Skip to main content

Transcutaneous Immunization

  • Chapter
  • First Online:

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Transcutaneous immunization (TCI) is a relatively new and promising minimally invasive technique for vaccination. It involves topical delivery of vaccines to immune cells residing in the skin. The skin is the largest immune organ (total surface area of 1.8 m2) and contains a diverse array of immune cells including Langerhans cells (LCs) and dermal dendritic cells (DDCs). This creates the potential for TCI to be an excellent alternative to traditional vaccination methods. Due to the promise of this approach numerous preclinical animal studies and limited human studies have been carried out utilizing TCI (some of which will be summarized in this review) and it is surely only a matter of time until such products reach the market.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ainbinder D, Touitou E (2005) Testosterone ethosomes for enhanced transdermal delivery. Drug Deliv 12(5):297–303. doi:10.1080/10717540500176910

    CAS  PubMed  Google Scholar 

  • Akhtar N (2011) Penetration enhancing effect of polysorbate 20 and 80 on the in vitro percutaneous absorption of L-ascorbic acid. Trop J Pharm Res 10(3):281–288. doi:10.4314/tjpr.v10i3.1

    CAS  Google Scholar 

  • Arsic I, Vuleta G (1999) Influence of liposomes on the stability of vitamin a incorporated in polyacrylate hydrogel. Int J Cosmet Sci 21(4):219–225. doi:10.1046/j.1467-2494.1999.181682.x

    CAS  PubMed  Google Scholar 

  • Aylward B, Lloyd J, Zaffran M, Mcnairscott R, Evans P (1995) Reducing the risk of unsafe injections in immunization programs—financial and operational implications of various injection technologies. Bull World Health Organ 73(4):531–540

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bal S, Ding Z, Kersten GA, Jiskoot W, Bouwstra J (2010a) Microneedle-based transcutaneous immunisation in mice with N-trimethyl chitosan adjuvanted diphtheria toxoid formulations. Pharm Res 27(9):1837–1847. doi:10.1007/s11095-010-0182-y

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bal SM, Ding Z, van Riet E, Jiskoot W, Bouwstra JA (2010b) Advances in transcutaneous vaccine delivery: do all ways lead to Rome? J Control Release 148(3):266-282; doi:http://dx.doi.org/10.1016/j.jconrel.2010.09.018

  • Bal SM, Slütter B, Jiskoot W, Bouwstra JA (2011) Small is beautiful: N-trimethyl chitosan–ovalbumin conjugates for microneedle-based transcutaneous immunisation. Vaccine 29(23):4025–4032. doi:10.1016/j.vaccine.2011.03.039

    CAS  PubMed  Google Scholar 

  • Bal SM, Slütter B, Verheul R, Bouwstra JA, Jiskoot W (2012) Adjuvanted, antigen loaded N-trimethyl chitosan nanoparticles for nasal and intradermal vaccination: adjuvant- and site-dependent immunogenicity in mice. Eur J Pharm Sci 45(4):475–481; doi:http://dx.doi.org/10.1016/j.ejps.2011.10.003

  • Barry BW (2001) Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci 14(2):101–114

    CAS  PubMed  Google Scholar 

  • Bender J, Simonsson C, Smedh M, Engstrom S, Ericson MB (2008) Lipid cubic phases in topical drug delivery: visualization of skin distribution using two-photon microscopy. J Control Release 129(3):163–169. doi:10.1016/j.jconrel.2008.04.020

    CAS  PubMed  Google Scholar 

  • Benson HA (2006) Transfersomes for transdermal drug delivery. Expert Opin Drug Deliv 3(6):727–737. doi:10.1517/17425247.3.6.727

    CAS  PubMed  Google Scholar 

  • Betz G, Aeppli A, Menshutina N, Leuenberger H (2005) In vivo comparison of various liposome formulations for cosmetic application. Int J Pharm 296(1–2):44–54. doi:10.1016/j.ijpharm.2005.02.032

    CAS  PubMed  Google Scholar 

  • Birchall J, Clemo R, Anstey A, John D (2011) Microneedles in clinical practice–an exploratory study into the opinions of healthcare professionals and the public. Pharm Res 28(1):95–106. doi:10.1007/s11095-010-0101-2

    CAS  PubMed  Google Scholar 

  • Bobr A, Olvera-Gomez I, Igyarto BZ, Haley KM, Hogquist KA, Kaplan DH (2010) Acute ablation of Langerhans cells enhances skin immune responses. J Immunol 185(8):4724–4728. doi:10.4049/jimmunol.1001802

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boinpally RR, Zhou SL, Poondru S, Devraj G, Jasti BR (2003) Lecithin vesicles for topical delivery of diclofenac. Eur J Pharm Biopharm 56(3):389–392. doi:10.1016/S0939-6411(03)00143-7

    CAS  PubMed  Google Scholar 

  • Bolzinger M-A, Briançon S, Pelletier J, Chevalier Y (2012) Penetration of drugs through skin, a complex rate-controlling membrane. Curr Opin Coll Interface Sci 17(3):156–165. doi:10.1016/j.cocis.2012.02.001

    CAS  Google Scholar 

  • Bos JD, Meinardi MMHM (2000) The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol 9(3):165–169

    CAS  PubMed  Google Scholar 

  • Bouwstra JA, de Vries MA, Gooris GS, Bras W, Brussee J, Ponec M (1991) Thermodynamic and structural aspects of the skin barrier. J Control Release 15(3):209–219. doi:10.1016/0168-3659(91)90112-q

    CAS  Google Scholar 

  • Bouwstra JA, Honeywell-Nguyen PL, Gooris GS, Ponec M (2003) Structure of the skin barrier and its modulation by vesicular formulations. Prog Lipid Res 42(1):1–36

    CAS  PubMed  Google Scholar 

  • Boyd BJ (2003) Characterisation of drug release from cubosomes using the pressure ultrafiltration method. Int J Pharm 260(2):239–247. doi:10.1016/S0378-5173(03)00262-X

    CAS  PubMed  Google Scholar 

  • Brown MB, Martin GP, Jones SA, Akomeah FK (2006) Dermal and transdermal drug delivery systems: current and future prospects. Drug Deliv 13(3):175–187. doi:10.1080/10717540500455975

    CAS  PubMed  Google Scholar 

  • Brunel F, Darbouret A, Ronco J (1999) Cationic lipid DC-Chol induces an improved and balanced immunity able to overcome the unresponsiveness to the hepatitis B vaccine. Vaccine 17(17):2192–2203. doi:10.1016/s0264-410x(98)00492-7

    CAS  PubMed  Google Scholar 

  • Bursch LS, Wang L, Igyarto B, Kissenpfennig A, Malissen B, Kaplan DH, Hogquist KA (2007a) Identification of a novel population of Langerin(+) dendritic cells. J Exp Med 204(13):3147–3156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bursch LS, Wang L, Igyarto B, Kissenpfennig A, Malissen B, Kaplan DH, Hogquist KA (2007b) Identification of a novel population of Langerin+ dendritic cells. J Exp Med 204(13):3147–3156. doi:10.1084/jem.20071966

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burton SA, Ng CY, Simmers R, Moeckly C, Brandwein D, Gilbert T, Johnson N, Brown K, Alston T, Prochnow G, Siebenaler K, Hansen K (2011) Rapid intradermal delivery of liquid formulations using a hollow microstructured array. Pharm Res 28(1):31–40. doi:10.1007/s11095-010-0177-8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carey JB, Pearson FE, Vrdoljak A, McGrath MG, Crean AM, Walsh PT, Doody T, O’Mahony C, Hill AVS, Moore AC (2011) Microneedle array design determines the induction of protective memory CD8(+) T cell responses induced by a recombinant live malaria vaccine in mice. PLoS One 6(7):e22442. doi:10.1371/journal.pone.0022442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castro GA, Ferreira LAM (2008) Novel vesicular and particulate drug delivery systems for topical treatment of acne. Expert Opin Drug Deliv 5(6):665–679. doi:10.1517/17425240802167092

    CAS  PubMed  Google Scholar 

  • Cevc G (1996) Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit Rev Ther Drug Carrier Syst 13(3–4):257–388

    CAS  PubMed  Google Scholar 

  • Cevc G, Blume G (1992) Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta 1104(1):226–232

    CAS  PubMed  Google Scholar 

  • Cevc G, Schatzlein A, Richardsen H (2002) Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements. Biochim Biophy Acta 1564(1):21–30

    CAS  Google Scholar 

  • Cevc G, Mazgareanu S, Rother M, Vierl U (2008) Occlusion effect on transcutaneous NSAID delivery from conventional and carrier-based formulations. Int J Pharm 359(1–2):190–197. doi:10.1016/j.ijpharm.2008.04.005

    CAS  PubMed  Google Scholar 

  • Chen D, Colditz IG, Glenn GM, Tsonis CG (2002) Effect of transcutaneous immunization with co-administered antigen and cholera toxin on systemic and mucosal antibody responses in sheep. Vet Immunol Immunopathol 86(3–4):177–182

    CAS  PubMed  Google Scholar 

  • Chen X, Shah D, Kositratna G, Manstein D, Anderson RR, Wu MX (2012) Facilitation of transcutaneous drug delivery and vaccine immunization by a safe laser technology. J Control Release 159(1):43–51; doi:http://dx.doi.org/10.1016/j.jconrel.2012.01.002

  • Combadiere B, Mahe B (2008) Particle-based vaccines for transcutaneous vaccination. Comp Immunol Microbiol Infect Dis 31(2–3):293–315. doi:10.1016/j.cimid.2007.07.015

    PubMed  Google Scholar 

  • Cosco D, Celia C, Cilurzo F, Trapasso E, Paolino D (2008) Colloidal carriers for the enhanced delivery through the skin. Expert Opin Drug Deliv 5(7):737–755. doi:10.1517/17425247.5.7.737

    CAS  PubMed  Google Scholar 

  • Coudeville L, Brunot A, Szucs TD, Dervaux B (2005) The economic value of childhood varicella vaccination in France and Germany. Value Health 8(3):209–222

    PubMed  Google Scholar 

  • Davidsen J, Rosenkrands I, Christensen D, Vangala A, Kirby D, Perrie Y, Agger EM, Andersen P (2005) Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6,6′-dibehenate)—a novel adjuvant inducing both strong CMI and antibody responses. Biochim Biophy Acta 1718(1–2):22–31. doi:10.1016/j.bbamem.2005.10.011

    CAS  Google Scholar 

  • Dayan N, Touitou E (2000) Carriers for skin delivery of trihexyphenidyl HCl: ethosomes vs. liposomes. Biomaterials 21(18):1879–1885. doi:10.1016/s0142-9612(00)00063-6

    CAS  PubMed  Google Scholar 

  • Dearman RJ, Bhushan M, Cumberbatch M, Kimber I, Griffiths CEM (2004) Measurement of cytokine expression and Langerhans cell migration in human skin following suction blister formation. Exp Dermatol 13(7):452–460

    CAS  PubMed  Google Scholar 

  • Deshmukh DD, Ravis WR, Betageri GV (2008) Improved delivery of cromolyn from oral proliposomal beads. Int J Pharm 358(1–2):128–136. doi:10.1016/j.ijpharm.2008.02.026

    CAS  PubMed  Google Scholar 

  • Díez-Sales O, Garrigues TM, Herráez JV, Belda R, Martín-Villodre A, Herráez M (2005) In vitro percutaneous penetration of acyclovir from solvent systems and Carbopol 971-P hydrogels: influence of propylene glycol. J Pharm Sci 94(5):1039–1047. doi:10.1002/jps.20317

    PubMed  Google Scholar 

  • Ding Z, Bal SM, Romeijn S, Kersten GFA, Jiskoot W, Bouwstra JA (2011) Transcutaneous immunization studies in mice using diphtheria toxoid-loaded vesicle formulations and a microneedle array. Pharm Res 28(1):145–158. doi:10.1007/s11095-010-0093-y

    CAS  PubMed Central  PubMed  Google Scholar 

  • Donnelly RF, Majithiya R, Singh TRR, Morrow DIJ, Garland MJ, Demir YK, Migalska K, Ryan E, Gillen D, Scott CJ, Woolfson AD (2011) Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res 28(1):41–57. doi:10.1007/s11095-010-0169-8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dubey V, Mishra D, Nahar M, Jain NK (2007) Vesicles as tools for the modulation of skin permeability. Expert Opin Drug Deliv 4(6):579–593. doi:10.1517/17425247.4.6.579

    CAS  PubMed  Google Scholar 

  • El Maghraby GM, Barry BW, Williams AC (2008) Liposomes and skin: from drug delivery to model membranes. Eur J Pharm Sci 34(4–5):203–222. doi:10.1016/j.ejps.2008.05.002

    PubMed  Google Scholar 

  • Elnekave M, Furmanov K, Nudel I, Arizon M, Clausen BE, Hovav A-H (2010) Directly transfected Langerin+ dermal dendritic cells potentiate CD8+ T cell responses following intradermal plasmid DNA Immunization. J Immunol 185(6):3463–3471. doi:10.4049/jimmunol.1001825

    CAS  PubMed  Google Scholar 

  • Esposito E, Cortesi R, Drechsler M, Paccamiccio L, Mariani P, Contado C, Stellin E, Menegatti E, Bonina F, Puglia C (2005) Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res 22(12):2163–2173. doi:10.1007/s11095-005-8176-x

    CAS  PubMed  Google Scholar 

  • Eyles JE, Elvin SJ, Westwood A, LeButt CS, Alpar HO, Somavarapu S, Williamson ED (2004) Immunisation against plague by transcutaneous and intradermal application of subunit antigens. Vaccine 22(31–32):4365–4373. doi:10.1016/j.vaccine.2004.02.049

    CAS  PubMed  Google Scholar 

  • Fang JY, Hung CF, Fang YP, Chan TF (2004) Transdermal iontophoresis of 5-fluorouracil combined with electroporation and laser treatment. Int J Pharm 270(1–2):241–249. doi:10.1016/j.ijpharm.2003.10.025

    CAS  PubMed  Google Scholar 

  • Fang JY, Fang CL, Liu CH, Su YH (2008a) Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm 70(2):633–640. doi:10.1016/j.ejpb.2008.05.008

    CAS  PubMed  Google Scholar 

  • Fang YP, Tsai YH, Wu PC, Huang YB (2008b) Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy. Int J Pharm 356(1–2):144–152. doi:10.1016/j.ijpharm.2008.01.020

    CAS  PubMed  Google Scholar 

  • Flacher V, Tripp CH, Stoitzner P, Haid B, Ebner S, Del Frari B, Koch F, Park CG, Steinman RM, Idoyaga J, Romani N (2010) Epidermal Langerhans cells rapidly capture and present antigens from C-type lectin-targeting antibodies deposited in the dermis. J Invest Dermatol 130(3):755–762. doi:10.1038/Jid.2009.343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fuchs E, Raghavan S (2002) Getting under the skin of epidermal morphogenesis. Nat Rev Genet 3(3):199–209

    CAS  PubMed  Google Scholar 

  • Garçon N, Chomez P, Van Mechelen M (2007) GlaxoSmithKline adjuvant systems in vaccines: concepts, achievements and perspectives. Expert Rev Vaccines 6(5):723–739

    PubMed  Google Scholar 

  • Gerstel MSPA, Place, CA, Virgil A (1976) Drug delivery device. United States, Palo Alto, CA. Patent 3964482

    Google Scholar 

  • Ginhoux F, Tacke F, Angeli V, Bogunovic M, Loubeau M, Dai X-M, Stanley ER, Randolph GJ, Merad M (2006) Langerhans cells arise from monocytes in vivo. Nat Immunol 7(3):265–273; doi:http://www.nature.com/ni/journal/v7/n3/suppinfo/ni1307_S1.html

  • Glenn GM, Scharton-Kersten T, Vassell R, Matyas GR, Alving CR (1999) Transcutaneous immunization with bacterial ADP-ribosylating exotoxins as antigens and adjuvants. Infect Immun 67(3):1100–1106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glenn GM, Kenney RT, Ellingsworth LR, Frech SA, Hammond SA, Zoeteweij JP (2003) Transcutaneous immunization and immunostimulant strategies: capitalizing on the immunocompetence of the skin. Expert Rev Vaccines 2(2):253–267. doi:10.1586/14760584.2.2.253

    CAS  PubMed  Google Scholar 

  • Gordon S, Young K, Wilson R, Rizwan S, Kemp R, Rades T, Hook S (2012) Chitosan hydrogels containing liposomes and cubosomes as particulate sustained release vaccine delivery systems. J Liposome Res 22(3):193–204. doi:10.3109/08982104.2011.637502

    CAS  PubMed  Google Scholar 

  • Gratieri T, Alberti I, Lapteva M, Kalia YN (2013) Next generation intra- and transdermal therapeutic systems: using non- and minimally-invasive technologies to increase drug delivery into and across the skin. Eur J Pharm Sci 18;50(5):609–222; doi:http://dx.doi.org/10.1016/j.ejps.2013.03.019

  • Hadgraft J, Walters KA (1992) Skin penetration enhancers. In: Juninger HE (ed) Drug targeting and delivery. Ellis Horwood, Chichester, pp 169–177

    Google Scholar 

  • Hallengard D, Brave A, Isaguliants M, Blomberg P, Enger J, Stout R, King A, Wahren B (2012) A combination of intradermal jet-injection and electroporation overcomes in vivo dose restriction of DNA vaccines. Genet Vaccines Ther 10(1):5–13. doi:10.1186/1479-0556-10-5

    PubMed Central  PubMed  Google Scholar 

  • Han M, Kim DK, Kang SH, Yoon HR, Kim BY, Lee SS, Kim KD, Lee HG (2009) Improvement in antigen-delivery using fabrication of a grooves-embedded microneedle array. Sensors Actuators B Chem 137(1):274–280. doi:10.1016/j.snb.2008.11.017

    Google Scholar 

  • Heard CM, Kung D, Thomas CP (2006) Skin penetration enhancement of mefenamic acid by ethanol and 1,8-cineole can be explained by the ‘pull’ effect. Int J Pharm 321(1–2):167–170. doi:10.1016/j.ijpharm.2006.05.018

    CAS  PubMed  Google Scholar 

  • Henri S, Poulin LF, Tamoutounour S, Ardouin L, Guilliams M, de Bovis B, Devilard E, Viret C, Azukizawa H, Kissenpfennig A, Malissen B (2010) CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J Exp Med 207(1):189–206. doi:10.1084/jem.20091964

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henry S, McAllister DV, Allen MG, Prausnitz MR (1999) Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci 88(9):948. doi:10.1021/js990783q

    CAS  PubMed  Google Scholar 

  • Hirschberg H, van Kuijk S, Loch J, Jiskoot W, Bouwstra J, Kersten G, Amorij J-P (2012) A combined approach of vesicle formulations and microneedle arrays for transcutaneous immunization against hepatitis B virus. Eur J Pharm Sci 46(1–2):1–7. doi:10.1016/j.ejps.2012.01.013

    CAS  PubMed  Google Scholar 

  • Holten-Andersen L, Doherty TM, Korsholm KS, Andersen P (2004) Combination of the cationic surfactant dimethyl dioctadecyl ammonium bromide and synthetic mycobacterial cord factor as an efficient adjuvant for tuberculosis subunit vaccines. Infect Immun 72(3):1608–1617. doi:10.1128/iai.72.3.1608-1617.2004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Honda T, Nakajima S, Egawa G, Ogasawara K, Malissen B, Miyachi Y, Kabashima K (2010) Compensatory role of Langerhans cells and langerin-positive dermal dendritic cells in the sensitization phase of murine contact hypersensitivity. J Allergy Clin Immunol 125(5):1154–1156.e1152. doi:10.1016/j.jaci.2009.12.005

    PubMed  Google Scholar 

  • Igyártó Botond Z, Haley K, Ortner D, Bobr A, Gerami-Nejad M, Edelson Brian T, Zurawski Sandra M, Malissen B, Zurawski G, Berman J, Kaplan Daniel H (2011) Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 35(2):260–272. doi:10.1016/j.immuni.2011.06.005

    PubMed  Google Scholar 

  • Kahlon R, Dutz JP (2003) Skin immune responses to peptide and protein antigen are TLR4 independent. Cell Immunol 226(2):116–123. doi:10.1016/j.cellimm.2003.11.007

    CAS  PubMed  Google Scholar 

  • Kai T, Mak VHW, Potts RO, Guy RH (1990) Mechanism of percutaneous penetration enhancement—effect of N-alkanols on the permeability barrier of hairless mouse skin. J Control Release 12(2):103–112

    CAS  Google Scholar 

  • Kang EN, Wang HF, Kwon IK, Robinson J, Park K, Cheng JX (2006) In situ visualization of paclitaxel distribution and release by coherent anti-stokes Raman scattering microscopy. Anal Chem 78(23):8036–8043

    CAS  PubMed  Google Scholar 

  • Kaushik S, Hord AH, Denson DD, McAllister DV, Smitra S, Allen MG, Prausnitz MR (2001) Lack of pain associated with microfabricated microneedles. Anesth Analg 92(2):502–504

    CAS  PubMed  Google Scholar 

  • Kim YC, Quan FS, Compans RW, Kang SM, Prausnitz MR (2010) Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. J Control Release 142(2):187–195. doi:10.1016/j.jconrel.2009.10.013

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim Y-C, Quan F-S, Compans R, Kang S-M, Prausnitz M (2011) Stability kinetics of influenza vaccine coated onto microneedles during drying and storage. Pharm Res 28(1):135–144. doi:10.1007/s11095-010-0134-6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim YC, Jarrahian C, Zehrung D, Mitragotri S, Prausnitz MR (2012a) Delivery systems for intradermal vaccination. Curr Top Microbiol Immunol 351:77–112. doi:10.1007/82_2011_123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim YC, Park JH, Prausnitz MR (2012b) Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. doi:10.1016/j.addr.2012.04.005

    Google Scholar 

  • Kobayashi D, Matsuzawa T, Sugibayashi K, Morimoto Y, Kimura M (1994) Analysis of the combined effect of 1-menthol and ethanol as skin permeation enhancers based on a two-layer skin model. Pharm Res 11(1):96–103. doi:10.1023/a:1018953929457

    CAS  PubMed  Google Scholar 

  • Krueger GG, Stingl G (1989) Immunology inflammation of the skin—a 50-year perspective. J Invest Dermatol 92(4):S32–S51. doi:10.1111/1523-1747.Ep13074960

    Google Scholar 

  • Kubo A, Nagao K, Yokouchi M, Sasaki H, Amagai M (2009) External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J Exp Med 206(13):2937–2946. doi:10.1084/jem.20091527

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar A, Li XR, Sandoval MA, Rodriguez BL, Sloat BR, Cui ZR (2011) Permeation of antigen protein-conjugated nanoparticles and live bacteria through microneedle-treated mouse skin. Int J Nanomedicine 6:1253–64. doi:10.2147/Ijn.S20413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kwon TK, Kim J-C (2010) Preparation and in vitro skin permeation of cubosomes containing hinokitiol. J Dispers Sci Technol 31(7):1004–1009. doi:10.1080/01932690903224862

    CAS  Google Scholar 

  • Laddy DJ, Yan J, Khan AS, Andersen H, Cohn A, Greenhouse J, Lewis M, Manischewitz J, King LR, Golding H, Draghia-Akli R, Weiner DB (2009) Electroporation of synthetic DNA antigens offers protection in nonhuman Primates challenged with highly pathogenic avian influenza virus. J Virol 83(9):4624–4630

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lambert PH, Laurent PE (2008) Intradermal vaccine delivery: will new delivery systems transform vaccine administration? Vaccine 26(26):3197–3208. doi:10.1016/j.vaccine.2008.03.095

    CAS  PubMed  Google Scholar 

  • Lampe MA, Burlingame AL, Whitney J, Williams ML, Brown BE, Roitman E, Elias PM (1983) Human stratum-corneum lipids—characterization and regional variations. J Lipid Res 24(2):120–130

    CAS  PubMed  Google Scholar 

  • Lee JW, Park J-H, Prausnitz MR (2008) Dissolving microneedles for transdermal drug delivery. Biomaterials 29(13):2113–2124. doi:10.1016/j.biomaterials.2007.12.048

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee K, Lee CY, Jung H (2011) Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials 32(11):3134–3140. doi:10.1016/j.biomaterials.2011.01.014

    CAS  PubMed  Google Scholar 

  • Li N, Peng LH, Chen X, Nakagawa S, Gao JQ (2011) Effective transcutaneous immunization by antigen-loaded flexible liposome in vivo. Int J Nanomedicine 6:3241–3250

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu X, Grice JE, Lademann J, Otberg N, Trauer S, Patzelt A, Roberts MS (2011) Hair follicles contribute significantly to penetration through human skin only at times soon after application as a solvent deposited solid in man. Br J Clin Pharmacol 72(5):768–774. doi:10.1111/j.1365-2125.2011.04022.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lopes LB, Speretta FFF, Vitoria M, Bentley LB (2007) Enhancement of skin penetration of vitamin K using monoolein-based liquid crystalline systems. Eur J Pharm Sci 32(3):209–215. doi:10.1016/j.ejps.2007.07.006

    CAS  PubMed  Google Scholar 

  • Madsen HB, Ifversen P, Madsen F, Brodin B, Hausser I, Nielsen HM (2009) In vitro cutaneous application of ISCOMs on human skin enhances delivery of hydrophobic model compounds through the stratum corneum. AAPS J 11(4):728–739. doi:10.1208/s12248-009-9149-5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin CJ, Allender CJ, Brain KR, Morrissey A, Birchall JC (2012) Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. J Control Release 158(1):93–101. doi:10.1016/j.jconrel.2011.10.024

    CAS  PubMed  Google Scholar 

  • Mattheolabakis G, Lagoumintzis G, Panagi Z, Papadimitriou E, Partidos CD, Avgoustakis K (2010) Transcutaneous delivery of a nanoencapsulated antigen: induction of immune responses. Int J Pharm 385(1–2):187–193; doi:http://dx.doi.org/10.1016/j.ijpharm.2009.10.033

  • McAllister DV, Wang PM, Davis SP, Park J-H, Canatella PJ, Allen MG, Prausnitz MR (2003) Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci 100(24):13755–13760. doi:10.1073/pnas.2331316100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Menon GK (2002) New insights into skin structure: scratching the surface. Adv Drug Deliv Rev 54:S3–S17

    CAS  PubMed  Google Scholar 

  • Merad M, Ginhoux F, Collin M (2008) Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol 8(12):935–947. doi:10.1038/nri2455

