Skip to main content

Non-apoptotic Sperm Selection

  • Chapter
  • First Online:
Non-Invasive Sperm Selection for In Vitro Fertilization

Abstract

Apoptosis plays an important role in the pathogenesis of male infertility. Failure of fertilization in assisted reproduction (ART) despite the use of morphologically normal and motile spermatozoa may be due to an ongoing process of apoptosis. Therefore, the use of apoptotic spermatozoa may be one of the reasons behind the suboptimal success rates in ART. Sperm selection methods currently used routinely in conjunction with ART procedures lack the ability to specifically target apoptotic spermatozoa. To address this deficiency, a protocol that includes the selection of non-apoptotic spermatozoa using magnetic activated cell sorting (MACS) has been proposed.

MACS in combination with density gradient centrifugation proved to yield spermatozoa with higher quality in terms of motility, morphology, viability, apoptosis markers, DNA integrity, oocyte penetration potential, and sperm chromatin decondensation. Several reports documented the beneficial effects of applying MACS as a sperm selection method on ART outcomes. Specifically, pregnancy rates were significantly higher following intrauterine inseminations and intracytoplasmic sperm injection using spermatozoa selected by MACS. Healthy live births were also reported following the application of MACS as a sperm selection method. However, before the technology could be routinely adopted in clinical practice, its safety should be carefully examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vaux D, Korsmeyer S. Cell death in development. Cell. 1999;96:245–54.

    Article  CAS  PubMed  Google Scholar 

  2. Morrow CM, Hostetler CE, Griswold MD, Hofmann MC, Murphy KM, Cooke PS, Hess RA. ETV5 is required for continuous spermatogenesis in adult mice and may mediate blood testes barrier function and testicular immune privilege. Ann N Y Acad Sci. 2007;1120:144–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Koksal IT, Ishak Y, Usta M, Danisman A, Guntekin E, Bassorgun IC, Ciftcioglu A. Varicocele-induced testicular dysfunction may be associated with disruption of blood-testis barrier. Arch Androl. 2007;53:43–8.

    Article  CAS  PubMed  Google Scholar 

  4. Sakkas D, Moffatt O, Manicardi GC, Mariethoz E, Tarozzi N, Bizzaro D. Nature of DNA damage in ejaculated human spermatozoa and the possible involvement of apoptosis. Biol Reprod. 2002;66:1061–7.

    Article  CAS  PubMed  Google Scholar 

  5. Mahfouz RZ, du Plessis SS, Aziz N, Sharma R, Sabanegh E, Agarwal A. Sperm viability, apoptosis, and intracellular reactive oxygen species levels in human spermatozoa before and after induction of oxidative stress. Fertil Steril. 2010;93:814–21.

    Article  CAS  PubMed  Google Scholar 

  6. Maione B, Pittoggi C, Achene L, Lorenzini R, Spadafora C. Activation of endogenous nucleases in mature sperm cells upon interaction with exogenous DNA. DNA Cell Biol. 1997;16:1087–97.

    Article  CAS  PubMed  Google Scholar 

  7. Taylor SL, Weng SL, Fox P, Duran EH, Morshedi MS, Oehninger S, Beebe SJ. Somatic cell apoptosis markers and pathways in human ejaculated sperm: potential utility as indicators of sperm quality. Mol Hum Reprod. 2004;10:825–34.

    Article  CAS  PubMed  Google Scholar 

  8. Scabini M, Stellari F, Cappella P, Rizzitano S, Texido G, Pesenti E. In vivo imaging of early stage apoptosis by measuring real-time caspase-3/7 activation. Apoptosis. 2011;16:198–207.

    Article  CAS  PubMed  Google Scholar 

  9. Martinez MM, Reif RD, Pappas D. Early detection of apoptosis in living cells by fluorescence correlation spectroscopy. Anal Bioanal Chem. 2010;396:1177–85.

    Article  CAS  PubMed  Google Scholar 

  10. Oosterhuis GJ, Mulder AB, Kalsbeek-Batenburg E, Lambalk CB, Schoemaker J, Vermes I. Measuring apoptosis in human spermatozoa: a biological assay for semen quality? Fertil Steril. 2000;74:245–50.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang HB, Lu SM, Ma CY, Wang L, Li X, Chen ZJ. Early apoptotic changes in human spermatozoa and their relationships with conventional semen parameters and sperm DNA fragmentation. Asian J Androl. 2008;10:227–35.

    Article  PubMed  Google Scholar 

  12. Moskovtsev SI, Willis J, Azad A, Mullen JB. Sperm DNA integrity: correlation with sperm plasma membrane integrity in semen evaluated for male infertility. Arch Androl. 2005;51:33–40.

    Article  CAS  PubMed  Google Scholar 

  13. Evenson DP, Darzynkiewicz Z, Melamed MR. Simultaneous measurement by flow cytometry of sperm cell viability and mitochondrial membrane potential related to cell motility. J Histochem Cytochem. 1982;30:279–80.

    Article  CAS  PubMed  Google Scholar 

  14. Troiano L, Granata AR, Cossarizza A, Kalashnikova G, Bianchi R, Pini G, Tropea F, Carani C, Franceschi C. Mitochondrial membrane potential and DNA stainability in human sperm cells: a flow cytometry analysis with implications for male infertility. Exp Cell Res. 1998;241:384–93.

    Article  CAS  PubMed  Google Scholar 

  15. Thornberry N. Caspases: key mediators of apoptosis. Chem Biol. 1998;5:R97–103.

    Article  CAS  PubMed  Google Scholar 

  16. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998;281:1312–6.

    Article  CAS  PubMed  Google Scholar 

  17. Paasch U, Grunewald S, Fitzl G, Glander H. Deterioration of plasma membrane is associated with activated caspases in human spermatozoa. J Androl. 2003;24:246–52.

    CAS  PubMed  Google Scholar 

  18. Paasch U, Grunewald S, Wuendrich K, Glander HJ. Caspases are associated with apoptosis in human ejaculated spermatozoa and in spermatogenesis. J Androl. 2001;22:91.

    Google Scholar 

  19. Paasch U, Grunewald S, Glander H. Presence of up- and downstream caspases in relation to impairment of human spermatogenesis. Andrologia. 2002;34:279.

    Google Scholar 

  20. Almeida C, Cardoso MF, Sousa M, Viana P, Goncalves A, Silva J, Barros A. Quantitative study of caspase-3 activity in semen and after swim-up preparation in relation to sperm quality. Hum Reprod. 2005;20:1307–13.

    Article  CAS  PubMed  Google Scholar 

  21. Wright VC, Chang J, Jeng G, Macaluso M. Assisted reproductive technology surveillance–United States, 2005. MMWR Surveill Summ. 2008;57:1–23.

    PubMed  Google Scholar 

  22. Seli E, Gardner DK, Schoolcraft WB, Moffatt O, Sakkas D. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril. 2004;82: 378–83.

    Article  PubMed  Google Scholar 

  23. Barroso G, Taylor S, Morshedi M, Manzur F, Gavino F, Oehninger S. Mitochondrial membrane potential integrity and plasma membrane translocation of phosphatidylserine as early apoptotic markers: a comparison of two different sperm subpopulations. Fertil Steril. 2006;85:149–54.

    Article  CAS  PubMed  Google Scholar 

  24. Chen Z, Hauser R, Trbovich AM, Shifren JL, Dorer DJ, Godfrey-Bailey L, Singh NP. The relationship between human semen characteristics and sperm apoptosis: a pilot study. J Androl. 2006;27:112–20.

    Article  CAS  PubMed  Google Scholar 

  25. Carrell D, Wilcox A, Lowy L, Peterson C, Jones K, Erickson L, Campbell B, Branch D, Hatasaka H. Elevated sperm chromosome aneuploidy and apoptosis in patients with unexplained recurrent pregnancy loss. Obstet Gynecol. 2003;101:1229–35.

    Article  PubMed  Google Scholar 

  26. Tesarik J, Greco E, Mendoza C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod. 2004;19:611–5.

    Article  CAS  PubMed  Google Scholar 

  27. Wu GJ, Chang FW, Lee SS, Cheng YY, Chen CH, Chen IC. Apoptosis-related phenotype of ejaculated spermatozoa in patients with varicocele. Fertil Steril. 2008;91(3):831–7.

    Article  PubMed  Google Scholar 

  28. Tavares RS, Silva AF, Lourenco B, Almeida-Santos T, Sousa AP, Ramalho-Santos J. Evaluation of human sperm chromatin status after selection using a modified Diff-Quik stain indicates embryo quality and pregnancy outcomes following in vitro fertilization. Andrology. 2013;1:830–7.

    Article  CAS  PubMed  Google Scholar 

  29. Zorn B, Golob B, Ihan A, Kopitar A, Kolbezen M. Apoptotic sperm biomarkers and their correlation with conventional sperm parameters and male fertility potential. J Assist Reprod Genet. 2012;29:357–64.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Host E, Lindenberg S, Smidt-Jensen S. DNA strand breaks in human spermatozoa: correlation with fertilization in vitro in oligozoospermic men and in men with unexplained infertility. Acta Obstet Gynecol Scand. 2000;79:189–93.

    Article  CAS  PubMed  Google Scholar 

  31. Host E, Lindenberg S, Smidt-Jensen S. The role of DNA strand breaks in human spermatozoa used for IVF and ICSI. Acta Obstet Gynecol Scand. 2000;79: 559–63.

    Article  CAS  PubMed  Google Scholar 

  32. Sharbatoghli M, Valojerdi MR, Amanlou M, Khosravi F, Jafar-abadi MA. Relationship of sperm DNA fragmentation, apoptosis and dysfunction of mitochondrial membrane potential with semen parameters and ART outcome after intracytoplasmic sperm injection. Arch Gynecol Obstet. 2012;286:1315–22.

    Article  CAS  PubMed  Google Scholar 

  33. Benchaib M, Lornage J, Mazoyer C, Lejeune H, Salle B, Francois Guerin J. Sperm deoxyribonucleic acid fragmentation as a prognostic indicator of assisted reproductive technology outcome. Fertil Steril. 2007;87:93–100.

    Article  CAS  PubMed  Google Scholar 

  34. Frydman N, Prisant N, Hesters L, Frydman R, Tachdjian G, Cohen-Bacrie P, Fanchin R. Adequate ovarian follicular status does not prevent the decrease in pregnancy rates associated with high sperm DNA fragmentation. Fertil Steril. 2008;89:92–7.

    Article  CAS  PubMed  Google Scholar 

  35. Simon L, Castillo J, Oliva R, Lewis SE. Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes. Reprod Biomed Online. 2011;23:724–34.

    Article  CAS  PubMed  Google Scholar 

  36. Virro MR, Larson-Cook KL, Evenson DP. Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril. 2004;81:1289–95.

    Article  PubMed  Google Scholar 

  37. Bungum M, Spano M, Humaidan P, Eleuteri P, Rescia M, Giwercman A. Sperm chromatin structure assay parameters measured after density gradient centrifugation are not predictive for the outcome of ART. Hum Reprod. 2008;23:4–10.

    Article  CAS  PubMed  Google Scholar 

  38. Gandini L, Lombardo F, Paoli D, Caruso F, Eleuteri P, Leter G, Ciriminna R, Culasso F, Dondero F, Lenzi A, Spano M. Full-term pregnancies achieved with ICSI despite high levels of sperm chromatin damage. Hum Reprod. 2004;19:1409–17.

    Article  CAS  PubMed  Google Scholar 

  39. Lin MH, Kuo-Kuang Lee R, Li SH, Lu CH, Sun FJ, Hwu YM. Sperm chromatin structure assay parameters are not related to fertilization rates, embryo quality, and pregnancy rates in in vitro fertilization and intracytoplasmic sperm injection, but might be related to spontaneous abortion rates. Fertil Steril. 2008;90:352–9.

    Article  PubMed  Google Scholar 

  40. Payne JF, Raburn DJ, Couchman GM, Price TM, Jamison MG, Walmer DK. Redefining the relationship between sperm deoxyribonucleic acid fragmentation as measured by the sperm chromatin structure assay and outcomes of assisted reproductive techniques. Fertil Steril. 2005;84:356–64.

    Article  PubMed  Google Scholar 

  41. Collins JA, Barnhart KT, Schlegel PN. Do sperm DNA integrity tests predict pregnancy with in vitro fertilization? Fertil Steril. 2008;89:823–31.

    Article  PubMed  Google Scholar 

  42. Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S, Kirkman-Brown J, Coomarasamy A. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod. 2012;27:2908–17.

    Article  CAS  PubMed  Google Scholar 

  43. Barroso G, Valdespin C, Vega E, Kershenovich R, Avila R, Avendano C, Oehninger S. Developmental sperm contributions: fertilization and beyond. Fertil Steril. 2009;92:835–48.

    Article  CAS  PubMed  Google Scholar 

  44. Greco E, Scarselli F, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Franco G, Anniballo N, Mendoza C, Tesarik J. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod. 2005;20:226–30.

    Article  PubMed  Google Scholar 

  45. Moskovtsev SI, Jarvi K, Mullen JB, Cadesky KI, Hannam T, Lo KC. Testicular spermatozoa have statistically significantly lower DNA damage compared with ejaculated spermatozoa in patients with unsuccessful oral antioxidant treatment. Fertil Steril. 2010;93:1142–6.

    Article  CAS  PubMed  Google Scholar 

  46. Le Lannou D, Blanchard Y. Nuclear maturity and morphology of human spermatozoa selected by Percoll density gradient centrifugation or swim-up procedure. J Reprod Fertil. 1988;84:551–6.

    Article  PubMed  Google Scholar 

  47. Said TM, Grunewald S, Paasch U, Glander H-J, Baumann T, Kriegel C, Li L, Agarwal A. Advantage of combining magnetic cell separation with sperm preparation techniques. RBM Online. 2005;10:740–6.

    PubMed  Google Scholar 

  48. Grunewald S, Paasch U, Glander HJ. Enrichment of non-apoptotic human spermatozoa after cryopreservation by immunomagnetic cell sorting. Cell Tissue Bank. 2001;2:127–33.

    Article  CAS  PubMed  Google Scholar 

  49. Said TM, Agarwal A, Zborowski M, Grunewald S, Glander HJ, Paasch U. Utility of magnetic cell separation as a molecular sperm preparation technique. J Androl. 2008;29:134–42.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Aziz N, Said T, Paasch U, Agarwal A. The relationship between human sperm apoptosis, morphology and the sperm deformity index. Hum Reprod. 2007;22:1413–9.

    Article  PubMed  Google Scholar 

  51. de Vantery Arrighi C, Lucas H, Chardonnens D, de Agostini A. Removal of spermatozoa with externalized phosphatidylserine from sperm preparation in human assisted medical procreation: effects on viability, motility and mitochondrial membrane potential. Reprod Biol Endocrinol. 2009;7:1.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Grunewald S, Paasch U, Said TM, Rasch M, Agarwal A, Glander HJ. Magnetic-activated cell sorting before cryopreservation preserves mitochondrial integrity in human spermatozoa. Cell Tissue Bank. 2006;7:99–104.

    Article  PubMed  Google Scholar 

  53. Said TM, Agarwal A, Grunewald S, Rasch M, Baumann T, Kriegel C, Li L, Glander H-J, Thomas Jr A, Paasch U. Selection of non-apoptotic spermatozoa as a new tool for enhancing assisted reproduction outcomes: an in-vitro model. Biol Reprod. 2006;74:530–7.

    Article  CAS  PubMed  Google Scholar 

  54. Said TM, Grunewald S, Paasch U, Rasch M, Agarwal A, Glander HJ. Effects of magnetic-activated cell sorting on sperm motility and cryosurvival rates. Fertil Steril. 2005;83:1442–6.

    Article  PubMed  Google Scholar 

  55. Lee TH, Liu CH, Shih YT, Tsao HM, Huang CC, Chen HH, Lee MS. Magnetic-activated cell sorting for sperm preparation reduces spermatozoa with apoptotic markers and improves the acrosome reaction in couples with unexplained infertility. Hum Reprod. 2010;25:839–46.

    Article  CAS  PubMed  Google Scholar 

  56. Delbes G, Herrero MB, Troeung ET, Chan PT. The use of complimentary assays to evaluate the enrichment of human sperm quality in asthenoteratozoospermic and teratozoospermic samples processed with Annexin-V magnetic activated cell sorting. Andrology. 2013;1:698–706.

    Article  CAS  PubMed  Google Scholar 

  57. Zahedi A, Tavalaee M, Deemeh MR, Azadi L, Fazilati M, Nasr-Esfahani MH. Zeta potential vs apoptotic marker: which is more suitable for ICSI sperm selection? J Assist Reprod Genet. 2013;30:1181–6.

    Article  CAS  PubMed  Google Scholar 

  58. Grunewald S, Reinhardt M, Blumenauer V, Said TM, Agarwal A, Abu Hmeidan F, Glander HJ, Paasch U. Increased sperm chromatin decondensation in selected nonapoptotic spermatozoa of patients with male infertility. Fertil Steril. 2009;92:572–7.

    Article  PubMed  Google Scholar 

  59. Khalid SN, Qureshi IZ. Impact of apoptotic sperm population in semen samples on the outcome of pregnancy. Fertil Steril. 2011;96:S59–60.

    Article  Google Scholar 

  60. Romany L, Meseguer M, Garcia-Herrero S, Pellicer A, Garrido N. Magnetic activated sorting selection (MACS) of non-apoptotic sperm (NAS) improves pregnancy rates in homologous intrauterine insemination (IUI). preliminary data. Fertil Steril. 2010;94:S14.

    Article  Google Scholar 

  61. Arnanz A, Quintana F, Peñalva I, Aspichueta F, Ferrando M, Larreategui Z. Does the use of magnetic activated cell sorting of non-apoptotic spermatozoa improve the fertilization rates in patients with second IVF cycles? Fertil Steril. 2012;98:S106.

    Article  Google Scholar 

  62. Dirican EK, Ozgun OD, Akarsu S, Akin KO, Ercan O, Ugurlu M, Camsari C, Kanyilmaz O, Kaya A, Unsal A. Clinical outcome of magnetic activated cell sorting of non-apoptotic spermatozoa before density gradient centrifugation for assisted reproduction. J Assist Reprod Genet. 2008;25:375–81.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Polak de Fried E, Denaday F. Single and twin ongoing pregnancies in two cases of previous ART failure after ICSI performed with sperm sorted using annexin V microbeads. Fertil Steril. 2010;94:351.e315–358.

    Article  Google Scholar 

  64. Rawe VY, Boudri HU, Sedo CA, Carro M, Papier S, Nodar F. Healthy baby born after reduction of sperm DNA fragmentation using cell sorting before ICSI. Reprod Biomed Online. 2010;20:320–3.

    Article  PubMed  Google Scholar 

  65. Gil M, Sar-Shalom V, Melendez Sivira Y, Carreras R, Checa MA. Sperm selection using magnetic activated cell sorting (MACS) in assisted reproduction: a systematic review and meta-analysis. J Assist Reprod Genet. 2013;30:479–85.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Alvarez Sedo C, Uriondo H, Lavolpe M, Noblia F, Papier S, Nodar F. Clinical outcome using non-apoptotic sperm selection for ICSI procedures: report of 1 year experience. Fertil Steril. 2010;94:S232.

    Article  Google Scholar 

  67. Herrero MB, Delbes G, Chung JT, Son WY, Holzer H, Buckett W, Chan P. Case report: the use of annexin V coupled with magnetic activated cell sorting in cryopreserved spermatozoa from a male cancer survivor: healthy twin newborns after two previous ICSI failures. J Assist Reprod Genet. 2013;30(11):1415–9.

    Article  PubMed  Google Scholar 

  68. Carchenilla MSC, Agudo D, Rubio S, Becerra D, Bronet F, Garcia-Velasco JA, Pacheco A. Magnetic Activated Cell Sorting (MACS) is a useful technique to improved pregnancy rate in patients with high level of sperm DNA fragmentation. Hum Reprod. 2013;28: i118–37.

    Article  Google Scholar 

  69. Marchetti F, Wyrobek AJ. Mechanisms and consequences of paternally-transmitted chromosomal abnormalities. Birth Defects Res C Embryo Today. 2005;75:112–29.

    Article  CAS  PubMed  Google Scholar 

  70. Twigg J, Irvine DS, Houston P, Fulton N, Michael L, Aitken RJ. Iatrogenic DNA damage induced in human spermatozoa during sperm preparation: protective significance of seminal plasma. Mol Hum Reprod. 1998;4:439–45.

    Article  CAS  PubMed  Google Scholar 

  71. Verhofstad N, Linschooten JO, van Benthem J, Dubrova YE, van Steeg H, van Schooten FJ, Godschalk RW. New methods for assessing male germ line mutations in humans and genetic risks in their offspring. Mutagenesis. 2008;23:241–7.

    Article  CAS  PubMed  Google Scholar 

  72. Said TM, Agarwal A, Grunewald S, Rasch M, Glander HJ, Paasch U. Evaluation of sperm recovery following annexin V magnetic-activated cell sorting separation. Reprod Biomed Online. 2006;13:336–9.

    Article  PubMed  Google Scholar 

  73. Miltenyi S, Muller W, Weichel W, Radbruch A. High gradient magnetic cell separation with MACS. Cytometry. 1990;11:231–8.

    Article  CAS  PubMed  Google Scholar 

  74. Grunewald S, Miska W, Miska G, Rasch M, Reinhardt M, Glander HJ, Paasch U. Molecular glass wool filtration as a new tool for sperm preparation. Hum Reprod. 2007;22:1405–12.

    Article  CAS  PubMed  Google Scholar 

  75. Grunewald S, Said TM, Paasch U, Glander HJ, Agarwal A. Relationship between sperm apoptosis signalling and oocyte penetration capacity. Int J Androl. 2008;31:325–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer Said MD, PhD, HCLD/CC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Said, T., Mahfouz, R.Z., Kuznyetsova, I., Del Valle, A.P. (2015). Non-apoptotic Sperm Selection. In: Agarwal, A., Borges Jr., E., Setti, A. (eds) Non-Invasive Sperm Selection for In Vitro Fertilization. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1411-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1411-1_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1410-4

  • Online ISBN: 978-1-4939-1411-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics