W, Higgs MH, Spain WJ, Ransom CB (2013) Postsynaptic GABAB receptors enhance extrasynaptic GABAA receptor function in dentate gyrus granule cells. J Neurosci 33:3738–3743

    Article  PubMed  CAS  Google Scholar 

  • Trevelyan AJ, Sussillo D, Watson BO, Yuste R (2006) Modular propagation of epileptiform activity: evidence for an inhibitory veto in neocortex. J Neurosci 26:12447–12455

    Article  PubMed  CAS  Google Scholar 

  • Trevelyan AJ, Sussillo D, Yuste R (2007) Feedforward inhibition contributes to the control of epileptiform propagation speed. J Neurosci 27:3383–3387

    Article  PubMed  CAS  Google Scholar 

  • Tsunashima K, Schwarzer C, Kirchmair E, Sieghart W, Sperk G (1997) GABA(A) receptor subunits in the rat hippocampus III: altered messenger RNA expression in kainic acid-induced epilepsy. Neuroscience 80:1019–1032

    Article  PubMed  CAS  Google Scholar 

  • Verheugen JA, Fricker D, Miles R (1999) Noninvasive measurements of the membrane potential and GABAergic action in hippocampal interneurons. J Neurosci 19:2546–2555

    PubMed  CAS  Google Scholar 

  • Vida I, Bartos M, Jonas P (2006) Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49:107–117

    Article  PubMed  CAS  Google Scholar 

  • Wei W, Zhang N, Peng Z, Houser CR, Mody I (2003) Perisynaptic localization of delta subunit-containing GABA(A) receptors and their activation by GABA spillover in the mouse dentate gyrus. J Neurosci 23:10650–10661

    PubMed  CAS  Google Scholar 

  • Wittner L (2001) Preservation of perisomatic inhibitory input of granule cells in the epileptic human dentate gyrus. Neuroscience 108:587–600

    Article  PubMed  CAS  Google Scholar 

  • Wlodarczyk A, Sylantyev S, Herd MB, Kersanté F, Lambert JJ, Rusakov DA, Linthorst ACE, Semyanov A, Belelli D, Pavlov I, Walker MC (2013) GABA-independent GABAA receptor openings maintain tonic currents. J Neurosci 33(9):3905–3914

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wolfart J, Debay D, Le Masson G, Destexhe A, Bal T (2005) Synaptic background activity controls spike transfer from thalamus to cortex. Nat Neurosci 8:1760–1767

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Wang W, Richerson GB (2003) Vigabatrin induces tonic inhibition via GABA transporter reversal without increasing vesicular GABA release. J Neurophysiol 89:2021–2034

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Wang W, Díez-Sampedro A, Richerson GB (2007) Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1. Neuron 56:851–865

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wyeth MS, Zhang N, Mody I, Houser CR (2010) Selective reduction of cholecystokinin-positive basket cell innervation in a model of temporal lobe epilepsy. J Neurosci 30:8993–9006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhan R-Z, Nadler JV (2009) Enhanced tonic GABA current in normotopic and hilar ectopic dentate granule cells after pilocarpine-induced status epilepticus. J Neurophysiol 102:670–681

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang N, Wei W, Mody I, Houser CR (2007) Altered localization of GABA(A) receptor subunits on dentate granule cell dendrites influences tonic and phasic inhibition in a mouse model of epilepsy. J Neurosci 27:7520–7531

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew C. Walker .

Editor information

Editors and Affiliations

Conclusion

Conclusion

The development of focal epilepsy seems to be accompanied by a shift from inhibition mediated by synaptic GABAA receptors to inhibition mediated by extrasynaptic GABAA receptors. This may result in an increase in the gain of the network. This would result in only small increases in input leading to a large increase in the probability of neuronal firing, resulting in potentially more unstable networks that would have the propensity to generate seizure activity.

Alterations in the subunit composition of extrasynaptic GABAA receptors during the development of epilepsy also have significant implications for targeted pharmacotherapy. It is likely that different insults may result in differing degrees and types of subunit alterations, suggesting that more specific therapies may be most useful in epilepsies with distinct and particular aetiologies.

Acknowledgments

This work was supported by Pewterer’s Fellowship to I.P., funding from Wellcome Trust, Medical Research Council (UK), Epilepsy Research UK and European Integrated Project “EPICURE” (EFP6-037315).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Walker, M., Pavlov, I. (2014). The Role of Extrasynaptic GABAA Receptors in Focal Epilepsy. In: Errington, A., Di Giovanni, G., Crunelli, V. (eds) Extrasynaptic GABAA Receptors. The Receptors, vol 27. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1426-5_10

Download citation

Publish with us

Policies and ethics