Skip to main content

Enhancement of Sensory and Cognitive Functions in Healthy Subjects

  • Chapter
  • First Online:
Textbook of Neuromodulation

Abstract

Cognitive enhancement can be defined as the amplification or extension of core capacities of the mind through augmentation of internal or external information processing systems. Cognitive enhancement could be achieved, among other things, by noninvasive brain stimulation. Noninvasive brain stimulation offers a potential tool for affecting brain functions in the typical and atypical brain and may promote our understanding of brain–behavior relation, and constitute the foundation for rehabilitation efforts. The aim of the present chapter is to introduce up-to-date brain stimulation tools that were successful in enhancing sensory and high-level cognitive functions in healthy individuals. This review mainly focuses on major advances related to language, cognitive control, planning, learning, and memory among healthy individuals and the usage of different methods of brain stimulation such transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and transcranial alternating current stimulation (tACS) to improve these different cognitive functions. Toward the end of this chapter, we provide the reader with a methodological section that specifies the different considerations that one should consider when designing and evaluating a brain stimulation experiment in the context of cognitive research. Finally, we conclude the data that was gathered so far, and offer possible procedures of brain stimulation for future experimental research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farah MJ, Illes J, Cook-Deegan R, Gardner H, Kandel E, King P, Parens E, et al. Neurocognitive enhancement: what can we do and what should we do? Nat Rev Neurosci. 2004;5(5):421–5. doi:10.1038/nrn1390.

    CAS  PubMed  Google Scholar 

  2. Sandberg A, Bostrom N. Converging cognitive enhancements. Ann N Y Acad Sci. 2006;1093:201–27. doi:10.1196/annals.1382.015.

    PubMed  Google Scholar 

  3. Walsh V, Pascual-Leone A. Transcranial magnetic stimulation: a neurochronometrics of mind. Cambridge, MA: Bradford Books; 2003. p. 319.

    Google Scholar 

  4. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1(8437):1106–7.

    CAS  PubMed  Google Scholar 

  5. Walsh V, Cowey A. Transcranial magnetic stimulation and cognitive neuroscience. J Neurosci. 2000;19:5792–801.

    Google Scholar 

  6. Paus T. Inferring causality in brain images: a perturbation approach. Philos Trans R Soc Lond B Biol Sci. 2005;360(1457):1109–14. doi:10.1098/rstb.2005.1652.

    PubMed Central  PubMed  Google Scholar 

  7. Rounis E, Lee L, Siebner HR, Rowe JB, Friston KJ, Rothwell JC, Frackowiak RSJ. Frequency specific changes in regional cerebral blood flow and motor system connectivity following rTMS to the primary motor cortex. Neuroimage. 2005;26(1):164–76. doi:10.1016/j.neuroimage.2005.01.037.

    PubMed  Google Scholar 

  8. Amassian VE, Cracco RQ, Maccabee PJ, Cracco JB, Rudell A, Eberle L. Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr Clin Neurophysiol. 1989;74(6):458–62.

    CAS  PubMed  Google Scholar 

  9. Töpper R, Mottaghy FM, Brügmann M, Noth J, Huber W. Facilitation of picture naming by focal transcranial magnetic stimulation of Wernicke’s area. Exp Brain Res. 1998;121(4):371–8.

    PubMed  Google Scholar 

  10. Pobric G, Mashal N, Faust M, Lavidor M. The role of the right cerebral hemisphere in processing novel metaphoric expressions: a transcranial magnetic stimulation study. J Cogn Neurosci. 2008;20(1):170–81.

    PubMed  Google Scholar 

  11. Huang Y-Z, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201–6. doi:10.1016/j.neuron.2004.12.033.

    CAS  PubMed  Google Scholar 

  12. Oliveri M, Romero L, Papagno C. Left but not right temporal involvement in opaque idiom comprehension: a repetitive transcranial magnetic stimulation study. J Cogn Neurosci. 2004;16(5):848–55.

    PubMed  Google Scholar 

  13. Knecht S, Flöel A, Dräger B, Breitenstein C, Sommer J, Henningsen H, Ringelstein EB, et al. Degree of language lateralization determines susceptibility to unilateral brain lesions. Nat Neurosci. 2002;5(7):695–9. doi:10.1038/nn868.

