Skip to main content

Neuroprosthesis and Sensorimotor Training

  • Chapter
  • First Online:
Textbook of Neuromodulation

Abstract

Changes in the sensory and motor maps in the sensorimotor cortices characterize several chronic pain disorders which involve motor and sensory disturbances. This chapter will focus on some of these chronic pain disorders like phantom limb pain, complex regional pain syndrome, chronic back pain, or fibromyalgia. For these disorders, training procedures that target these maladaptive changes in states of chronic pain and the behavioral and cortical changes that accompany them will be reviewed. These procedures include training of perceptual abilities, motor function, and visual feedback and have been shown to reorganize the altered sensory and motor maps measured with several methods as electroencephalography, magnetoencephalography, magnetic resonance tomography, and positron emission tomography. Treatments that combine several modalities such as imagery or mirror treatment as well as use of prostheses or sensory discrimination training also have beneficial effects. Further research must elucidate the mechanisms of these plastic changes related to the disorders and treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elbert TR, Flor H, Birbaumer N, Knecht S, Hampson S, Larbig W, et al. Extensive reorganization of the somatosensory cortex in adult humans after nervous system injury. Neuroreport. 1994;5:2593–7.

    Article  CAS  PubMed  Google Scholar 

  2. Yang TT, Gallen C, Schwartz B, Bloom FE, Ramachandran VS, Cobb S. Sensory maps in the human brain. Nature. 1994;368(6472):592–3.

    Article  CAS  PubMed  Google Scholar 

  3. Flor H, Elbert T, Knecht S, Wienbruch C, Pantev C, Birbaumer N, et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature. 1995;375(6531):482–4.

    Article  CAS  PubMed  Google Scholar 

  4. Cohen LG, Bandinelli S, Findley TW, Hallett M. Motor reorganization after upper limb amputation in man. Brain. 1991;114:615–27.

    Article  PubMed  Google Scholar 

  5. Kew JJ, Ridding MC, Rothwell JC, Passingham RE, Leigh PN, Sooriakumaran S, et al. Reorganization of cortical blood flow and transcranial magnetic stimulation maps in human subjects after upper limb amputation. J Neurophysiol. 1994;72(5):2517–24.

    CAS  PubMed  Google Scholar 

  6. Karl A, Birbaumer N, Lutzenberger W, Cohen LG, Flor H. Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. J Neurosci. 2001;21(10):3609–18.

    CAS  PubMed  Google Scholar 

  7. Lotze M, Flor H, Grodd W, Larbig W, Birbaumer N. Phantom movements and pain. An fMRI study in upper limb amputees. Brain. 2001;124:2268–77.

    Article  CAS  PubMed  Google Scholar 

  8. Juottonen K, Gockel M, Silen T, Hurri H, Hari R, Forss N. Altered central sensorimotor processing in patients with complex regional pain syndrome. Pain. 2002;98(3):315–23.

    Article  PubMed  Google Scholar 

  9. Schwenkreis P, Janssen F, Rommel O, Pleger B, Volker B, Hosbach I, et al. Bilateral motor cortex disinhibition in complex regional pain syndrome (CRPS) type I of the hand. Neurology. 2003;61(4):515–9.

    Article  CAS  PubMed  Google Scholar 

  10. Pleger B, Tegenthoff M, Ragert P, Forster AF, Dinse HR, Schwenkreis P, et al. Sensorimotor retuning [corrected] in complex regional pain syndrome parallels pain reduction. Ann Neurol. 2005;57(3):425–9.

    Article  PubMed  Google Scholar 

  11. Maihöfner C, Handwerker HO, Neundorfer B, Birklein F. Patterns of cortical reorganization in complex regional pain syndrome. Neurology. 2003;61(12):1707–15.

    Article  PubMed  Google Scholar 

  12. Maihöfner C, Handwerker HO, Birklein F. Functional imaging of allodynia in complex regional pain syndrome. Neurology. 2006;66(5):711–7.

    Article  PubMed  Google Scholar 

  13. Maihöfner C, Handwerker HO, Neundorfer B, Birklein F. Cortical reorganization during recovery from complex regional pain syndrome. Neurology. 2004;63(4):693–701.

    Article  PubMed  Google Scholar 

  14. Maihöfner C, Baron R, DeCol R, Binder A, Birklein F, Deuschl G, et al. The motor system shows adaptive changes in complex regional pain syndrome. Brain. 2007;130(Pt 10):2671–87.

    Article  PubMed  Google Scholar 

  15. Burgmer M, Pogatzki-Zahn E, Gaubitz M, Wessoleck E, Heuft G, Pfleiderer B. Altered brain activity during pain processing in fibromyalgia. Neuroimage. 2009;44(2):502–8.

    Article  PubMed  Google Scholar 

  16. Flor H, Braun C, Elbert T, Birbaumer N. Extensive reorganization of primary somatosensory cortex in chronic back pain patients. Neurosci Lett. 1997;224(1):5–8.

    Article  CAS  PubMed  Google Scholar 

  17. Giesecke T, Gracely RH, Grant MA, Nachemson A, Petzke F, Williams DA, et al. Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis Rheum. 2004;50(2):613–23.

    Article  PubMed  Google Scholar 

  18. Gracely RH, Petzke F, Wolf JM, Clauw DJ. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum. 2002;46(5):1333–43.

    Article  PubMed  Google Scholar 

  19. Tsao H, Galea MP, Hodges PW. Reorganization of the motor cortex is associated with postural control deficits in recurrent low back pain. Brain. 2008;131(Pt 8):2161–71.

    Article  CAS  PubMed  Google Scholar 

  20. Diers M, Koeppe C, Diesch E, Stolle AM, Hölzl R, Schiltenwolf M, et al. Central processing of acute muscle pain in chronic low back pain patients: an EEG mapping study. J Clin Neurophysiol. 2007;24(1):76–83.

    Article  PubMed  Google Scholar 

  21. Diers M, Koeppe C, Yilmaz P, Thieme K, Markela-Lerenc J, Schiltenwolf M, et al. Pain ratings and somatosensory evoked responses to repetitive intramuscular and intracutaneous stimulation in fibromyalgia syndrome. J Clin Neurophysiol. 2008;25(3):153–60.

    Article  PubMed  Google Scholar 

  22. Cook DB, Lange G, Ciccone DS, Liu WC, Steffener J, Natelson BH. Functional imaging of pain in patients with primary fibromyalgia. J Rheumatol. 2004;31(2):364–78.

    PubMed  Google Scholar 

  23. Diers M, Schley MT, Rance M, Yilmaz P, Lauer L, Rukwied R, et al. Differential central pain processing following repetitive intramuscular proton/prostaglandin E(2) injections in female fibromyalgia patients and healthy controls. Eur J Pain. 2011;15(7):716–23.

    Article  CAS  PubMed  Google Scholar 

  24. Jensen KB, Kosek E, Petzke F, Carville S, Fransson P, Marcus H, et al. Evidence of dysfunctional pain inhibition in Fibromyalgia reflected in rACC during provoked pain. Pain. 2009;144(1–2):95–100.

    Article  PubMed  Google Scholar 

  25. Gracely RH, Geisser ME, Giesecke T, Grant MA, Petzke F, Williams DA, et al. Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain. 2004;127(Pt 4):835–43.

    Article  CAS  PubMed  Google Scholar 

  26. Giesecke T, Gracely RH, Williams DA, Geisser ME, Petzke FW, Clauw DJ. The relationship between depression, clinical pain, and experimental pain in a chronic pain cohort. Arthritis Rheum. 2005;52(5):1577–84.

    Article  PubMed  Google Scholar 

  27. de Souza JB, Potvin S, Goffaux P, Charest J, Marchand S. The deficit of pain inhibition in fibromyalgia is more pronounced in patients with comorbid depressive symptoms. Clin J Pain. 2009;25(2):123–7.

    Article  PubMed  Google Scholar 

  28. Normand E, Potvin S, Gaumond I, Cloutier G, Corbin JF, Marchand S. Pain inhibition is deficient in chronic widespread pain but normal in major depressive disorder. J Clin Psychiatry. 2010;72:219–24.

    Article  PubMed  Google Scholar 

  29. Jensen KB, Petzke F, Carville S, Fransson P, Marcus H, Williams SC, et al. Anxiety and depressive symptoms in Fibromyalgia are related to low health esteem but not to pain sensitivity or cerebral processing of pain. Arthritis Rheum. 2010;62:3488–95.

    Article  PubMed  Google Scholar 

  30. Flor H, Turk DC. Chronic pain. An integrated biobehavioral approach. Seattle: IASP Press; 2011.

    Google Scholar 

  31. Weiss T, Miltner WH, Adler T, Bruckner L, Taub E. Decrease in phantom limb pain associated with prosthesis-induced increased use of an amputation stump in humans. Neurosci Lett. 1999;272(2):131–4.

    Article  CAS  PubMed  Google Scholar 

  32. Lotze M, Grodd W, Birbaumer N, Erb M, Huse E, Flor H. Does use of a myoelectric prostesis prevent cortical reorganisation and phantom limb pain? Nat Neurosci. 1999;2(6):501–2.

    Article  CAS  PubMed  Google Scholar 

  33. Dietrich C, Walter-Walsh K, Preissler S, Hofmann GO, Witte OW, Miltner WH, et al. Sensory feedback prosthesis reduces phantom limb pain: proof of a principle. Neurosci Lett. 2012;507(2):97–100.

    Article  CAS  PubMed  Google Scholar 

  34. Jenkins WM, Merzenich MM, Ochs MT, Allard T, Guic-Robles E. Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. J Neurophysiol. 1990;63(1):82–104.

    CAS  PubMed  Google Scholar 

  35. Recanzone GH, Merzenich MM, Jenkins WM, Grajski KA, Dinse HR. Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task. J Neurophysiol. 1992;67(5):1031–56.

    CAS  PubMed  Google Scholar 

  36. Flor H, Denke C, Schaefer M, Grüsser S. Effect of sensory discrimination training on cortical reorganisation and phantom limb pain. Lancet. 2001;375:1763–4.

    Article  Google Scholar 

  37. Huse E, Preissl H, Larbig W, Birbaumer N. Phantom limb pain. Lancet. 2001;358(9286):1015.

    Article  CAS  PubMed  Google Scholar 

  38. Moseley GL, Zalucki NM, Wiech K. Tactile discrimination, but not tactile stimulation alone, reduces chronic limb pain. Pain. 2008;137(3):600–8.

    Article  PubMed  Google Scholar 

  39. Moseley GL, Wiech K. The effect of tactile discrimination training is enhanced when patients watch the reflected image of their unaffected limb during training. Pain. 2009;144(3):314–9.

    Article  PubMed  Google Scholar 

  40. Maihöfner C, DeCol R. Decreased perceptual learning ability in complex regional pain syndrome. Eur J Pain. 2007;11(8):903–9.

    Article  PubMed  Google Scholar 

  41. Godde B, Spengler F, Dinse HR. Associative pairing of tactile stimulation induces somatosensory cortical reorganization in rats and humans. Neuroreport. 1996;8(1):281–5.

    Article  CAS  PubMed  Google Scholar 

  42. Godde B, Stauffenberg B, Spengler F, Dinse HR. Tactile coactivation-induced changes in spatial discrimination performance. J Neurosci. 2000;20(4):1597–604.

    CAS  PubMed  Google Scholar 

  43. Godde B, Ehrhardt J, Braun C. Behavioral significance of input-dependent plasticity of human somatosensory cortex. Neuroreport. 2003;14(4):543–6.

    Article  PubMed  Google Scholar 

  44. Dinse HR, Ragert P, Pleger B, Schwenkreis P, Tegenthoff M. Pharmacological modulation of perceptual learning and associated cortical reorganization. Science. 2003;301(5629):91–4.

    Article  CAS  PubMed  Google Scholar 

  45. Dinse HR, Ragert P, Pleger B, Schwenkreis P, Tegenthoff M. GABAergic mechanisms gate tactile discrimination learning. Neuroreport. 2003;14(13):1747–51.

    Article  CAS  PubMed  Google Scholar 

  46. Carter AR, Connor LT, Dromerick AW. Rehabilitation after stroke: current state of the science. Curr Neurol Neurosci Rep. 2010;10(3):158–66.

    Google Scholar 

  47. Ramachandran VS, Rogers Ramachandran D, Cobb S. Touching the phantom limb. Nature. 1995;377(6549):489–90.

    Article  CAS  PubMed  Google Scholar 

  48. Brodie EE, Whyte A, Waller B. Increased motor control of a phantom leg in humans results from the visual feedback of a virtual leg. Neurosci Lett. 2003;341(2):167–9.

    Article  CAS  PubMed  Google Scholar 

  49. Hunter JP, Katz J, Davis KD. The effect of tactile and visual sensory inputs on phantom limb awareness. Brain. 2003;126(Pt 3):579–89.

    Article  PubMed  Google Scholar 

  50. Brodie EE, Whyte A, Niven CA. Analgesia through the looking-glass? A randomized controlled trial investigating the effect of viewing a “virtual” limb upon phantom limb pain, sensation and movement. Eur J Pain. 2007;11(4):428–36.

    Article  PubMed  Google Scholar 

  51. Chan BL, Witt R, Charrow AP, Magee A, Howard R, Pasquina PF, et al. Mirror therapy for phantom limb pain. N Engl J Med. 2007;357(21):2206–7.

    Article  CAS  PubMed  Google Scholar 

  52. Rock I, Victor J. Vision and touch: an experimentally created conflict between the two senses. Science. 1964;143:594–6.

    Article  CAS  PubMed  Google Scholar 

  53. Halligan PW, Hunt M, Marshall JC, Wade DT. When seeing is feeling; acquired synaesthesia or phantom touch? Neurocase. 1996;2:21–9.

    Article  Google Scholar 

  54. Diers M, Christmann C, Koeppe C, Ruf M, Flor H. Mirrored, imagined and executed movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain. Pain. 2010;149(2):296–304.

    Article  PubMed  Google Scholar 

  55. Moseley GL, Gallace A, Spence C. Is mirror therapy all it is cracked up to be? Current evidence and future directions. Pain. 2008;138(1):7–10.

    Article  PubMed  Google Scholar 

  56. Lotze M, Montoya P, Erb M, Hülsemann E, Flor H, Klose U, et al. Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci. 1999;11(5):491–501.

    Article  CAS  PubMed  Google Scholar 

  57. Ersland L, Rosén G, Lundervold A, Smievoll AI, Tillung T, Hugdahl S, et al. Phantom limb imaginary fingertapping causes primary motor cortex activation: an fMRI study. Neuro Report. 1996;8(1):207–10.

    CAS  Google Scholar 

  58. Roux FE, Lotterie JA, Cassol E, Lazorthes Y, Sol JC, Berry I. Cortical areas involved in virtual movement of phantom limbs: comparison with normal subjects. Neurosurgery. 2003;53(6):1342–53.

    Article  PubMed  Google Scholar 

  59. Roux FE, Ibarrola D, Lazorthes Y, Berry I. Virtual movements activate primary sensorimotor areas in amputees: report of three cases. Neurosurgery. 2001;49(3):736–42.

    CAS  PubMed  Google Scholar 

  60. Mercier C, Reilly KT, Vargas CD, Aballea A, Sirigu A. Mapping phantom movement representations in the motor cortex of amputees. Brain. 2006;129(Pt 8):2202–10.

    Article  PubMed  Google Scholar 

  61. Giraux P, Sirigu A. Illusory movements of the paralyzed limb restore motor cortex activity. Neuroimage. 2003;20 Suppl 1:S107–11.

    Article  PubMed  Google Scholar 

  62. MacIver K, Lloyd DM, Kelly S, Roberts N, Nurmikko T. Phantom limb pain, cortical reorganization and the therapeutic effect of mental imagery. Brain. 2008;131(Pt 8):2181–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Moura VL, Faurot KR, Gaylord SA, Mann JD, Sill M, Lynch C, et al. Mind-body interventions for treatment of phantom limb pain in persons with amputation. Am J Phys Med Rehabil. 2012;91(8):701–14.

    Article  PubMed  Google Scholar 

  64. Moseley GL. Graded motor imagery is effective for long-standing complex regional pain syndrome: a randomised controlled trial. Pain. 2004;108(1–2):192–8.

    Article  CAS  PubMed  Google Scholar 

  65. Moseley GL. Is successful rehabilitation of complex regional pain syndrome due to sustained attention to the affected limb? A randomised clinical trial. Pain. 2005;114(1–2):54–61.

    Article  PubMed  Google Scholar 

  66. Moseley GL. Graded motor imagery for pathologic pain: a randomized controlled trial. Neurology. 2006;67(12):2129–34.

    Article  PubMed  Google Scholar 

  67. McCabe CS, Haigh RC, Ring EF, Halligan PW, Wall PD, Blake DR. A controlled pilot study of the utility of mirror visual feedback in the treatment of complex regional pain syndrome (type 1). Rheumatology (Oxford). 2003;42(1):97–101.

    Article  CAS  Google Scholar 

  68. Gieteling EW, van Rijn MA, de Jong BM, Hoogduin JM, Renken R, van Hilten JJ, et al. Cerebral activation during motor imagery in complex regional pain syndrome type 1 with dystonia. Pain. 2008;134(3):302–9.

    Article  PubMed  Google Scholar 

  69. Moseley GL, Parsons TJ, Spence C. Visual distortion of a limb modulates the pain and swelling evoked by movement. Curr Biol. 2008;18(22):R1047–8.

    Article  CAS  PubMed  Google Scholar 

  70. Pleger B, Janssen F, Schwenkreis P, Volker B, Maier C, Tegenthoff M. Repetitive transcranial magnetic stimulation of the motor cortex attenuates pain perception in complex regional pain syndrome type I. Neurosci Lett. 2004;356(2):87–90.

    Article  CAS  PubMed  Google Scholar 

  71. Ramachandran VS, Seckel EL. Using mirror visual feedback and virtual reality to treat fibromyalgia. Med Hypotheses. 2010;75:495–6.

    Article  CAS  PubMed  Google Scholar 

  72. Moseley GL. I can't find it! Distorted body image and tactile dysfunction in patients with chronic back pain. Pain. 2008;140(1):239–43.

    Article  PubMed  Google Scholar 

  73. Luomajoki H, Moseley GL. Tactile acuity and lumbopelvic motor control in patients with back pain and healthy controls. Br J Sports Med. 2011;45(5):437–40.

    Article  CAS  PubMed  Google Scholar 

  74. Bray H, Moseley GL. Disrupted working body schema of the trunk in people with back pain. Br J Sports Med. 2010;45(3):168–73.

    Article  Google Scholar 

  75. Wand BM, Tulloch VM, George PJ, Smith AJ, Goucke R, O'Connell NE, et al. Seeing it helps: movement-related back pain is reduced by visualization of the back during movement. Clin J Pain. 2012;28(7):602–8.

    Article  PubMed  Google Scholar 

  76. Diers M, Zieglgänsberger W, Trojan J, Drevensek AM, Erhardt-Raum G. Flor H Site-specific visual feedback reduces pain perception. Pain. 2013;154:890–6.

    Article  PubMed  Google Scholar 

  77. Flor H, Nikolajsen L, Staehelin Jensen T. Phantom limb pain: a case of maladaptive CNS plasticity? Nat Rev Neurosci. 2006;7(11):873–81.

    Article  CAS  PubMed  Google Scholar 

  78. Wand BM, Parkitny L, O'Connell NE, Luomajoki H, McAuley JH, Thacker M, et al. Cortical changes in chronic low back pain: current state of the art and implications for clinical practice. Man Ther. 2011;16(1):15–20.

    Article  PubMed  Google Scholar 

  79. Moseley GL, Flor H. Targeting cortical representations in the treatment of chronic pain: a review. Neurorehabil Neural Repair. 2012;26(6):646–52.

    Article  PubMed  Google Scholar 

  80. Thieme K, Flor H, Turk DC. Psychological pain treatment in fibromyalgia syndrome: efficacy of operant behavioural and cognitive behavioural treatments. Arthritis Res Ther. 2006;8(4):R121.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Thieme K, Gromnica-Ihle E, Flor H. Operant behavioral treatment of fibromyalgia: a controlled study. Arthritis Rheum. 2003;49(3):314–20.

    Article  PubMed  Google Scholar 

  82. Diers M, Yilmaz P, Rance M, Thieme K, Gracely RH, Rolko C, et al. Treatment-related changes in brain activation in patients with fibromyalgia syndrome. Exp Brain Res. 2012;218(4):619–28.

    Article  CAS  PubMed  Google Scholar 

  83. Cole J. Virtual & augmented reality, phantom experience and prosthetics. In: Gallagher P, Desmond DM, MacLachlan M, editors. Neuroprostheses. London: Springer; 2007. p. 141–53.

    Google Scholar 

  84. Desmond DM, O’Neill K, De Paor A, McDarby G, MacLachlan M. Augmenting the reality of phantom limbs: three case studies using an augmented mirror box procedure. J Prosthet Orthot. 2006;18(3):74–9.

    Article  Google Scholar 

  85. Murray CD, Patchick E, Pettifer S, Caillette F, Howard T. Immersive virtual reality as a rehabilitative technology for phantom limb experience: a protocol. Cyberpsychol Behav. 2006;9(2):167–70.

    Article  PubMed  Google Scholar 

  86. Murray CD, Patchick EL, Caillette F, Howard T, Pettifer S. Can immersive virtual reality reduce phantom limb pain? Stud Health Technol Inform. 2006;119:407–12.

    PubMed  Google Scholar 

  87. Murray CD, Pettifer S, Howard T, Patchick EL, Caillette F, Kulkarni J, et al. The treatment of phantom limb pain using immersive virtual reality: three case studies. Disabil Rehabil. 2007;29(18):1465–9.

    Article  PubMed  Google Scholar 

  88. Cole J, Crowle S, Austwick G, Slater DH. Exploratory findings with virtual reality for phantom limb pain; from stump motion to agency and analgesia. Disabil Rehabil. 2009;31(10):846–54.

    Article  PubMed  Google Scholar 

  89. Bach F, Buschmann J, Schmitz B, Maaß H, Çakmak H, Diers M et al. Using interactive immersive VR/AR for the therapy of phantom limb pain. 13th International conference on humans and computers; 08.12.2010–10.12.2010; University of Aizu: University of Aizu Press; 2010. p. 183–7.

    Google Scholar 

  90. Bach F, Cakmak H, Maass H. Vision-based hand representation and intuitive virtual object manipulation in mixed reality. Biomed Tech. 2012;57,(SI-1 Track-B):462–465.

    Google Scholar 

  91. Trojan J, Diers M, Fuchs X, Bach F, Bekrater-Bodmann R, Foell J, Kamping S, Rance M, Maaß H. Flor H (2014) An augmented reality home-training system based on the mirror training and imagery approach. Behav Res Methods. 2014;46(3):634–40. doi:10.3758/s13428-013-0412-4.

    Article  PubMed Central  PubMed  Google Scholar 

  92. Ehrsson HH, Rosen B, Stockselius A, Ragno C, Kohler P, Lundborg G. Upper limb amputees can be induced to experience a rubber hand as their own. Brain. 2008;131(Pt 12):3443–52.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Rossini PM, Micera S, Benvenuto A, Carpaneto J, Cavallo G, Citi L, et al. Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol. 2010;121(5):777–83.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The completion of this chapter was facilitated by a grant from the Deutsche Forschungsgemeinschaft DI 1553/3 and an Early Career Research Grant offered by the International Association for the Study of Pain as well as by the PHANTOM MIND project, which receives research funding from the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 230249. This chapter reflects only the author’s views, and the Community is not liable for any use that may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Diers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Diers, M. (2015). Neuroprosthesis and Sensorimotor Training. In: Knotkova, H., Rasche, D. (eds) Textbook of Neuromodulation. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1408-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1408-1_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1407-4

  • Online ISBN: 978-1-4939-1408-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics