Skip to main content

Implants as Sustained Release Delivery Devices for Vaccine Antigens

  • Chapter
  • First Online:
Subunit Vaccine Delivery

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

The focus of this chapter will be on implantable devices for the purpose of vaccine delivery. This area of research has not yet been fully explored, but the most recent literature will be summarized. The chapter will provide some background and historical information on implants. In addition, different ways of manufacturing implants, from small lab-scale to potential large-scale production, will be described. Characterization of the implants will be discussed, with a focus on antigen release as well as degradation/erosion processes. Preclinical studies for assessment of biocompatibility, bioerosion, and in vivo release will be discussed. Finally, an outlook will be given for potential application fields in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguado MT, Lambert PH (1992) Controlled-release vaccines-biodegradable polylactide/polyglycolide (PL/PG) microspheres as antigen vehicles. Immunobiology 184(2–3):113–125. doi:10.1016/S0171-2985(11)80470-5

    Article  CAS  PubMed  Google Scholar 

  • Appel B, Maschke A, Weiser B, Sarhan H, Englert C, Angele P, Blunk T, Göpferich A (2006) Lipidic implants for controlled release of bioactive insulin: effects on cartilage engineered in vitro. Int J Pharm 314(2):170–178. doi:10.1016/j.ijpharm.2005.11.049

    Article  CAS  PubMed  Google Scholar 

  • Cardamone M, Lofthouse SA, Lucas JC, Lee RP, O’Donoghue M, Brandon MR (1997) In vitro testing of a pulsatile delivery system and its in vivo application for immunisation against tetanus toxoid. J Control Release 47(3):205–219. doi:10.1016/S0168-3659(97)01639-8

    Article  CAS  Google Scholar 

  • Demana PH, Davies NM, Hook S, Rades T (2005) Quil A—lipid powder formulations releasing ISCOMs and related colloidal structures upon hydration. J Control Release 103(1):45–59. doi:10.1016/j.jconrel.2004.11.027

    Article  CAS  PubMed  Google Scholar 

  • Dixon FJ, Maurer PH (1955) Immunologic unresponsiveness induced by protein antigens. J Exp Med 101:237–245

    Google Scholar 

  • Dresser DW (1962) Specific inhibition of antibody production. II. Paralysis induced in adult mice by small quantities of protein antigen. Immunology 5:378–388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Even MP, Young K, Winter G, Hook S, Engert J (2014) In vivo investigation of twin-screw extruded lipid implants for vaccine delivery. Eur J Pharm Biopharm 87(2):338–46. doi: 10.1016/j.ejpb.2014.02.014. Epub 2014 Mar 4.

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Crowley WR, Shukla AJ, James JR, Reger JF (1995) Controlled release of contraceptive steroids from biodegradable and injection gel formulations: in vivo evaluation. Pharm Res 12:864–868

    Article  CAS  PubMed  Google Scholar 

  • Guse C, Koennings S, Maschke A, Hacker M, Becker C, Schreiner S, Blunk T, Spruss T, Goepferich A (2006) Biocompatibility and erosion behavior of implants made of triglycerides and blends with cholesterol and phospholipids. Int J Pharm 314(2):153–160. doi:10.1016/j.ijpharm.2005.12.050

    Article  CAS  PubMed  Google Scholar 

  • Herrmann S, Mohl S, Siepmann F, Siepmann J, Winter G (2007a) New insight into the role of polyethylene glycol acting as protein release modifier in lipidic implants. Pharm Res 24(8):1527–1537

    Article  CAS  PubMed  Google Scholar 

  • Herrmann S, Winter G, Mohl S, Siepmann F, Siepmann J (2007b) Mechanisms controlling protein release from lipidic implants: effects of PEG addition. J Control Release 118(2):161–168. doi:10.1016/j.jconrel.2006.11.001

    Article  CAS  PubMed  Google Scholar 

  • Higaki M, Azechi Y, Takase T, Igarashi R, Nagahara S, Sano A, Fujioka K, Nakagawa N, Aizawa C, Mizushima Y (2001) Collagen minipellet as a controlled release delivery system for tetanus and diphtheria toxoid. Vaccine 19(23–24):3091–3096. doi:10.1016/S0264-410X(01)00039-1

    Article  CAS  PubMed  Google Scholar 

  • Jiskoot W, Randolph TW, Volkin DB, Middaugh CR, Schöneich C, Winter G, Friess W, Crommelin DJA, Carpenter JF (2012) Protein instability and immunogenicity: roadblocks to clinical application of injectable protein delivery systems for sustained release. J Pharm Sci 101(3):946–954. doi:10.1002/jps.23018

    Article  CAS  PubMed  Google Scholar 

  • Kajihara M, Sugie T, Mizuno M, Tamura N, Sano A, Fujioka K, Kashiwazaki Y, Yamaoka T, Sugawara S, Urabe Y (2000) Development of new drug delivery system for protein drugs using silicone (I). J Control Release 66(1):49–61. doi:10.1016/S0168-3659(99)00257-6

    Article  CAS  PubMed  Google Scholar 

  • Kajihara M, Sugie T, Hojo T, Maeda H, Sano A, Fujioka K, Sugawara S, Urabe Y (2001) Development of a new drug delivery system for protein drugs using silicone (II). J Control Release 73(2–3):279–291. doi:10.1016/S0168-3659(01)00302-9

    Article  CAS  PubMed  Google Scholar 

  • Kemp JM, Kajihara M, Nagahara S, Sano A, Brandon M, Lofthouse S (2002) Continuous antigen delivery from controlled release implants induces significant and anamnestic immune responses. Vaccine 20(7–8):1089–1098. doi:10.1016/S0264-410X(01)00444-3

    Article  CAS  PubMed  Google Scholar 

  • Khan MZI, Tucker IG, Opdebeeck JP (1991) Cholesterol and lecithin implants for sustained release of antigen: release and erosion in vitro, and antibody response in mice. Int J Pharm 76(1–2):161–170. doi:10.1016/0378-5173(91)90354-Q

    Article  CAS  Google Scholar 

  • Khan MZI, Tucker IG, Opdebeeck JP (1993) Evaluation of cholesterol-lecithin implants for sustained delivery of antigen: release in vivo and single-step immunisation of mice. Int J Pharm 90(3):255–262. doi:10.1016/0378-5173(93)90198-O

    Article  Google Scholar 

  • Koennings S, Garcion E, Faisant N, Menei P, Benoit JP, Goepferich A (2006) In vitro investigation of lipid implants as a controlled release system for interleukin-18. Int J Pharm 314(2):145–152. doi:10.1016/j.ijpharm.2005.08.031

    Article  CAS  PubMed  Google Scholar 

  • Koennings S, Sapin A, Blunk T, Menei P, Goepferich A (2007) Towards controlled release of BDNF—Manufacturing strategies for protein-loaded lipid implants and biocompatibility evaluation in the brain. J Control Release 119(2):163–172. doi:10.1016/j.jconrel.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  • Kreye F, Siepmann F, Siepmann J (2008) Lipid implants as drug delivery systems. Expert Opin Drug Deliv 5(3):291–307. doi:10.1517/17425247.5.3.291

    Article  CAS  PubMed  Google Scholar 

  • Kreye F, Siepmann F, Willart JF, Descamps M, Siepmann J (2011a) Drug release mechanisms of cast lipid implants. Eur J Pharm Biopharm 78(3):394–400. doi:10.1016/j.ejpb.2011.02.011

    Article  CAS  PubMed  Google Scholar 

  • Kreye F, Siepmann F, Zimmer A, Willart JF, Descamps M, Siepmann J (2011b) Controlled release implants based on cast lipid blends. Eur J Pharm Sci 43(1–2):78–83. doi:10.1016/j.ejps.2011.03.013

    Article  CAS  PubMed  Google Scholar 

  • Langer R, Folkman J (1976) Polymers for the sustained release of proteins and other macromolecules. Nature 263(5580):797–800

    Article  CAS  PubMed  Google Scholar 

  • Lofthouse S, Nagahara S, Sedgmen B, Barcham G, Brandon M, Sano A (2001) The application of biodegradable collagen minipellets as vaccine delivery vehicles in mice and sheep. Vaccine 19(30):4318–4327. doi:10.1016/S0264-410X(01)00153-0

    Article  CAS  PubMed  Google Scholar 

  • Lofthouse SA, Kajihara M, Nagahara S, Nash A, Barcham GJ, Sedgmen B, Brandon MR, Sano A (2002) Injectable silicone implants as vaccine delivery vehicles. Vaccine 20(13–14):1725–1732. doi:10.1016/S0264-410X(02)00036-1

    Article  CAS  PubMed  Google Scholar 

  • Mohl S, Winter G (2004) Continuous release of rh-interferon α-2a from triglyceride matrices. J Control Release 97(1):67–78. doi:10.1016/j.jconrel.2004.02.027

    Article  CAS  PubMed  Google Scholar 

  • Myschik J, Eberhardt F, Rades T, Hook S (2008a) Immunostimulatory biodegradable implants containing the adjuvant Quil-A—Part I: Physicochemical characterisation. J Drug Target 16(3):213–223. doi:10.1080/10611860701848860

    Article  CAS  PubMed  Google Scholar 

  • Myschik J, McBurney W, Hennessy T, Rades T, Hook S (2008b) Immunogenicity of lipid sustained release implants containing imiquimod, alpha-galactosylceramide, or Quil-A. Pharmazie 63(9):686–692

    CAS  PubMed  Google Scholar 

  • Myschik J, McBurney WT, Hennessy T, Phipps-Green A, Rades T, Hook S (2008c) Immunostimulatory biodegradable implants containing the adjuvant Quil-A—Part II: in vivo evaluation. J Drug Target 16(3):224–232. doi:10.1080/10611860701848886

    Article  CAS  PubMed  Google Scholar 

  • Myschik J, McBurney WT, Rades T, Hook S (2008d) Immunostimulatory lipid implants containing Quil-A and DC-cholesterol. Int J Pharm 363(1–2):91–98. doi:10.1016/j.ijpharm.2008.07.014

    Article  CAS  PubMed  Google Scholar 

  • O’Hagan DT, Jeffery H, Roberts MJ, McGee JP, Davis SS (1991) Controlled release microparticles for vaccine development. Vaccine 9(10):768–771

    Article  PubMed  Google Scholar 

  • Ochiya T, Takahama Y, Nagahara S, Sumita Y, Hisada A, Itoh H, Nagai Y, Terada M (1999) New delivery system for plasmid DNA in vivo using atelocollagen as a carrier material: the Minipellet. Nat Med 5(6):707–710

    Article  CAS  PubMed  Google Scholar 

  • Opdebeeck JP, Tucker IG (1993) A cholesterol implant used as a delivery system to immunize mice with bovine serum albumin. J Control Release 23(3):271–279. doi:10.1016/0168-3659(93)90008-S

    Article  CAS  Google Scholar 

  • Peralta O, Diaz S, Croxatto H (1995) Subdermal contraceptive implants. J Steroid Biochem Mol Biol 53(1–6):223–226. doi:10.1016/0960-0760(95)00051-Z

    Article  CAS  PubMed  Google Scholar 

  • Pongjanyakul T, Medlicott NJ, Tucker IG (2004) Melted glyceryl palmitostearate (GPS) pellets for protein delivery. Int J Pharm 271(1–2):53–62. doi:10.1016/j.ijpharm.2003.10.017

    Article  CAS  PubMed  Google Scholar 

  • Preis I, Langer RS (1979) A single-step immunization by sustained antigen release. J Immunol Methods 28(1–2):193–197

    Article  CAS  PubMed  Google Scholar 

  • Ramsdell F, Fowlkes BJ (1992) Maintenance of in vivo tolerance by persistence of antigen. Science 257:1130–1134

    Article  CAS  PubMed  Google Scholar 

  • Reithmeier H, Herrmann J, Göpferich A (2001) Lipid microparticles as a parenteral controlled release device for peptides. J Control Release 73(2–3):339–350. doi:10.1016/S0168-3659(01)00354-6

    Article  CAS  PubMed  Google Scholar 

  • Reitz C, Kleinebudde P (2007) Solid lipid extrusion of sustained release dosage forms. Eur J Pharm Biopharm 67(2):440–448. doi:10.1016/j.ejpb.2007.03.008

    Article  CAS  PubMed  Google Scholar 

  • Sanchez A, Gupta RK, Alonso MJ, Siber GR, Langer R (1996) Pulsed controlled-release system for potential use in vaccine delivery. J Pharm Sci 85(6):547–552. doi:10.1021/js960069y

    Article  CAS  PubMed  Google Scholar 

  • Sax G, Winter G (2012) Mechanistic studies on the release of lysozyme from twin-screw extruded lipid implants. J Control Release 163(2):187–194. doi:10.1016/j.jconrel.2012.08.025

    Article  CAS  PubMed  Google Scholar 

  • Sax G, Feil F, Schulze S, Jung C, Bräuchle C, Winter G (2012a) Release pathways of interferon α2a molecules from lipid twin screw extrudates revealed by single molecule fluorescence microscopy. J Control Release 162(2):295–302. doi:10.1016/j.jconrel.2012.07.014

    Article  CAS  PubMed  Google Scholar 

  • Sax G, Kessler B, Wolf E, Winter G (2012b) In-vivo biodegradation of extruded lipid implants in rabbits. J Control Release 163(2):195–202. doi:10.1016/j.jconrel.2012.08.026

    Article  CAS  PubMed  Google Scholar 

  • Schulze S, Winter G (2009) Lipid extrudates as novel sustained release systems for pharmaceutical proteins. J Control Release 134(3):177–185. doi:10.1016/j.jconrel.2008.11.026

    Article  CAS  PubMed  Google Scholar 

  • Schwab M, Kessler B, Wolf E, Jordan G, Mohl S, Winter G (2008) Correlation of in vivo and in vitro release data for rh-INFα lipid implants. Eur J Pharm Biopharm 70(2):690–694. doi:10.1016/j.ejpb.2008.05.010

    Article  CAS  PubMed  Google Scholar 

  • Schwab M, Sax G, Schulze S, Winter G (2009) Studies on the lipase induced degradation of lipid based drug delivery systems. J Control Release 140(1):27–33

    Article  CAS  PubMed  Google Scholar 

  • Schwab M, McGoverin CM, Gordon KC, Winter G, Rades T, Myschik J, Strachan CJ (2013) Studies on the lipase-induced degradation of lipid-based drug delivery systems. Part II—Investigations on the mechanisms leading to collapse of the lipid structure. Eur J Pharm Biopharm 84(3):456–463. doi:10.1016/j.ejpb.2012.12.023

    Article  CAS  PubMed  Google Scholar 

  • Small DM (1967) Phase equilibria and structure of dry and hydrated egg lecithin. J Lipid Res 8(6):551–557

    CAS  PubMed  Google Scholar 

  • Vogelhuber W, Rotunno P, Magni E, Gazzaniga A, Spruß T, Bernhardt G, Buschauer A, Göpferich A (2001) Programmable biodegradable implants. J Control Release 73(1):75–88. doi:10.1016/S0168-3659(01)00282-6

    Article  CAS  PubMed  Google Scholar 

  • Voigt R (2000) Pharmazeutische Technologie: für Studium und Beruf, 9th edn. Deutscher Apotheker Verlag, Stuttgart, ISBN 3-7692-2649-6

    Google Scholar 

  • Walduck AK, Opdebeeck JP, Benson HE, Prankerd R (1998) Biodegradable implants for the delivery of veterinary vaccines: design, manufacture and antibody responses in sheep. J Control Release 51(2–3):269–280. doi:10.1016/S0168-3659(97)00180-6

    Article  CAS  PubMed  Google Scholar 

  • Wise DL, Trantolo DJ, Marino RT, Kitchell JP (1988) Opportunities and challenges in the design of implantable biodegradable polymeric systems for the delivery of antimicrobial agents and vaccines. Adv Drug Deliv Rev 1(3):269. doi:10.1016/0169-409X(88)90023-3

    Article  Google Scholar 

  • Witzleb R, Müllertz A, Kanikanti VR, Hamann HJ, Kleinebudde P (2012) Dissolution of solid lipid extrudates in biorelevant media. Int J Pharm 422(1–2):116–124. doi:10.1016/j.ijpharm.2011.10.037

    Article  CAS  PubMed  Google Scholar 

  • Yamagata Y, Iga K, Ogawa Y (2000) Novel sustained-release dosage forms of proteins using polyglycerol esters of fatty acids. J Control Release 63(3):319–329. doi:10.1016/S0168-3659(99)00206-0

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Engert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Engert, J. (2015). Implants as Sustained Release Delivery Devices for Vaccine Antigens. In: Foged, C., Rades, T., Perrie, Y., Hook, S. (eds) Subunit Vaccine Delivery. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1417-3_12

Download citation

Publish with us

Policies and ethics