    CAS  PubMed  Google Scholar 

  • Mezei M, Gulasekharam V (1980) Liposomes—a selective drug delivery system for the topical route of administration. Life Sci 26(18):1473–1477

    CAS  PubMed  Google Scholar 

  • Michaels AS, Chandrasekaran SK, Shaw JE (1975) Drug permeation through human skin: theory and in vitro experimental measurement. Am Inst Chem Eng J 21(5):985–996. doi:10.1002/aic.690210522

    CAS  Google Scholar 

  • Miller MA, Pisani E (1999) The cost of unsafe injections. Bull World Health Organ 77(10):808–811

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mishra D (2010) Evaluation of solid lipid nanoparticles as carriers for delivery of Hepatitis B surface antigen for vaccination using subcutaneous route. J Pharm Pharm Sci 13(4):495

    CAS  PubMed  Google Scholar 

  • Mishra D, Dubey V, Asthana A, Saraf DK, Jain NK (2006) Elastic liposomes mediated transcutaneous immunization against Hepatitis B. Vaccine 24(22):4847–4855. doi:10.1016/j.vaccine.2006.03.011

    CAS  PubMed  Google Scholar 

  • Mishra D, Mishra PK, Dabadghao S, Dubey V, Nahar M, Jain NK (2010) Comparative evaluation of hepatitis B surface antigen-loaded elastic liposomes and ethosomes for human dendritic cell uptake and immune response. Nanomedicine 6(1):110–118. doi:10.1016/j.nano.2009.04.003

    CAS  PubMed  Google Scholar 

  • Mitsui H, Watanabe T, Saeki H, Mori K, Fujita H, Tada Y, Asahina A, Nakamura K, Tamaki K (2004) Differential expression and function of Toll-like receptors in Langerhans cells: comparison with splenic dendritic cells. J Invest Dermatol 122(1):95–102

    CAS  PubMed  Google Scholar 

  • Mittal A, Raber AS, Schaefer UF, Weissmann S, Ebensen T, Schulze K, Guzmán CA, Lehr C-M, Hansen S (2013) Non-invasive delivery of nanoparticles to hair follicles: A perspective for transcutaneous immunization. Vaccine 31(34):3442–3451; doi:http://dx.doi.org/10.1016/j.vaccine.2012.12.048

  • Morgen M, Lu GW, Du D, Stehle R, Lembke F, Cervantes J, Ciotti S, Haskell R, Smithey D, Haley K, Fan C (2011) Targeted delivery of a poorly water-soluble compound to hair follicles using polymeric nanoparticle suspensions. Int J Pharm 416(1):314–322. doi:10.1016/j.ijpharm.2011.06.019

    CAS  PubMed  Google Scholar 

  • Morimoto Y, Wada Y, Seki T, Sugibayashi K (2002) In vitro skin permeation of morphine hydrochloride during the finite application of penetration-enhancing system containing water, ethanol and l-menthol. Biol Pharm Bull 25(1):134–136

    CAS  PubMed  Google Scholar 

  • Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ (2009) Skin immune sentinels in health and disease. Nat Rev Immunol 9(10):679–691

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nokhodchi A, Shokri J, Dashbolaghi A, Hassan-Zadeh D, Ghafourian T, Barzegar-Jalali M (2003) The enhancement effect of surfactants on the penetration of lorazepam through rat skin. Int J Pharm 250(2):359–369. doi:10.1016/s0378-5173(02)00554-9

    CAS  PubMed  Google Scholar 

  • Norlen L, Al-Amoudi A (2004) stratum corneum keratin structure, function, and formation: the cubic rod-packing and membrane templating model. J Invest Dermatol 123(4):715–732; doi:http://www.nature.com/jid/journal/v123/n4/suppinfo/5602511s1.html

  • Obata Y, Takayama K, Maitani Y, Machida Y, Nagai T (1993) Effect of ethanol on skin permeation of nonionized and ionized diclofenac. Int J Pharm 89(3):191–198. doi:10.1016/0378-5173(93)90243-9

    CAS  Google Scholar 

  • Ogiso T, Yamaguchi T, Iwaki M, Tanino T, Miyake Y (2001) Effect of positively and negatively charged liposomes on skin permeation of drugs. J Drug Target 9(1):49

    CAS  PubMed  Google Scholar 

  • O’Hagan DT, MacKichan ML, Singh M (2001) Recent developments in adjuvants for vaccines against infectious diseases. Biomol Eng 18(3):69–85

    PubMed  Google Scholar 

  • Otberg N, Richter H, Schaefer H, Blume-Peytavi U, Sterry W, Lademann J (2004) Variations of hair follicle size and distribution in different body sites. J Invest Dermatol 122(1):14–19. doi:10.1046/j.0022-202X.2003.22110.x

    CAS  PubMed  Google Scholar 

  • Paolino D, Lucania G, Mardente D, Alhaique F, Fresta M (2005) Ethosomes for skin delivery of ammonium glycyrrhizinate: In vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers. J Control Release 106(1–2):99–110. doi:10.1016/j.jconrel.2005.04.007

    CAS  PubMed  Google Scholar 

  • Parhi R, Suresh P, Mondal S, Kumar PM (2012) Novel penetration enhancers for skin applications: a review. Curr Drug Deliv 9(2):219–230

    CAS  PubMed  Google Scholar 

  • Park JH, Allen MG, Prausnitz MR (2005) Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. J Control Release 104(1):51–66. doi:10.1016/j.jconrel.2005.02.002

    CAS  PubMed  Google Scholar 

  • Patzelt A, Richter H, Dähne L, Walden P, Wiesmüller K-H, Wank U, Sterry W, Lademann J (2011) Influence of the vehicle on the penetration of particles into hair follicles. Pharmaceutics 3(2):307–314

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paul A, Cevc G, Bachhawat BK (1998) Transdermal immunisation with an integral membrane component, gap junction protein, by means of ultradeformable drug carriers, transfersomes. Vaccine 16(2–3):188–195. doi:10.1016/s0264-410x(97)00185-0

    CAS  PubMed  Google Scholar 

  • Pearton M, Kang S-M, Song J-M, Anstey AV, Ivory M, Compans RW, Birchall JC (2010) Changes in human Langerhans cells following intradermal injection of influenza virus-like particle vaccines. PLoS One 5(8):e12410. doi:10.1371/journal.pone.0012410

    PubMed Central  PubMed  Google Scholar 

  • Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 56(5):581–587. doi:10.1016/j.addr.2003.10.023

    CAS  PubMed  Google Scholar 

  • Proksch E, Jensen J-M (2008) Skin as an organ of protection. In: Goldsmith LA, Katz SI, Gilchrest GA, Paller AS, Leffell DJ, Wolff K (eds) Fitzpatrick’s dermatology in general medicine. McGraw-Hill, New York, pp 383–95

    Google Scholar 

  • Rattanapak T, Birchall J, Young K, Ishii M, Meglinski I, Rades T, Hook S (2013) Transcutaneous immunization using microneedles and cubosomes: Mechanistic investigations using Optical Coherence Tomography and Two-Photon Microscopy. J Control Release 172(3):894–903; doi:http://dx.doi.org/10.1016/j.jconrel.2013.08.018

  • Rizwan SB, Hanley T, Boyd BJ, Rades T, Hook S (2009) Liquid crystalline systems of phytantriol and glyceryl monooleate containing a hydrophilic protein: characterisation, swelling and release kinetics. J Pharm Sci 98(11):4191–4204. doi:10.1002/jps.21724

    CAS  PubMed  Google Scholar 

  • Romani N, Clausen BE, Stoitzner P (2010) Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunol Rev 234(1):120–141. doi:10.1111/j.0105-2896.2009.00886.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scharton-Kersten T, Glenn GM, Vassell R, Yu JM, Walwender D, Alving CR (1999) Principles of transcutaneous immunization using cholera toxin as an adjuvant. Vaccine 17:S37–S43

    CAS  PubMed  Google Scholar 

  • Scheiblhofer S, Thalhamer J, Weiss R (2013) Laser microporation of the skin: prospects for painless application of protective and therapeutic vaccines. Expert Opin Drug Deliv 10(6):761–773. doi:10.1517/17425247.2013.773970

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma BB, Jain SK, Vyas SP (1994) Topical liposome system bearing local-anesthetic lignocaine—preparation and evaluation. J Microencapsul 11(3):279–286

    CAS  PubMed  Google Scholar 

  • Shokri J, Nokhodchi A, Dashbolaghi A, Hassan-Zadeh D, Ghafourian T, Barzegar Jalali M (2001) The effect of surfactants on the skin penetration of diazepam. Int J Pharm 228(1–2):99–107. doi:10.1016/s0378-5173(01)00805-5

    CAS  PubMed  Google Scholar 

  • Singh M, O’Hagan DT (2003) Recent advances in veterinary vaccine adjuvants. Int J Parasitol 33(5–6):469–478. doi:10.1016/s0020-7519(03)00053-5

    CAS  PubMed  Google Scholar 

  • Skountzou I, Quan FS, Jacob J, Compans RW, Kang SM (2006) Transcutaneous immunization with inactivated influenza virus induces protective immune responses. Vaccine 24(35–36):6110–6119. doi:10.1016/j.vaccine.2006.05.014

    CAS  PubMed  Google Scholar 

  • Slütter B, Plapied L, Fievez V, Alonso Sande M, des Rieux A, Schneider Y-J, Van Riet E, Jiskoot W, Préat V (2009) Mechanistic study of the adjuvant effect of biodegradable nanoparticles in mucosal vaccination. J Control Release 138(2):113–121; doi:http://dx.doi.org/10.1016/j.jconrel.2009.05.011

  • Slutter B, Bal S, Keijzer C, Mallants R, Hagenaars N, Que I, Kaijzel E, van Eden W, Augustijns P, Lowik C, Bouwstra J, Broere F, Jiskoot W (2010) Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: Nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine 28(38):6282–6291. doi:10.1016/j.vaccine.2010.06.121

    PubMed  Google Scholar 

  • Slütter B, Soema PC, Ding Z, Verheul R, Hennink W, Jiskoot W (2010) Conjugation of ovalbumin to trimethyl chitosan improves immunogenicity of the antigen. J Control Release 143(2):207–214; doi:http://dx.doi.org/10.1016/j.jconrel.2010.01.007

  • Slütter B, Bal SM, Ding Z, Jiskoot W, Bouwstra JA (2011) Adjuvant effect of cationic liposomes and CpG depends on administration route. J Control Release 154(2):123–130; doi:http://dx.doi.org/10.1016/j.jconrel.2011.02.007

  • Stoecklinger A, Eticha TD, Mesdaghi M, Kissenpfennig A, Malissen B, Thalhamer J, Hammerl P (2011) Langerin+ dermal dendritic cells are critical for CD8+ T cell activation and IgH γ-1 class switching in response to gene gun vaccines. J Immunol 186(3):1377–1383. doi:10.4049/jimmunol.1002557

    CAS  PubMed  Google Scholar 

  • Sullivan SP, Murthy N, Prausnitz MR (2008) Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv Mater 20(5):933. doi:10.1002/adma.200701205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sznitowska M, Janicki S, Williams AC (1998) Intracellular or intercellular localization of the polar pathway of penetration across stratum corneum. J Pharm Sci 87(9):1109–1114. doi:10.1021/js980018w

    CAS  PubMed  Google Scholar 

  • Takeuchi Y, Yasukawa H, Yamaoka Y, Kato Y, Morimoto Y, Fukumori Y, Fukuda T (1992) Effects of fatty acids, fatty amines and propylene glycol on rat stratum corneum lipids and proteins in vitro measured by Fourier transform infrared/attenuated total reflection (FT-IR/ATR) spectroscopy. Chem Pharm Bull (Tokyo) 40(7):1887–1892

    CAS  Google Scholar 

  • Torchilin VP (1996) Liposomes as delivery agents for medical imaging. Mol Med Today 2(6):242–249. doi:10.1016/1357-4310(96)88805-8

    CAS  PubMed  Google Scholar 

  • Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M (2000) Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release 65(3):403–418

    CAS  PubMed  Google Scholar 

  • Touitou E, Godin B, Dayan N, Weiss C, Piliponsky A, Levi-Schaffer F (2001) Intracellular delivery mediated by an ethosomal carrier. Biomaterials 22(22):3053–3059

    CAS  PubMed  Google Scholar 

  • Valladeau J, Ravel O, Dezutter-Dambuyant C, Moore K, Kleijmeer M, Liu Y, Duvert-Frances V, Vincent C, Schmitt D, Davoust J, Caux C, Lebecque S, Saeland S (2000) Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12(1):71–81

    CAS  PubMed  Google Scholar 

  • Verma P, Pathak K (2010) Therapeutic and cosmeceutical potential of ethosomes: an overview. J Adv Pharm Technol Res 1(3):274–282. doi:10.4103/0110-5558.72415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang L, Bursch LS, Kissenpfennig A, Malissen B, Jameson SC, Hogquist KA (2008) Langerin expressing cells promote skin immune responses under defined conditions. J Immunol 180(7):4722–4727

    CAS  PubMed  Google Scholar 

  • Weiss R, Hessenberger M, Kitzmüller S, Bach D, Weinberger EE, Krautgartner WD, Hauser-Kronberger C, Malissen B, Boehler C, Kalia YN, Thalhamer J, Scheiblhofer S (2012) Transcutaneous vaccination via laser microporation. J Control Release 162(2):391–399; doi:http://dx.doi.org/10.1016/j.jconrel.2012.06.031

  • You S-K, Noh Y-W, Park H-H, Han M, Lee SS, Shin S-C, Cho C-W (2010) Effect of applying modes of the polymer microneedle-roller on the permeation of l-ascorbic acid in rats. J Drug Target 18(1):15–20. doi:10.3109/10611860903115274

    CAS  PubMed  Google Scholar 

  • Young SL, Wilson M, Wilson S, Beagley KW, Ward V, Baird MA (2006) Transcutaneous vaccination with virus-like particles. Vaccine 24(26):5406–5412; doi:http://dx.doi.org/10.1016/j.vaccine.2006.03.052

  • Yu J, Kalaria DR, Kalia YN (2011) Erbium:YAG fractional laser ablation for the percutaneous delivery of intact functional therapeutic antibodies. J Control Release 156(1):53–59; doi:http://dx.doi.org/10.1016/j.jconrel.2011.07.024

  • Zaric M, Lyubomska O, Touzelet O, Poux C, Al-Zahrani S, Fay F, Wallace L, Terhorst D, Malissen B, Henri S, Power UF, Scott CJ, Donnelly RF, Kissenpfennig A (2013) Skin dendritic cell targeting via microneedle arrays laden with antigen encapsulated poly-D-L-lactide-co-glycolide nanoparticles induces efficient anti-tumour and anti-viral immune responses. ACS Nano. doi:10.1021/nn304235j

    PubMed Central  PubMed  Google Scholar 

  • Zeira E, Manevitch A, Khatchatouriants A, Pappo O, Hyam E, Darash-Yahana M, Tavor E, Honigman A, Lewis A, Galun E (2003) Femtosecond infrared laser—an efficient and safe in vivo gene delivery system for prolonged expression. Mol Ther 8(2):342–350

    CAS  PubMed  Google Scholar 

  • Zeira E, Manevitch A, Manevitch Z, Kedar E, Gropp M, Daudi N, Barsuk R, Harati M, Yotvat H, Troilo PJ, Griffiths TG, Pacchione SJ, Roden DF, Niu Z, Nussbaum O, Zamir G, Papo O, Hemo I, Lewis A, Galun E (2007) Femtosecond laser: a new intradermal DNA delivery method for efficient, long-term gene expression and genetic immunization. FASEB J 21(13):3522–3533. doi:10.1096/fj.06-7528com

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Hook .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rattanapak, T., Foged, C., Hook, S. (2015). Transcutaneous Immunization. In: Foged, C., Rades, T., Perrie, Y., Hook, S. (eds) Subunit Vaccine Delivery. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1417-3_18

Download citation

Publish with us

Policies and ethics