Skip to main content

Extrasynaptic GABAA Receptors

A Brief Introduction to Extrasynaptic GABAA Receptors and ‘Tonic’ GABAA Receptor-Mediated Inhibition in Physiology and Disease

  • Chapter
  • First Online:

Part of the book series: The Receptors ((REC,volume 27))

Abstract

γ-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the brain and its actions are mediated by two diverse families of neurotransmitter receptors, the ionotropic receptors, known as GABAA receptors, and metabotropic receptors that are classified as GABAB receptors. The classical phasic inhibitory postsynaptic potential (IPSP) is mediated by GABAA receptors that are located in the postsynaptic membrane. However, GABA also produces tonic inhibition through activation of GABAA receptors that are located outside the synapse. These extrasynaptic GABAA receptors respond to low concentrations of GABA to provide more spatially and temporally diffuse inhibition compared to their synaptic counterparts. This book covers the most current knowledge of extrasynaptic GABAA receptor structure, function, cellular distribution and pharmacology and the roles of tonic inhibition in neuronal excitability, physiology and pathophysiology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ade KK, Janssen MJ, Ortinski PI, Vicini S (2008) Differential tonic GABA conductances in striatal medium spiny neurons. J Neurosci 28(5):1185–1197

    Article  PubMed  CAS  Google Scholar 

  • Agnati LF, Guidolin D, Guescini M, Genedani S, Fuxe K (2010) Understanding wiring and volume transmission. Brain Res Rev 64:137–159

    Article  PubMed  Google Scholar 

  • Avoli M, Rogawski MA, Avanzini G (2001) Generalized epileptic disorders: an update. Epilepsia 42:445–457

    Article  PubMed  CAS  Google Scholar 

  • Bai D, Zhu G, Pennefather P, Jackson MF, MacDonald JF, Orser BA. (2001) Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by gamma-aminobutyric acid(A) receptors in hippocampal neurons. Mol Pharmacol 59:814–824

    PubMed  CAS  Google Scholar 

  • Bai X, Vestal M, Berman R, Negishi M, Spann M, Vega C, Desalvo M, Novotny EJ, Constable RT, Blumenfeld H (2010) Dynamic time course of typical childhood absence seizures: EEG behaviour, and functional magnetic resonance imaging. J Neurosci 30:5884–5893

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 6:565–575

    Article  PubMed  CAS  Google Scholar 

  • Belelli D, Peden DR, Rosahl TW, Wafford KA, Lambert JJ (2005) Extrasynaptic GABAA receptors of thalamocortical neurons: a molecular target for hypnotics. J Neurosci 25:11513–11520

    Article  PubMed  CAS  Google Scholar 

  • Belmonte MK, Bourgeron T (2006) Fragile X syndrome and autism at the intersection of genetic and neural networks. Nat Neurosci 9:1221–1225

    Article  PubMed  CAS  Google Scholar 

  • Brickley SG, Mody I (2012) Extrasynaptic GABA(A) receptors: their function in the CNS and implications for disease. Neuron 73:23–34

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brickley SG, Cull-Candy SG, Farrant M (1996) Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol 497(Pt 3):753–759

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bright DP, Aller MI, Brickley SG (2007) Synaptic release generates a tonic GABA(A) receptor-mediated conductance that modulates burst precision in thalamic relay neurons. J Neurosci 27:2560–2569

    Article  PubMed  CAS  Google Scholar 

  • Bright DP, Renzi M, Bartram J, McGee TP, Mackenzie G, Hosie AM, Farrant M, Brickley SG (2011) Profound desensitization by ambient GABA limits activation of delta-containing GABAA receptors during spillover. J Neurosci 31:753–763

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brown N, Kerby J, Bonnert TP, Whiting PJ, Wafford KA (2002). Pharmacological characterization of a novel cell line expressing human alpha(4)beta(3)delta GABA(A) receptors. Br J Pharmacol 136:965–974

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Caraiscos VB, Elliott EM, You-Ten KE, Cheng VY, Belelli D, Newell JG, Jackson MF, Lambert JJ, Rosahl TW, Wafford KA, MacDonald JF, Orser BA (2004) Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci U S A 101:3662–3667

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chebib M, Johnston GAR (2000) GABA-activated ligand gated ion channels: medicinal chemistry and molecular biology. J Med Chem 43:1427–1447

    Article  PubMed  CAS  Google Scholar 

  • Clarkson AN, Huang BS, Macisaac SE, Mody I, Carmichael ST (2010) Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature 468:305–309

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Commission on Classification and Terminology of the International League Against Epilepsy (1989) Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 30:10

    Google Scholar 

  • Connelly WM, Fyson SJ, Errington AC, McCafferty CP, Cope DW, Di Giovanni G, Crunelli V (2013). GABAB receptors regulate extrasynaptic GABAA receptors. J Neurosci 33:3780–3785

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Connors BW (1984) Initiation of synchronized neuronal bursting in neocortex. Nature 310:685–687

    Article  PubMed  CAS  Google Scholar 

  • Conti F, DeBiasi S, Minelli A, Rothstein JD, Melone M (1998a) EAAC1, a high-affinity glutamate tranporter, is localized to astrocytes and gabaergic neurons besides pyramidal cells in the rat cerebral cortex. Cereb Cortex 8:108–116

    Article  CAS  Google Scholar 

  • Conti F, Melone M, De BS, Minelli A, Brecha NC, Ducati A (1998b) Neuronal and glial localization of GAT-1, a high-affinity gamma-aminobutyric acid plasma membrane transporter, in human cerebral cortex: with a note on its distribution in monkey cortex. J Comp Neurol 396:51–63

    Article  CAS  Google Scholar 

  • Cope DW, Hughes SW, Crunelli V (2005) GABAA receptor-mediated tonic inhibition in thalamic neurons. J Neurosci 25:11553–11563

    Article  PubMed  CAS  Google Scholar 

  • Cope DW, Di Giovanni G, Fyson S, Orbán G, Errington AC, Lӧrincz ML, Gould TM, Carter DA, Crunelli V (2009) Enhanced tonic GABAA inhibition in typical absence epilepsy. Nat Med 15:1392–1398

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cox CL, Sherman SM (1998) Glutamate locally activates dendritic outputs of thalamic interneurons. Nature 394:478–482

    Article  PubMed  CAS  Google Scholar 

  • Cox CL, Sherman SM (2000) Control of dendritic outputs of inhibitory interneurons in the lateral geniculate nucleus. Neuron 27:597–610

    Article  PubMed  CAS  Google Scholar 

  • Crunelli V, Leresche N (2002) Childhood absence epilepsy: genes, channels, neurons and networks. Nat Rev Neurosci 3:371–382

    Article  PubMed  CAS  Google Scholar 

  • Curtis DR (1969) The pharmacology of spinal postsynaptic inhibition. Prog Brain Res 31:171–189

    Article  PubMed  CAS  Google Scholar 

  • Curtis DR, Phillis JW, Watkins JC (1959) The depression of spinal neurones by gamma-amino-n-butyric acid and beta-alanine. J Physiol 146:185–203

    PubMed  CAS  PubMed Central  Google Scholar 

  • De Biasi S, Vitellaro-Zuccarello L, Brecha NC (1998) Immunoreactivity for the GABA transporter-1 and GABA transporter-3 is restricted to astrocytes in the rat thalamus. A light and electron-microscopic immunolocalization. Neuroscience 83:815–828

    Article  PubMed  CAS  Google Scholar 

  • Dobkin BH (2004) Strategies for stroke rehabilitation. Lancet Neurol 3(9):528–536

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobkin BH (2008) Training and exercise to drive poststroke recovery. Nat Clin Pract Neurol 4(2):76–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Drasbek KR, Jensen K (2006) THIP, a hypnotic and antinociceptive drug, enhances an extrasynaptic GABAA receptor-mediated conductance in mouse neocortex. Cereb Cortex 16:1134–1141

    Article  PubMed  Google Scholar 

  • Drasbek KR, Hoestgaard-Jensen K, Jensen K (2007) Modulation of extrasynaptic THIP conductances by GABAA receptor modulators in mouse neocortex. J Neurophysiol 97:2293–2300

    Article  PubMed  CAS  Google Scholar 

  • Eccles JC, Schmidt R, Willis WD (1963) Pharmacological studies on presynaptic inhibition. J Physiol 168:500–530

    PubMed  CAS  PubMed Central  Google Scholar 

  • Errington AC, Di GG, Crunelli V, Cope DW (2011) mGluR control of interneuron output regulates feedforward tonic GABAA inhibition in the visual thalamus. J Neurosci 31:8669–8680

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 6:215–229

    Article  PubMed  CAS  Google Scholar 

  • Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6(4):347–470

    Article  Google Scholar 

  • Glykys J, Mody I (2006) Hippocampal network hyperactivity after selective reduction of tonic inhibition in GABA A receptor alpha5 subunit-deficient mice. J Neurophysiol 95(5):2796–2807

    Article  PubMed  CAS  Google Scholar 

  • Glykys J, Mody I (2007) The main source of ambient GABA responsible for tonic inhibition in the mouse hippocampus. J Physiol 582.3:1163–1173

    Article  Google Scholar 

  • Goodkin HP, Joshi S, Mtchedlishvili Z, Brar J, Kapur J (2008) Subunit-specific trafficking of GABA(A) receptors during status epilepticus. J Neurosci 28:2527–2538

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gutnick MJ, Connors BW, Prince DA (1982). Mechanisms of neocortical epileptogenesis in vitro. J Neurophysiol 48:1321–1335

    PubMed  CAS  Google Scholar 

  • Hagerman RJ, Berry-Kravis E, Kaufmann WE, Ono MY, Tartaglia N, Lachiewicz A, Kronk R, Delahunty C, Hessl D, Visootsak J, Picker J, Gane L, Tranfaglia M (2009) Advances in the treatment of fragile X syndrome. Pediatrics 123:378–390

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamandi K, Salek-Haddadi A, Laufs H, Liston A, Friston K, Fish DR, Duncan JS, Lemieux L (2006) EEG-fMRI of idiopathic an secondarily generalized epilepsies. Neuroimage 31:1700–1710

    Article  PubMed  Google Scholar 

  • Harrison NL, Simmonds MA (1984) Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res 323:287–292

    Article  PubMed  CAS  Google Scholar 

  • Holmes MD, Brown M, Tucker DM (2004) Are “generalized” seizures truly generalized? Evidence of localized mesial frontal and frontopolar discharges in absence. Epilepsia 45:1568–1579

    Article  PubMed  Google Scholar 

  • Houston CM, McGee TP, MacKenzie G, Troyano-Cuturi K, Rodriguez PM, Kutsarova E, Diamanti E, Hosie AM, Franks NP, Brickley SG (2012) Are extrasynaptic GABAA receptors important targets for sedative/hypnotic drugs? J Neurosci 32(11):3887–3897

    Article  PubMed  CAS  Google Scholar 

  • Jia F, Pignataro L, Schofield CM, Yue M, Harrison NL, Goldstein PA (2005) An extrasynaptic GABAA receptor mediates tonic inhibition in thalamic VB neurons. J Neurophysiol 94:4491–4501

    Article  PubMed  CAS  Google Scholar 

  • Jia F, Yue M, Chandra D, Homanics GE, Goldstein PA, Harrison NL (2008) Isoflurane is a potent modulator of extrasynaptic GABAA receptors in the thalamus. J Pharmacol Exp Ther 324:1127–1135

    Article  PubMed  CAS  Google Scholar 

  • Jin XT, Pare JF, Smith Y (2011) Differential localization and function of GABA transporters, GAT-1 and GAT-3, in the rat globus pallidus. Eur J Neurosci 33:1504–1518

    Article  PubMed  Google Scholar 

  • Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unit of hippocampal cicuit operations. Science 321:53–57

    Article  PubMed  CAS  Google Scholar 

  • Lai SM, Studenski S, Duncan PW, Perera S (2002) Persisting consequences of stroke measured by the Stroke Impact Scale. Stroke 33(7):1840–1844

    Article  PubMed  Google Scholar 

  • Lee S, Yoon BE, Berglund K, Oh SJ, Park H, Shin HS, Augustine GJ, Lee CJ (2010) Channel-mediated tonic GABA release from glia. Science 330:790–796

    Article  PubMed  CAS  Google Scholar 

  • Maguire J, Mody I (2008) GABAAR plasticity during pregnancy: relevance to postpartum depression. Neuron 59:207–213

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maguire JL, Stell BM, Rafizadeh M, Mody I (2005). Ovarian cycle-linked changes in GABA(A) receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat Neurosci 8:797–804

    Article  PubMed  CAS  Google Scholar 

  • Mann EO, Mody I (2010) Control of hippocampal gamma oscillation frequency by tonic inhibtion and excitation of interneurons. Nat Neurosci 13(2):205–212

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Meera P, Olsen RW, Otis TS, Wallner M (2009) Etomidate, propofol and the neurosteroid THDOC increase the GABA efficacy of recombinant α4β3δ and α4β3 GABAA receptors expressed in HEK cells. Neuropharmacology 56(1):155–160

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miklos IH, Kovacs KJ (2002) GABAergic innervation of corticotropin-releasing hormone (CRH)-secreting parvocellular neurons and its plasticity as demonstrated by quantitative immunoelectron microscopy. Neuroscience 113:581–592

    Article  PubMed  CAS  Google Scholar 

  • Minelli A, Brecha NC, Karschin C, DeBiasi S, Conti F (1995) GAT-1, a high-affinity GABA plasma membrane transporter, is localized to neurons and astroglia in the cerebral cortex. J Neurosci 15:7734–7746

    PubMed  CAS  Google Scholar 

  • Minelli A, DeBiasi S, Brecha NC, Zuccarello L V, Conti F (1996). GAT-3, a high-affinity GABA plasma membrane transporter, is localized to astrocytic processes, and it is not confined to the vicinity of GABAergic synapses in the cerebral cortex. J Neurosci 16:6255–6264

    PubMed  CAS  Google Scholar 

  • Mortensen M, Smart TG (2006) Extrasynaptic alphabeta subunit GABAA receptors on rat hippocampal pyramidal neurons. J Physiol 577: 841–856.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mortensen M, Ebert B, Wafford K, Smart TG (2010) Distinct activities of GABA agonists at synaptic- and extrasynaptic-type GABAA receptors. J Physiol 588:1251–1268

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Naylor DE, Liu H, Wasterlain CG (2005) Trafficking of GABA(A) receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. J Neurosci 25: 7724–7733.

    Article  PubMed  CAS  Google Scholar 

  • Ng YS, Stein J, Ning M, Black-Schaffer RM (2007) Comparison of clinical characteristics and functional outcomes of ischemic stroke in different vascular territories. Stroke 38(8):2309–2314

    Article  PubMed  Google Scholar 

  • Nusser Z, Mody I (2002) Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells. J Neurophysiol 87:2624–2628

    PubMed  CAS  Google Scholar 

  • Nusser Z, Sieghart W, Somogyi P (1998) Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J Neurosci 18:1693–1703

    PubMed  CAS  Google Scholar 

  • Olsen RW, Sieghart W (2008) International union of pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology and function. Update. Pharmacol Rev 60:243–260

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Olsen RW, Sieghart W (2009). GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 56(1):141–148

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Orser BA, Wang LY, Pennefather PS, MacDonald JF (1994) Propofol modulates activation and desensitization of GABAA receptors in cultured murine hippocampal neurons. J Neurosci 14:7747–7760

    PubMed  CAS  Google Scholar 

  • Pavlov I, Walker MC (2012) Tonic GABA(A) receptor-mediated signalling in temporal lobe epilepsy. Neuropharmacology 69:55–61

    Article  PubMed  Google Scholar 

  • Pavlov I, Savtchenko LP, Kullmann DM, Semyanov A, Walker MC (2009) Outwardly rectifying tonically active GABAA receptors in pyramidal cells modulate neuronal offset, not gain. J Neurosci 29:15341–15350

    Article  PubMed  CAS  Google Scholar 

  • Pavlov I, Huusko N, Drexel M, Kirchmair E, Sperk G, Pitkänen A, Walker MC (2011). Progressive loss of phasic, but not tonic, GABA(A) receptor-mediated inhibition in dentate granule cells in a model of post-traumatic epilepsy in rats. Neuroscience 194:208–219

    Article  PubMed  CAS  Google Scholar 

  • Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000) GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101:815–850

    Article  PubMed  CAS  Google Scholar 

  • Rajasekaran K, Joshi S, Sun C, Mtchedlishvilli Z, Kapur J (2010). Receptors with low affinity for neurosteroids and GABA contribute to tonic inhibition of granule cells in epileptic animals. Neurobiol Dis 40:490–501

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Richardson BD, Ling LL, Uteshev VV, Caspary DM (2011) Extrasynaptic GABA(A) receptors and tonic inhibition in rat auditory thalamus. PLoS ONE 6(1):e16508

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Richardson BD, Ling LL, Uteshev VV, Caspary DM (2013) Reduced GABA(A) receptor-mediated tonic inhibition in aged rat auditory thalamus. J Neurosci 33(3):1218–1227

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rossi DJ, Hamann M (1998) Spillover-mediated transmission at inhibitory synapses promoted by high affinity alpha6 subunit GABA(A) receptors and glomerular geometry. Neuron 20:783–795

    Article  PubMed  CAS  Google Scholar 

  • Rossi DJ, Hamann M, Attwell D (2003) Multiple modes of GABAergic inhibition of rat cerebellar granule cells. J Physiol 548:97–110

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schwartzkroin PA, Prince DA (1977). Penicillin-induced epileptilorm activity in the hippocampal in vitro preparation. Ann Neurol 1:463–469

    Article  PubMed  CAS  Google Scholar 

  • Scimemi A, Semyanov A, Sperk G, Kullmann DM, Walker M (2005) Multiple and plastic receptors mediate tonic GABAA receptor currents in the hippocampus. J Neurosci 15:10016–10024

    Article  Google Scholar 

  • Semyanov A, Walker MC, Kullmann DM (2003) GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. Nat Neurosci 6:484–490

    PubMed  CAS  Google Scholar 

  • Semyanov A, Walker MC, Kullmann DM, Silver RA (2004) Tonically active GABA A receptors: modulating gain and maintaining the tone. Trends Neurosci 27:262–269

    Article  PubMed  CAS  Google Scholar 

  • Sieghart W, Sperk G (2002) Subunit composition, distribution and function of GABAA receptor subtypes. Curr Top Med Chem 2:795–816

    Article  PubMed  CAS  Google Scholar 

  • Sperk G, Schwarzer C, Tsunashima K, Fuchs K, Sieghart W (1997) GABAA receptor subunits in the rat hippocampus I: immunocytochemical distribution of 13 subunits. Neuroscience 80:987–1000

    Article  PubMed  CAS  Google Scholar 

  • Stell BM, Brickley SG, Tang CY, Farrant M, Mody I (2003) Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. Proc Nat Acad Sci U S A 100:14439–14444

    Article  CAS  Google Scholar 

  • Szaflarski JP, Difrancesco M, Hirschauer T, Banks C, Privitera MD, Gotman J, Holland SK (2010) Cortical and subcortical contributions to absence seizure onset examined with EEG/fMRI. Epilepsy Behav 18(4):404–413

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao W, Higgs MH, Spain WJ, Ransom CB (2013). Postsynaptic GABAB receptors nnhance extrasynaptic GABAA receptor function in dentate gyrus granule cells. J Neurosci 33:3738–3743

    Article  PubMed  CAS  Google Scholar 

  • Wafford KA, Ebert B (2006) Gaboxadol—a new awakening in sleep. Curr Opin Pharmacol 6:30–36

    Article  PubMed  CAS  Google Scholar 

  • Wall MJ, Usowicz MM (1997) Development of action potential-dependent and independent spontaneous GABAA receptor-mediated currents in granule cells of postnatal rat cerebellum. Eur J Neurosci 9:533–548

    Article  PubMed  CAS  Google Scholar 

  • Wei W, Faria LC, Mody I (2004) Low ethanol concentrations selectively augment the tonic inhibition mediated by delta subunit-containing GABAA receptors in hippocampal neurons. J Neurosci 24:8379–8382

    Article  PubMed  CAS  Google Scholar 

  • Westmijse I, Ossenblok P, Gunning B, van Luijtelaar G (2009) Onset and propagation of spike and slow wave discharges in human absence epilepsy: a MEG study. Epilepsia 50:2538–2548

    Article  PubMed  Google Scholar 

  • Winsky-Sommerer R, Vyazovskiy VV, Homanics GE, Tobler I (2007) The EEG effects of THIP (Gaboxadol) on sleep and waking are mediated by the GABA(A)delta-subunit-containing receptors. Eur J Neurosci 25:1893–1899

    Article  PubMed  Google Scholar 

  • Wlodarczyk A, Sylantyev S, Herd MB, Kersanté F, Lambert JJ, Rusakov DA, Linthorst ACE, Semyanov A, Belelli D, Pavlov I, Walker MC (2013). GABA-independent GABAA receptor openings maintain tonic currents. J Neurosci 33(9):3905–3914

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yamada J, Furukawa T, Ueno S, Yamamoto S, Fukuda A (2007) Molecular basis for the GABAA receptor-mediated tonic inhibition in rat somatosensory cortex. Cereb Cortex 17:1782–1787

    Article  PubMed  Google Scholar 

  • Yamashita M, Marszalec W, Yeh JZ, Narahashi T (2006) Effects of ethanol on tonic GABA currents in cerebellar granule cells and mammalian cells recombinantly expressing GABAA receptors. J Pharmacol Exp Ther 319:431–438

    Article  PubMed  CAS  Google Scholar 

  • Zhan R-Z, Nadler JV (2009). Enhanced tonic GABA current in normotopic and hilar ectopic dentate granule cells after pilocarpine-induced status epilepticus. J Neurophysiol 102:670–681

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang N, Wei W, Mody I, Houser CR (2007). Altered localization of GABA(A) receptor subunits on dentate granule cell dendrites influences tonic and phasic inhibition in a mouse model of epilepsy. J Neurosci 27:7520–7531

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam C. Errington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Errington, A. (2014). Extrasynaptic GABAA Receptors. In: Errington, A., Di Giovanni, G., Crunelli, V. (eds) Extrasynaptic GABAA Receptors. The Receptors, vol 27. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1426-5_1

Download citation

Publish with us

Policies and ethics