    CAS  PubMed  Google Scholar 

  14. Vallesi A, Shallice T, Walsh V. Role of the prefrontal cortex in the foreperiod effect: TMS evidence for dual mechanisms in temporal preparation. Cereb Cortex. 2007;17(2):466–74.

    PubMed  Google Scholar 

  15. Andoh J, Artiges E, Pallier C, Rivière D, Mangin JF, Cachia A, Plaze M, et al. Modulation of language areas with functional MR image-guided magnetic stimulation. Neuroimage. 2006;29(2):619–27. doi:10.1016/j.neuroimage.2005.07.029.

    CAS  PubMed  Google Scholar 

  16. Andoh J, Artiges E, Pallier C, Rivière D, Mangin JF, Paillère-Martinot ML, Martinot JL. Priming frequencies of transcranial magnetic stimulation over Wernicke’s area modulate word detection. Cereb Cortex. 2008;18(1):210–6.

    PubMed  Google Scholar 

  17. Devlin JT, Matthews PM, Rushworth MFS. Semantic processing in the left inferior prefrontal cortex: a combined functional magnetic resonance imaging and transcranial magnetic stimulation study. J Cogn Neurosci. 2003;15(1):71–84. doi:10.1162/089892903321107837.

    PubMed  Google Scholar 

  18. Sparing R, Mottaghy FM, Hungs M, Brügmann M, Foltys H, Huber W, Töpper R. Repetitive transcranial magnetic stimulation effects on language function depend on the stimulation parameters. J Clin Neurophysiol. 2001;18(4):326–30.

    CAS  PubMed  Google Scholar 

  19. Fries W, Danek A, Scheidtmann K, Hamburger C. Motor recovery following capsular stroke. Role of descending pathways from multiple motor areas. Brain. 1993;116(2):369–82.

    PubMed  Google Scholar 

  20. O’Shea J, Johansen-Berg H, Trief D, Göbel S, Rushworth MFS. Functionally specific reorganization in human premotor cortex. Neuron. 2007;54(3):479–90. doi:10.1016/j.neuron.2007.04.021.

    PubMed  Google Scholar 

  21. Kobayashi M, Hutchinson S, Théoret H, Schlaug G, Pascual-Leone A. Repetitive TMS of the motor cortex improves ipsilateral sequential simple finger movements. Neurology. 2004;62(1):91–8.

    CAS  PubMed  Google Scholar 

  22. Théoret H, Kobayashi M, Valero-Cabré A, Pascual-Leone A. Exploring paradoxical functional facilitation with TMS. Suppl Clin Neurophysiol. 2003;56:211–9.

    PubMed  Google Scholar 

  23. Hilgetag CC, Théoret H, Pascual-Leone A. Enhanced visual spatial attention ipsilateral to rTMS-induced virtual lesions’ of human parietal cortex. Nat Neurosci. 2001;4:953–8.

    CAS  PubMed  Google Scholar 

  24. Seyal M, Ro T, Rafal R. Increased sensitivity to ipsilateral cutaneous stimuli following transcranial magnetic stimulation of the parietal lobe. Ann Neurol. 1995;38:264–7.

    CAS  PubMed  Google Scholar 

  25. Jung-Beeman M. Bilateral brain processes for comprehending natural language. Trends Cogn Sci. 2005;9(11):512–8.

    PubMed  Google Scholar 

  26. Thiel A, Habedank B, Herholz K, Kessler J, Winhuisen L, Haupt WF, Heiss W-D. From the left to the right: how the brain compensates progressive loss of language function. Brain Lang. 2006;98(1):57–65. doi:10.1016/j.bandl.2006.01.007.

    PubMed  Google Scholar 

  27. Voets NL, Adcock JE, Flitney DE, Behrens TEJ, Hart Y, Stacey R, Matthews PM. Distinct right frontal lobe activation in language processing following left hemisphere injury. Brain. 2006;129(3):754–66.

    CAS  PubMed  Google Scholar 

  28. Kapur N. Paradoxical functional facilitation in brain-behaviour research a critical review. Brain. 1996;119(5):1775–90.

    PubMed  Google Scholar 

  29. Weiller C, Chollet F, Friston KJ, Wise RJ, Frackowiak RS. Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol. 1992;31(5):463–72. doi:10.1002/ana.410310502.

    CAS  PubMed  Google Scholar 

  30. Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, Marcolin MA, et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res. 2005;166(1):23–30.

    PubMed  Google Scholar 

  31. Boggio PS, Khoury LP, Martins DCS, Martins OEMS, Macedo ECD, Fregni F. Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease. J Neurol. 2009;80(4):444–7. doi:10.1136/jnnp.2007.141853.

    CAS  Google Scholar 

  32. Kincses TZ, Antal A, Nitsche MA, Bartfai O, Paulus W. Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human. Neuropsychologia. 2004;42(1):113–7.

    PubMed  Google Scholar 

  33. Hecht D, Walsh V, Lavidor M. Transcranial direct current stimulation facilitates decision making in a probabilistic guessing task. J Neurosci. 2010;30(12):4241–5.

    CAS  PubMed  Google Scholar 

  34. Jacobson L, Koslowsky M, Lavidor M. tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Exp Brain Res. 2011;216:1–10. doi:10.1007/s00221-011-2891-9.

    PubMed  Google Scholar 

  35. Pope PA, Miall RC. Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul. 2012;5(2):84–94. doi:10.1016/j.brs.2012.03.006.

    PubMed Central  PubMed  Google Scholar 

  36. Weiss M, Lavidor M. When less is more: evidence for a facilitative cathodal tDCS effect in attentional abilities. J Cogn Neurosci. 2012;24(9):1826–33. doi:10.1162/jocn_a_00248.

    PubMed  Google Scholar 

  37. Antal A, Boros K, Poreisz C, Chaieb L, Terney D, Paulus W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 2008;1(2):97–105. doi:10.1016/j.brs.2007.10.001.

    PubMed  Google Scholar 

  38. Terney D, Chaieb L, Moliadze V, Antal A, Paulus W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci. 2008;28(52):14147–55.

    CAS  PubMed  Google Scholar 

  39. Kanai R, Chaieb L, Antal A, Walsh V, Paulus W. Frequency-dependent electrical stimulation of the visual cortex. Curr Biol. 2008;18(23):1839–43.

    CAS  PubMed  Google Scholar 

  40. Kuo MF, Nitsche MA. Effects of transcranial electrical stimulation on cognition. Clin EEG Neurosci. 2012;43(3):192–9.

    PubMed  Google Scholar 

  41. Broca P. Sur le siège de la faculté du langage articulé. Bull Soc Anthropol Paris. 1865;6(1):377–93.

    Google Scholar 

  42. Wernicke C. Der aphasische Symptomencomplex: eine psychologische Studie auf anatomischer Basis. Breslau: Cohn & Weigert; 1874.

    Google Scholar 

  43. Silvanto J, Pascual-Leone A. Why the assessment of causality in brain-behavior relations requires brain stimulation. J Cogn Neurosci. 2012;24(4):775–7. doi:10.1162/jocn_a_00193.

    PubMed  Google Scholar 

  44. Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann EM. Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology. 2005;64(5):872.

    CAS  PubMed  Google Scholar 

  45. Sparing R, Dafotakis M, Meister IG, Thirugnanasambandam N, Fink GR. Enhancing language performance with non-invasive brain stimulation—a transcranial direct current stimulation study in healthy humans. Neuropsychologia. 2008;46(1):261–8.

    PubMed  Google Scholar 

  46. Mottaghy FM, Hungs M, Brügmann M, Sparing R, Boroojerdi B, Foltys H, Huber W, et al. Facilitation of picture naming after repetitive transcranial magnetic stimulation. Neurology. 1999;53(8):1806–12.

    CAS  PubMed  Google Scholar 

  47. Indefrey P, Levelt WJM. The spatial and temporal signatures of word production components. Cognition. 2004;92(1–2):101–44. doi:10.1016/j.cognition.2002.06.001.

    CAS  PubMed  Google Scholar 

  48. Ross LA, McCoy D, Wolk DA, Coslett HB, Olson IR. Improved proper name recall by electrical stimulation of the anterior temporal lobes. Neuropsychologia. 2010;48(12):3671–4. doi:10.1016/j.neuropsychologia.2010.07.024.

    PubMed  Google Scholar 

  49. Holland R, Leff AP, Josephs O, Galea JM, Desikan M, Price CJ, Rothwell JC, Crinion J. Speech facilitation by left inferior frontal cortex stimulation. Curr Biol. 2011;21(16):1403–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Aron AR, Poldrack RA. The cognitive neuroscience of response inhibition: relevance for genetic research in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57(11):1285–92. doi:10.1016/j.biopsych.2004.10.026.

    PubMed  Google Scholar 

  51. Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex. Trends Cogn Sci. 2004;8(4):170–7. doi:10.1016/j.tics.2004.02.010.

    PubMed  Google Scholar 

  52. Logan GD, Cowan WB. On the ability to inhibit thought and action: a theory of an act of control. Psychol Rev. 1984;91(3):295–327. doi:10.1037/0033-295X.91.3.295.

    Google Scholar 

  53. Li CR, Huang C, Yan P, Paliwal P, Constable RT, Sinha R. Neural correlates of post-error slowing during a stop signal task: a functional magnetic resonance imaging study. J Cogn Neurosci. 2008;20(6):1021–9. doi:10.1162/jocn.2008.20071.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Rubia K, Russell T, Overmeyer S, Brammer MJ, Bullmore ET, Sharma T, Simmons A, et al. Mapping motor inhibition: conjunctive brain activations across different versions of go/no-go and stop tasks. Neuroimage. 2001;13(2):250–61. doi:10.1006/nimg.2000.0685.

    CAS  PubMed  Google Scholar 

  55. Chambers CD, Bellgrove MA, Stokes MG, Henderson TR, Garavan H, Robertson IH, Morris AP, et al. Executive “brake failure” following deactivation of human frontal lobe. J Cogn Neurosci. 2006;18(3):444–55. doi:10.1162/089892906775990606.

    PubMed  Google Scholar 

  56. Figner B, Knoch D, Johnson EJ, Krosch AR, Lisanby SH, Fehr E, Weber EU. Lateral prefrontal cortex and self-control in intertemporal choice. Nat Neurosci. 2010;13(5):538–9. doi:10.1038/nn.2516.

    CAS  PubMed  Google Scholar 

  57. Bloch Y, Harel EV, Aviram S, Govezensky J, Ratzoni G, Levkovitz Y. Positive effects of repetitive transcranial magnetic stimulation on attention in ADHD subjects: a randomized controlled pilot study. World J Biol Psychiatry. 2010;11(5):755–8.

    CAS  PubMed  Google Scholar 

  58. Cho SS, Ko JH, Pellecchia G, Van Eimeren T, Cilia R, Strafella AP. Continuous theta burst stimulation of right dorsolateral prefrontal cortex induces changes in impulsivity level. Brain Stimul. 2010;3(3):170–6. doi:10.1016/j.brs.2009.10.002.

    PubMed Central  PubMed  Google Scholar 

  59. Jacobson L, Javitt DC, Lavidor M. Activation of inhibition: diminishing impulsive behavior by direct current stimulation over the inferior frontal gyrus. J Cogn Neurosci. 2011;23(11):3380–7.

    PubMed  Google Scholar 

  60. Li CSR, Huang C, Constable RT, Sinha R. Imaging response inhibition in a stop-signal task: neural correlates independent of signal monitoring and post-response processing. J Neurosci. 2006;26(1):186–92.

    CAS  PubMed  Google Scholar 

  61. Hsu T-Y, Tseng L-Y, Yu J-X, Kuo W-J, Hung DL, Tzeng OJL, Walsh V, et al. Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex. Neuroimage. 2011;56(4):2249–57. doi:10.1016/j.neuroimage.2011.03.059.

    PubMed  Google Scholar 

  62. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(3):633–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Isoda M, Hikosaka O. Switching from automatic to controlled action by monkey medial frontal cortex. Nat Neurosci. 2007;10(2):240–8. doi:10.1038/nn1830.

    CAS  PubMed  Google Scholar 

  64. Jacobson L, Ezra A, Berger U, Lavidor M. Modulating oscillatory brain activity correlates of behavioral inhibition using transcranial direct current stimulation. Clin Neurophysiol. 2012;123(5):979–84. doi:10.1016/j.clinph.2011.09.016.

    PubMed  Google Scholar 

  65. Lansbergen MM, Schutter DJLG, Kenemans JL. Subjective impulsivity and baseline EEG in relation to stopping performance. Brain Res. 2007;1148:161–9. doi:10.1016/j.brainres.2007.02.034.

    CAS  PubMed  Google Scholar 

  66. Wienbruch C, Paul I, Bauer S, Kivelitz H. The influence of methylphenidate on the power spectrum of ADHD children—an MEG study. BMC Psychiatry. 2005;5:29. doi:10.1186/1471-244X-5-29.

    PubMed Central  PubMed  Google Scholar 

  67. Fecteau S, Knoch D, Fregni F, Sultani N, Boggio P, Pascual-Leone A. Diminishing risk-taking behavior by modulating activity in the prefrontal cortex: a direct current stimulation study. J Neurosci. 2007;27(46):12500–5.

    CAS  PubMed  Google Scholar 

  68. Fecteau S, Pascual-Leone A, Zald DH, Liguori P, Theoret H, Boggio PS, Fregni F. Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. J Neurosci. 2007;27(23):6212–8.

    CAS  PubMed  Google Scholar 

  69. Sela T, Ivry RB, Lavidor M. Prefrontal control during a semantic decision task that involves idiom comprehension: a transcranial direct current stimulation study. Neuropsychologia. 2012;50(9):2271–80. doi:10.1016/j.neuropsychologia.2012.05.031.

    PubMed  Google Scholar 

  70. Lauro LJR, Tettamanti M, Cappa SF, Papagno C. Idiom comprehension: a prefrontal task? Cereb Cortex. 2008;18(1):162–70.

    PubMed  Google Scholar 

  71. Papagno C. Idiomatic language comprehension: neuropsychological evidence, Neuropsychology of communication. Milan: Springer; 2010. p. 111–29.

    Google Scholar 

  72. Rapp AM, Mutschler DE, Erb M. Where in the brain is nonliteral language? A coordinate-based meta-analysis of functional magnetic resonance imaging studies. Neuroimage. 2012;63(1):600–10. doi:10.1016/j.neuroimage.2012.06.022.

    PubMed  Google Scholar 

  73. Sela T, Kilim A, Lavidor M. Transcranial alternating current stimulation (tACS) increases risk taking behavior in the balloon analogue risk task. Front Neurosci. 2012;6:22. doi:10.3389/fnins.2012.00022.

    PubMed Central  PubMed  Google Scholar 

  74. Romani C, Ward J, Olson A. Developmental surface dysgraphia: what is the underlying cognitive impairment? Q J Exp Psychol. 1999;52(1):97–128.

    CAS  Google Scholar 

  75. Cerruti C, Schlaug G. Anodal transcranial direct current stimulation of the prefrontal cortex enhances complex verbal associative thought. J Cogn Neurosci. 2009;21(10):1980–7.

    PubMed Central  PubMed  Google Scholar 

  76. Metuki N, Sela T, Lavidor M. Enhancing cognitive control components of insight problems solving by anodal tDCS of the left dorsolateral prefrontal cortex. Brain Stimul. 2012;5(2):110–5. doi:10.1016/j.brs.2012.03.002.

    PubMed  Google Scholar 

  77. Fecteau S, Walsh V. Introduction: brain stimulation in cognitive neuroscience. Brain Stimul. 2012;5(2):61–2. doi:10.1016/j.brs.2012.04.001.

    PubMed  Google Scholar 

  78. Flöel A, Rösser N, Michka O, Knecht S, Breitenstein C. Noninvasive brain stimulation improves language learning. J Cogn Neurosci. 2008;20(8):1415–22. doi:10.1162/jocn.2008.20098.

    PubMed  Google Scholar 

  79. Liuzzi G, Freundlieb N, Ridder V, Hoppe J, Heise K, Zimerman M, et al. The involvement of the left motor cortex in learning of a novel action word lexicon. Curr Biol. 2010;20(19):1745–51.

    CAS  PubMed  Google Scholar 

  80. Meinzer M, Antonenko D, Lindenberg R, Hetzer S, Ulm L, Avirame K, Flöel A. Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation. J Neurosci. 2012;32(5):1859–66.

    CAS  PubMed  Google Scholar 

  81. Kane MJ, Engle RW. The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: an individual-differences perspective. Psychon Bull Rev. 2002;9(4):637–71.

    PubMed  Google Scholar 

  82. Zaehle T, Sandmann P, Thorne JD, Jäncke L, Herrmann CS. Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence. BMC Neurosci. 2011;12:2. doi:10.1186/1471-2202-12-2.

    PubMed Central  PubMed  Google Scholar 

  83. Kanai R, Paulus W, Walsh V. Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds. Clin Neurophysiol. 2010;121(9):1551–4.

    PubMed  Google Scholar 

  84. Pogosyan A, Gaynor LD, Eusebio A, Brown P. Boosting cortical activity at beta-band frequencies slows movement in humans. Curr Biol. 2009;19(19):1637–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Thut G, Miniussi C. New insights into rhythmic brain activity from TMS-EEG studies. Trends Cogn Sci. 2009;13(4):182–9.

    PubMed  Google Scholar 

  86. Zaehle T, Rach S, Herrmann CS. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One. 2010;5(11):e13766.

    PubMed Central  PubMed  Google Scholar 

  87. Engel AK, Fries P, Singer W. Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci. 2001;2(10):704–16.

    CAS  PubMed  Google Scholar 

  88. Varela F, Lachaux JP, Rodriguez E, Martinerie J. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci. 2001;2(4):229–39. doi:10.1038/35067550.

    CAS  PubMed  Google Scholar 

  89. Feurra M, Bianco G, Santarnecchi E, Del Testa M, Rossi A, Rossi S. Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials. J Neurosci. 2011;31(34):12165–70.

    CAS  PubMed  Google Scholar 

  90. Schutter DJLG, Hortensius R. Brain oscillations and frequency-dependent modulation of cortical excitability. Brain Stimul. 2011;4(2):97–103.

    PubMed  Google Scholar 

  91. Zaghi S, Acar M, Hultgren B, Boggio PS, Fregni F. Noninvasive brain stimulation with low-intensity electrical currents: putative mechanisms of action for direct and alternating current stimulation. Neuroscientist. 2010;16(3):285–307.

    PubMed  Google Scholar 

  92. Marshall L, Helgadóttir H, Mölle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;3:6.

    Google Scholar 

  93. Christie GJ, Tata MS. Right frontal cortex generates reward-related theta-band oscillatory activity. Neuroimage. 2009;48(2):415–22. doi:10.1016/j.neuroimage.2009.06.076.

    PubMed  Google Scholar 

  94. Lejuez CW, Read JP, Kahler CW, Richards JB, Ramsey SE, Stuart GL, Strong DR, et al. Evaluation of a behavioral measure of risk taking: the balloon analogue risk task (BART). J Exp Psychol Appl. 2002;8(2):75.

    CAS  PubMed  Google Scholar 

  95. Polanía R, Nitsche MA, Korman C, Batsikadze G, Paulus W. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr Biol. 2012;22:1314–8.

    PubMed  Google Scholar 

  96. Flöel A. Non-invasive brain stimulation and language processing in the healthy brain. Aphasiology. 2012;26(9):1082–102. doi:10.1080/02687038.2011.589892.

    Google Scholar 

  97. Holland R, Crinion J. Can tDCS enhance treatment of aphasia after stroke? Aphasiology. 2012;26(9):1169–91. doi:10.1080/02687038.2011.616925.

    PubMed Central  PubMed  Google Scholar 

  98. Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011;17(1):37–53.

    PubMed  Google Scholar 

  99. Dmochowski JP, Datta A, Bikson M, Su Y, Parra LC. Optimized multi-electrode stimulation increases focality and intensity at target. J Neural Eng. 2011;8(4):046011. doi:10.1088/1741-2560/8/4/046011. Epub 2011 Jun 10.

    PubMed  Google Scholar 

  100. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206–23. doi:10.1016/j.brs.2008.06.004.

    PubMed  Google Scholar 

  101. Green CS, Bavelier D. Exercising your brain: a review of human brain plasticity and training-induced learning. Psychol Aging. 2008;23(4):692–701. doi:10.1037/a0014345.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. McGurk SR, Twamley EW, Sitzer DI, McHugo GJ, Mueser KT. A meta-analysis of cognitive remediation in schizophrenia. Am J Psychiatry. 2007;164(12):1791–802. doi:10.1176/appi.ajp.2007.07060906.

    PubMed Central  PubMed  Google Scholar 

  103. Shalev L, Tsal Y, Mevorach C. Computerized progressive attentional training (CPAT) program: effective direct intervention for children with ADHD. Child Neuropsychol. 2007;13(4):382–8.

    PubMed  Google Scholar 

  104. Erickson KI, Colcombe SJ, Wadhwa R, Bherer L, Peterson MS, Scalf PE, Kim JS, et al. Training-induced plasticity in older adults: effects of training on hemispheric asymmetry. Neurobiol Aging. 2007;28(2):272–83. doi:10.1016/j.neurobiolaging.2005.12.012.

    PubMed  Google Scholar 

  105. McNab F, Varrone A, Farde L, Jucaite A, Bystritsky P, Forssberg H, Klingberg T. Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science. 2009;323(5915):800.

    CAS  PubMed  Google Scholar 

  106. Cohen Kadosh R, Soskic S, Iuculano T, Kanai R, Walsh V. Modulating neuronal activity produces specific and long-lasting changes in numerical competence. Curr Biol. 2010;20(22):2016–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E, Celnik PA, et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci U S A. 2009;106(5):1590–5. doi:10.1073/pnas.0805413106.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Ditye T, Jacobson L, Walsh V, Lavidor M. Modulating behavioral inhibition by tDCS combined with cognitive training. Exp Brain Res. 2012;219:363–8.

    PubMed  Google Scholar 

  109. Rohling ML, Faust ME, Beverly B, Demakis G. Effectiveness of cognitive rehabilitation following acquired brain injury: a meta-analytic re-examination of Cicerone et al.’s (2000, 2005) systematic reviews. Neuropsychology. 2009;23(1):20–39. doi:10.1037/a0013659.

    PubMed  Google Scholar 

  110. Monti A, Cogiamanian F, Marceglia S, Ferrucci R, Mameli F, Mrakic-Sposta S, Vergari M, et al. Improved naming after transcranial direct current stimulation in aphasia. J Neurol Neurosurg Psychiatry. 2008;79(4):451–3. doi:10.1136/jnnp.2007.135277.

    CAS  PubMed  Google Scholar 

  111. Baker JM, Rorden C, Fridriksson J. Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke. 2010;41(6):1229–36.

    PubMed Central  PubMed  Google Scholar 

  112. Fridriksson J, Richardson JD, Baker JM, Rorden C. Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study. Stroke. 2011;42(3):819–21. doi:10.1161/STROKEAHA.110.600288.

    PubMed  Google Scholar 

  113. Fiori V, Coccia M, Marinelli CV, Vecchi V, Bonifazi S, Ceravolo MG, Provinciali L, et al. Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects. J Cogn Neurosci. 2011;23(9):2309–23. doi:10.1162/jocn.2010.21579.

    PubMed  Google Scholar 

  114. Kang EK, Kim YK, Sohn HM, Cohen LG, Paik N-J. Improved picture naming in aphasia patients treated with cathodal tDCS to inhibit the right Broca’s homologue area. Restor Neurol Neurosci. 2011;29(3):141–52. doi:10.3233/RNN-2011-0587.

    PubMed  Google Scholar 

  115. Flöel A, Meinzer M, Kirstein R, Nijhof S, Deppe M, Knecht S, Breitenstein C. Short-term anomia training and electrical brain stimulation. Stroke. 2011;42(7):2065–7. doi:10.1161/STROKEAHA.110.609032.

    PubMed  Google Scholar 

  116. You DS, Kim D-Y, Chun MH, Jung SE, Park SJ. Cathodal transcranial direct current stimulation of the right Wernicke’s area improves comprehension in subacute stroke patients. Brain Lang. 2011;119(1):1–5. doi:10.1016/j.bandl.2011.05.002.

    PubMed  Google Scholar 

  117. Nitsche MA, Schauenburg A, Lang N, Liebetanz D, Exner C, Paulus W, Tergau F. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci. 2003;15(4):619–26.

    PubMed  Google Scholar 

  118. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57(10):1899.

    CAS  PubMed  Google Scholar 

  119. Liebetanz D. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain. 2002;125(10):2238–47. doi:10.1093/brain/awf238.

    PubMed  Google Scholar 

  120. Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117(4):845–50.

    PubMed  Google Scholar 

  121. Carver CS, White TL. Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: the BIS/BAS scales. J Pers Soc Psychol. 1994;67(2):319.

    Google Scholar 

Download references

Acknowledgments

This chapter presents studies that were supported by the Israel Academy of Sciences grant no. 100/10, the Israeli Center of Research Excellence (I-CORE) in Cognition (I-CORE Program 51/11), the EC ITN-LAN (grant 214570), and an ERC starting grant which was awarded to ML (Inspire 200512).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tal Sela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sela, T., Lavidor, M. (2015). Enhancement of Sensory and Cognitive Functions in Healthy Subjects. In: Knotkova, H., Rasche, D. (eds) Textbook of Neuromodulation. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1408-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1408-1_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1407-4

  • Online ISBN: 978-1-4939-1408-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics