Skip to main content

MSOME and Sperm DNA Integrity: Biological and Clinical Considerations

  • Chapter
  • First Online:
Non-Invasive Sperm Selection for In Vitro Fertilization

Abstract

Motile sperm organellar morphology examination (MSOME) has been introduced to human reproductive medicine as a tool for detecting subtle sperm morphological abnormalities, not detectable at the magnification used in standard intracytoplasmic sperm injection (ICSI) (Bartoov et al., N. Engl. J. Med. 345:1067–1068, 2001). Intracytoplasmic morphologically selected sperm injection (IMSI), which uses MSOME for sperm selection, has been shown to improve assisted reproduction outcomes in some, though not all, andrological indications (reviewed in Perdrix and Rives, Hum. Reprod. 2013).

The rationale of the use of MSOME-ICSI was to overcome the negative paternal effects on the early embryo development after conventional ICSI (Janny and Menezo, Mol. Reprod. Dev. 38:36–42, 1994; Tesarik et al., Hum. Reprod. 17:184–189, 2002). Among these paternal effects, two patterns have been distinguished. The one, called the early paternal effect, impairs morphology and cleavage speed of the early embryonic cleavage divisions, whereas the other, called the late paternal effect, impairs implantation and the early post-implantation development without producing perceptible perturbations of embryo cleavage and blastocyst development (Tesarik et al., Hum. Reprod. 17:184–189, 2002). The late paternal effect, but not the early one, has been shown to be associated with sperm DNA fragmentation (Tesarik et al., Hum. Reprod. 19:611–615, 2004; Tesarik, Reprod. Biomed. Online 10:370–375, 2005).

It has been suggested that MSOME can serve to select spermatozoa with intact DNA to be injected to oocytes (Tesarik et al., Reprod. Biomed. Online 12:715–721, 2006), but conflicting observations have been reported in the literature. In this chapter the place of MSOME/IMSI in assisted reproduction in cases with pathologically increased sperm DNA damage is critically reviewed with regard to the current knowledge of etiology and diagnosis of sperm DNA damage, and alternative treatment methods to overcome its consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartoov B, Berkovitz A, Eltes F. Selection of spermatozoa with normal nuclei to improve the pregnancy rate with intracytoplasmic sperm injection. N Engl J Med. 2001;345:1067–8.

    Article  CAS  PubMed  Google Scholar 

  2. Perdrix A, Rives N. Motile sperm organelle morphology examination (MSOME) and sperm head vacuoles: state of the art in 2013. Hum. Reprod. 2013. Update, Advanced Access, doi:10.1093/humupd/dmt021.

  3. Janny L, Menezo YJ. Evidence for a strong paternal effect on human preimplantation embryo development and blastocyst formation. Mol Reprod Dev. 1994;38:36–42.

    Article  CAS  PubMed  Google Scholar 

  4. Tesarik J, Mendoza C, Greco E. Paternal effects acting during the first cell cycle of human preimplantation development after ICSI. Hum Reprod. 2002;17:184–9.

    Article  PubMed  Google Scholar 

  5. Tesarik J, Greco E, Mendoza C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod. 2004;19:611–5.

    Article  CAS  PubMed  Google Scholar 

  6. Tesarik J. The paternal effects on cell division in the human preimplantation embryo. Reprod Biomed Online. 2005;10:370–5.

    Article  PubMed  Google Scholar 

  7. Tesarik J, Mendoza-Tesarik R, Mendoza C. Sperm nuclear DNA damage: update on the mechanism, diagnosis and treatment. Reprod Biomed Online. 2006;12:715–21.

    Article  CAS  PubMed  Google Scholar 

  8. Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93:1027–36.

    Article  CAS  PubMed  Google Scholar 

  9. Aitken RJ, De Iuliis GN, McLachlan RI. Biological and clinical significance of DNA damage in the male germ line. Int J Androl. 2009;32:46–56.

    Article  CAS  PubMed  Google Scholar 

  10. Sakkas D, Mariethoz E, Manicardi G, Bizzaro D, Bianchi PG, Bianchi U. Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod. 1999;4:31–7.

    Article  CAS  PubMed  Google Scholar 

  11. Marcon L, Boissonneault G. Transient DNA strand breaks during mouse and human spermiogenesis new insights in stage specificity and link to chromatin remodelling. Biol Reprod. 2004;70:910–8.

    Article  CAS  PubMed  Google Scholar 

  12. Sakkas D, Moffatt O, Manicardi GC, Mariethoz E, Tarozzi N, Bizzaro D. Nature of DNA damage in ejaculated human spermatozoa and the possible involvement of apoptosis. Biol Reprod. 2002;66:1061–7.

    Article  CAS  PubMed  Google Scholar 

  13. Kodama H, Yamaguchi R, Fukuda J, Kasi H, Tanak T. Increased deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril. 1997;65:519–24.

    Article  Google Scholar 

  14. De Iuliis GN, Wingate JK, Koppers AJ, McLaughlin EA, Aitken RJ. Definitive evidence for the nonmitochondrial production of superoxide anion by human spermatozoa. J Clin Endocrinol Metab. 2006;91:1968–75.

    Article  PubMed  Google Scholar 

  15. McPherson S, Longo FJ. Chromatin structure–function alterations during mammalian spermatogenesis: DNA nicking and repair in elongating spermatids. Eur J Histochem. 1993;37:109–28.

    CAS  PubMed  Google Scholar 

  16. Leduc F, Maquennehan V, Nkoma GB, Boissonneault G. DNA damage response during chromatin remodeling in elongating spermatids of mice. Biol Reprod. 2008;78:324–32.

    Article  CAS  PubMed  Google Scholar 

  17. Aitken RJ, De Iuliis GN. On the possible origins of DNA damage in human spermatozoa. On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod. 2010;16:3–13.

    Article  CAS  PubMed  Google Scholar 

  18. Rodriguez I, Ody C, Araki K, Garcia I, Vassalli P. An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J. 1997;16:2262–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tesarik J, Ubaldi F, Rienzi L, Martinez F, Iacobelli M, Mendoza C, Greco E. Caspase-dependent and-independent DNA fragmentation in sertoli and germ cells from men with primary testicular failure: relationship with histological diagnosis. Hum Reprod. 2004;19:254–61.

    Article  PubMed  Google Scholar 

  20. Aitken RJ, Clarkson JS. Cellular basis of defective sperm function and its association with the genesis of ROS by human spermatozoa. J Reprod Fertil. 1987;81:459–69.

    Article  CAS  PubMed  Google Scholar 

  21. Aitken RJ, West KM. Analysis of the relationship between reactive oxygen species production and leucocyte infiltration in fractions of human semen separated on percoll gradients. Int J Androl. 1990;13:433–51.

    Article  CAS  PubMed  Google Scholar 

  22. Henkel R, Maass G, Hajimohammad M, Menkveld R, Stalf T, Villegas J, Sánchez R, Kruger TF, Schill WB. Urogenital inflammation: changes of leucocytes and ROS. Andrologia. 2003;35:309–13.

    Article  CAS  PubMed  Google Scholar 

  23. Fraga CG, Motchnik PA, Wyrobek AJ, Rempel DM, Ames BN. Smoking and low antioxidant levels increase oxidative damage to DNA. Mutat Res. 1996;351:199–203.

    Article  PubMed  Google Scholar 

  24. Song GJ, Norkus EP, Lewis V. Relationship between seminal ascorbic acid and sperm DNA integrity in infertile men. Int J Androl. 2006;29:569–75.

    Article  CAS  PubMed  Google Scholar 

  25. De Rosa M, Boggia B, Amalfi B, Zarrilli S, Vita A, Colao A, Lombardi G. Correlation between seminal carnitine and functional spermatozoal characteristics in men with semen dysfunction of various origins. Drugs R D. 2005;6:1–9.

    Article  PubMed  Google Scholar 

  26. Mancini A, De Marinis L, Littarru GP, Balercia G. An update of coenzyme Q10 implications in male infertility: biochemical and therapeutic aspects. Biofactors. 2005;25:165–74.

    Article  CAS  PubMed  Google Scholar 

  27. Gorczyca W, Traganos F, Jesionowska H, Darzynkiewicz Z. Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp Cell Res. 1993;207:202–5.

    Article  CAS  PubMed  Google Scholar 

  28. Hughes C, Lewis S, McKelvey-Martin V, Thompson W. A comparison of baseline and induced DNA damage in human spermatozoa from fertile and infertile men, using a modified comet assay. Mol Hum Reprod. 1996;2:613–9.

    Article  CAS  PubMed  Google Scholar 

  29. Manicardi GC, Bianchi PG, Pantano S, Azzoni P, Bizzaro D, Bianchi U, Sakkas D. Presence of endogenous nicks in DNA of ejaculated human spermatozoa and its relationship to chromomycin A3 accessibility. Biol Reprod. 1995;52:864–7.

    Article  CAS  PubMed  Google Scholar 

  30. Bianchi PG, Manicardi GC, Bizzaro D, Bianchi U, Sakkas D. Effect of deoxyribonucleic acid protamination on fluorochrome staining and in situ nick-translation of murine and human mature spermatozoa. Biol Reprod. 1993;49:1083–8.

    Article  CAS  PubMed  Google Scholar 

  31. Fernandez JL, Vazquez-Gundin F, Delgado A, Goyanes VJ, Ramiro-Diaz J, de la Torre J, Gosálvez J. DNA breakage detection-FISH (DBD-FISH) in human spermatozoa: technical variants evidence different structural features. Mutat Res. 2000;453:77–82.

    Article  CAS  PubMed  Google Scholar 

  32. Fernandez JL, Muriel L, Rivero MT, Goyanes V, Vazquez R, Alvarez JG. The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J Androl. 2003;24:59–66.

    CAS  PubMed  Google Scholar 

  33. Evenson DP, Larson KL, Jost LK. Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl. 2002;23:25–43.

    PubMed  Google Scholar 

  34. Seli E, Gardner DK, Schoolcraft WB, Moffatt O, Sakkas D. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril. 2004;82:378–83.

    Article  PubMed  Google Scholar 

  35. Borini A, Tarozzi N, Bizzaro D, Bonu MA, Fava L, Flamigni C, Coticchio G. Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART. Hum Reprod. 2006;21:2876–81.

    Article  CAS  PubMed  Google Scholar 

  36. Bartoov B, Berkovitz A, Eltes F, Kogosowski A, Menezo YJ, Barak Y. Real-time fine morphology of motile human sperm cells is associated with IVF-ICSI outcome. J Androl. 2002;23:1–8.

    PubMed  Google Scholar 

  37. Bartoov B, Berkovitz A, Eltes F, Kogosovsky A, Yagoda A, Lederman H, Artzi S, Gross M, Barak Y. Pregnancy rates are higher with intracytoplasmic morphologically selected sperm injection than with conventional intracytoplasmic injection. Fertil Steril. 2003;80:1413–9.

    Article  PubMed  Google Scholar 

  38. Berkovitz A, Eltes F, Yaari S, Katz N, Barr I, Fishman A, Bartoov B. The morphological normalcy of the sperm nucleus and pregnancy rate of intracytoplasmic injection with morphologically selected sperm. Hum Reprod. 2005;20:185–90.

    Article  PubMed  Google Scholar 

  39. Berkovitz A, Eltes F, Lederman H, Peer S, Ellenbogen A, Feldberg B, Bartoov B. How to improve IVF-ICSI outcome by sperm selection. Reprod Biomed Online. 2006;12:634–8.

    Article  CAS  PubMed  Google Scholar 

  40. Antinori M, Licata E, Dani G, Cerusico F, Versaci C, D'Angelo D, Antinori S. Intracytoplasmic morphologically selected sperm injection: a prospective randomized trial. Reprod Biomed Online. 2008;16:835–41.

    Article  PubMed  Google Scholar 

  41. Balaban B, Yakin K, Alatas C, Oktem O, Isiklar A, Urman B. Clinical outcome of intracytoplasmic injection of spermatozoa morphologically selected under high magnification: a prospective randomized study. Reprod Biomed Online. 2011;22:472–6.

    Article  Google Scholar 

  42. Souza Setti A, Paes de Almeida Ferreira Braga D, Iaconelli Jr A, Aoki T, Borges Jr E. Twelve years of MSOME and IMSI: a review. Reprod Biomed. 2013;27(4):338–52.

    Article  Google Scholar 

  43. Hazout A, Dumont-Hassan M, Junca A-M, Cohen Bacrie P, Tesarik J. High-magnification ICSI overcomes paternal effect resistant to conventional ICSI. Reprod Biomed Online. 2006;12:19–25.

    Article  PubMed  Google Scholar 

  44. Zamboni L. The ultrastructural pathology of the spermatozoon as a cause of infertility: the role of electron microscopy in the evaluation of semen quality. Fertil Steril. 1987;48:711–34.

    CAS  PubMed  Google Scholar 

  45. Boitrelle F, Ferfouri F, Petit JM, Segretain D, Tourain C, Bergere M, Bailly M, Vialard F, Albert M, Selva J. Large human sperm vacuoles observed in motile spermatozoa under high magnification: nuclear thumbprints linked to failure of chromatin condensation. Hum Reprod. 2011;26:1650–8.

    Article  CAS  PubMed  Google Scholar 

  46. Gatimel N, Leandri RD, Foliguet B, Bujan L, Parinaud J. Sperm cephalic vacuoles: new arguments for their non acrosomal origin in two cases of total globozoospermia. Andrology. 2013;1:52–6.

    Article  CAS  PubMed  Google Scholar 

  47. Neyer A, Vanderzwalmen P, Bach M, Stecher A, Spitzer D, Zech N. Sperm head vacuoles are not affected by in-vitro conditions, as analysed by a system of sperm-microcapture channels. Reprod Biomed Online. 2013;26:38–377.

    Article  Google Scholar 

  48. Perdrix A, Travers A, Chelli MH, Escalier D, Do Rego JL, Milazzo JP, Mousset-Simeon N, Mace B, Rives N. Assessment of acrosome and nuclear abnormalities in human spermatozoa with large vacuoles. Hum Reprod. 2011;26:47–58.

    Article  CAS  PubMed  Google Scholar 

  49. Franco Jr JG, Mauri AL, Petersen CG, Massaro FC, Silva LF, Felipe V, Cavagna M, Pontes A, Baruffi RL, Oliveira JB, Vagnini LD. Large nuclear vacuoles are indicative of abnormal chromatin packaging in human spermatozoa. Int J Androl. 2012;35:46–51.

    Article  PubMed  Google Scholar 

  50. Muratori M, Marchiani S, Maggi M, Forti G, Baldi E. Origin and biological significance of DNA fragmentation in human spermatozoa. Front Biosci. 2006;11:1491–9.

    Article  CAS  PubMed  Google Scholar 

  51. Tarozzi N, Nadalini M, Stronati A, Bizzaro D, Dal Prato L, Coticchio G, Borini A. Anomalies in sperm chromatin packaging: implications for assisted reproduction techniques. Reprod Biomed Online. 2009;18:486–95.

    Article  PubMed  Google Scholar 

  52. Garolla A, Fortini D, Menegazzo M, De Toni L, Nicoletti V, Moretti A, Selice R, Engl B, Foresta C. High-power microscopy for selecting spermatozoa for ICSI by physiological status. Reprod Biomed Online. 2008;17:610–6.

    Article  PubMed  Google Scholar 

  53. Franco Jr JG, Baruffi RL, Mauri AL, Petersen CG, Oliveira JB, Vagnini L. Significance of large nuclear vacuoles in human spermatozoa: implications for ICSI. Reprod Biomed Online. 2008;17:42–5.

    Article  PubMed  Google Scholar 

  54. Wilding M, Coppola G, di Matteo L, Palagiano A, Fusco E, Dale B. Intracytoplasmic injection of morphologically selected spermatozoa (IMSI) improves outcome after assisted reproduction by deselecting physiologically poor quality spermatozoa. J Assist Reprod Genet. 2011;28:253–62.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hammoud I, Boitrelle F, Ferfouri F, Vialard F, Bergere M, Wainer B, Bailly M, Albert M, Selva J. Selection of normal spermatozoa with a vacuole-free head (x6300) improves selection of spermatozoa with intact DNA in patients with high sperm DNA fragmentation rates. Andrologia. 2013;45:163–70.

    Article  CAS  PubMed  Google Scholar 

  56. Gosálves J, Migueles B, López-Fernández C, Sanchéz-Martín F, Sáchez-Martín P. Single sperm selection and DNA fragmentation analysis: the case of MSOME/IMSI. Nat Sci. 2013;5:7–14.

    Google Scholar 

  57. de Almeida Ferreira Braga DP, Setti AS, Figueira RC, Nichi M, Martinhago CD, Iaconelli Jr A, Borges Jr E. Sperm organelle morphologic abnormalities: contributing factors and effects on intracytoplasmic sperm injection cycles outcomes. Urology. 2011;78:786–91.

    Article  PubMed  Google Scholar 

  58. Vanderzwalmen S, Cassuto G, Zech NH. Blastocyst development after sperm selection at high magnification is associated with size and number of nuclear vacuoles. Reprod Biomed Online. 2008;17:617–27.

    Article  PubMed  Google Scholar 

  59. Marci R, Murisier F, Lo Monte G, Soave I, Chanson A, Urner F, Germond M. Clinical outcome after IMSI procedure in an unselected infertile population: a pilot study. Reprod Health. 2013;22(10):16.

    Article  Google Scholar 

  60. Greco E, Scarselli FG, Colasante A, Zavaglia D, Alviggi E, Litwicka K, Varricchio MT, Minasi MG, Tesarik J. Sperm vacuoles negatively affect outcomes in intracytoplasmic morphologically selected sperm injection in terms of pregnancy, implantation, and live-birth rates. Fertil Steril. 2013;100:379–85.

    Article  PubMed  Google Scholar 

  61. Virro MR, Larson-Cook KL, Evenson DP. Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril. 2004;81:1289–95.

    Article  PubMed  Google Scholar 

  62. Larson KL, DeJonge CJ, Barnes AM, Jost LK, Evenson DP. Sperm chromatin structure assay parameters as predictors of failed pregnancy following assisted reproductive techniques. Hum Reprod. 2000;15:1717–22.

    Article  CAS  PubMed  Google Scholar 

  63. Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J. Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl. 2005;26:349–53.

    Article  CAS  PubMed  Google Scholar 

  64. Greco E, Romano S, Iacobelli M, Ferrero S, Baroni E, Minasi MG, Ubaldi F, Rienzi L, Tesarik J. ICSI in cases of sperm DNA damage: beneficial effect of oral antioxidant treatment. Hum Reprod. 2005;20:2590–4.

    Article  CAS  PubMed  Google Scholar 

  65. Ménézo Y, Hazout A, Panteix G, Robert F, Rollet J, Cohen-Bacrie P, Chapuis F, Clément P, Benkhalifa M. Antioxidants to reduce sperm DNA fragmentation: an unexpected adverse effect. Reprod Biomed Online. 2007;14:418–21.

    Article  PubMed  Google Scholar 

  66. Said TM, Grunewald S, Paasch U, Glander HJ, Baumann T, Kriegel C, Li L, Agarwal A. Advantage of combining magnetic cell separation with sperm preparation techniques. Reprod Biomed Online. 2005;10:740–6.

    Article  PubMed  Google Scholar 

  67. Said T, Agarwal A, Grunewald S, Rasch M, Baumann T, Kriegel C, Li L, Glander HJ, Thomas Jr AJ, Paasch U. Selection of nonapoptotic spermatozoa as a new tool for enhancing assisted reproduction outcomes: an in vitro model. Biol Reprod. 2006;74:530–7.

    Article  CAS  PubMed  Google Scholar 

  68. Jakab A, Sakkas D, Delpiano E, Cayli S, Kovanci E, Ward D, Revelli A, Huszar G. Intracytoplasmic sperm injection: a novel selection method for sperm with normal frequency of chromosomal aneuploidies. Fertil Steril. 2005;84:1665–73.

    Article  PubMed  Google Scholar 

  69. Parmegiani L, Graciela Estela Cognigni GE, Bernardi S, Troilo E, Ciampaglia W, Filicori M. “Physiologic ICSI”: hyaluronic acid (HA) favors selection of spermatozoa without DNA fragmentation and with normal nucleus, resulting in improvement of embryo quality. Fertil Steril. 2010;93:598–604.

    Article  PubMed  Google Scholar 

  70. Greco E, Scarselli F, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Franco G, Anniballo N, Mendoza C, Tesarik J. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod. 2005;20:226–30.

    Article  PubMed  Google Scholar 

  71. Duran EH, Morshedi M, Taylor S, Oehninger S. Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum Reprod. 2002;17:3122–8.

    Article  CAS  PubMed  Google Scholar 

  72. Benchaib M, Braun V, Lornage J, Hadj S, Salle B, Lejeune H, Guérin JF. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod. 2003;18:1023–8.

    Article  PubMed  Google Scholar 

  73. Henkel R, Kierspel E, Hajimohammad M, Stalf T, Hoogendijk C, Mehnert C, Menkveld R, Schill WB, Kruger TF. DNA fragmentation of spermatozoa and assisted reproduction technology. Reprod Biomed Online. 2003;7:477–84.

    Article  PubMed  Google Scholar 

  74. Henkel R, Hajimohammad M, Stalf T, et al. Influence od deoxyribonuclei acid damage on fertilization and pregnancy. Fertil Steril. 2004;81:965–72.

    Article  CAS  PubMed  Google Scholar 

  75. Larson-Cook KL, Brannian JD, Hansen KA, Kasperson KM, Aamold ET, Evenson DP. Relationship between the outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay. Fertil Steril. 2003;80:895–902.

    Article  PubMed  Google Scholar 

  76. Evenson DP, Wixon R. Clinical aspects of sperm DNA fragmentation detection and male fertility. Theriogenology. 2006;65:979–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Tesarik MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tesarik, J. (2015). MSOME and Sperm DNA Integrity: Biological and Clinical Considerations. In: Agarwal, A., Borges Jr., E., Setti, A. (eds) Non-Invasive Sperm Selection for In Vitro Fertilization. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1411-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1411-1_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1410-4

  • Online ISBN: 978-1-4939-1411-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics