Skip to main content

The Mechanisms and Actions of Motor Imagery Within the Clinical Setting

  • Chapter
  • First Online:
Textbook of Neuromodulation

Abstract

Motor imagery (MI) refers to the process of imagining a movement in the absence of either actual movement or execution of the mentally rehearsed task. It is a dynamic simulation of the performed action incorporating temporal, sequential, and biomechanical planning, which changes in content as the action is imagined over time. This chapter outlines the clinical potential of MI in the rehabilitation of movement disorders and discusses the neurophysiological basis of normal movement and the overlapping networks and recruitment patterns that exist during MI tasks. Further, the chapter reviews contemporary evidence regarding the effects of MI in a variety of clinical conditions, including complex regional pain syndrome, phantom limb pain and stroke, and presents some of the validated outcome measures used in assessing MI, as well as clinical applications of MI programmes, open questions and future implications for research and clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guillot A, Di Rienzo F, MacIntyre T, Moran A, Collet C. Imagining is not doing but involves specific motor commands: a review of experimental data related to motor inhibition. Front Hum Neurosci. 2012. doi:10.3389/fnhum.2012.00247.

    PubMed Central  PubMed  Google Scholar 

  2. Jeannerod M. Motor cognition. What actions tell the self. Oxford: Oxford University Press; 2006. p. 21–44.

    Google Scholar 

  3. Callow N, Waters A. The effects of kinesthetic imagery on the sports confidence of flat-race horse jockeys. Psychol Sport Exerc. 2005;6:443–59.

    Article  Google Scholar 

  4. Voisin JIA, Mercier C, Jackson P, Richards CL, Malouin F. Is somatosensory excitability more affected by the perspective or modality content of the motor imagery? Neurosci Lett. 2011;493:33–7.

    Article  CAS  PubMed  Google Scholar 

  5. Guillot A, Colles C, Nguyen VA, Malouin F, Richards C, Doyon J. Brain activity during visual versus kinaesthetic imagery: an fMRI study. Hum Brain Mapp. 2009;30:2157–72.

    Article  PubMed  Google Scholar 

  6. Stinear CM, Byblow WD, Steyvers M, Levin O, Swinnen SP. Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Exp Brain Res. 2011;168:157–64.

    Article  Google Scholar 

  7. Richardson A. Mental practice: a review and discussion. Part I Research Quarterly. 1967;38:95–107.

    Google Scholar 

  8. Richardson A. Mental practice: a review and discussion. Part II Research Quarterly. 1967;38:264–73.

    Google Scholar 

  9. Weinberg R. Does imagery work? Effects on performance and mental skills. J Imagery Res Sport Phys Activ. 2008;3(1):1–21.

    Google Scholar 

  10. Rothwell JC. Overview of neurophysiology of movement control. Clin Neurol Neurosurg. 2012;114:432–5.

    Article  CAS  PubMed  Google Scholar 

  11. Dominey P, Decety J, Broussolle E, Chazot G, Jeannerod M. Motor imagery of a lateralized sequential task is asymmetrically slowed in hemi-Parkinson’s patients. Neuropsychologia. 1995;33:727–41.

    Article  CAS  PubMed  Google Scholar 

  12. Schott N, Munzert J. Mental chronometry in the elderly. J Exerc Sport Psychol. 2002;24:109.

    Google Scholar 

  13. Malouin F, Richards CL, Desrosiers J, Doyon J. Bilateral slowing of mentally simulated actions after stroke. Neuroreport. 2004;15:1349–53.

    Article  PubMed  Google Scholar 

  14. Decety J, Jeannerod M. Fitts law in mentally simulated movements. Behav Brain Res. 1996;72:127–34.

    Article  Google Scholar 

  15. Decety J, Jeannerod M, Durozard D, Baverel G. Central activation of autonomic effectors during mental simulation of motor actions in man. J Physiol. 1993;461:549–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Mulder T, de Vries S, Zijlstra S. Observation, imagination and execution of an effortful movement: more evidence for a central explanation of motor imagery. Exp Brain Res. 2005;344–351.

    Google Scholar 

  17. Lebon F, Rouffet D, Collet C, Guillot A. Modulation of EMG power spectrum frequency during motor imagery. Neurosci Lett. 2008;25:181–5.

    Article  Google Scholar 

  18. Guillot A, Lebon F, Rouffet D, et al. Muscular responses during motor imagery as a function of muscle contraction types. Int J Psychophysiol. 2007;66:18–27.

    Article  CAS  PubMed  Google Scholar 

  19. Jowdy DP, Harris DV. Muscular responses during mental imagery as a function of motor skill level. J Sport Exerc Psychol. 1990;12:191–201.

    Google Scholar 

  20. Schuster C, Hilfiker R, Amft O, et al. Best practice for motor imagery: a systematic literature review on motor imagery training elements in five different disciplines. BMC Med. 2011;9(1):75.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Malouin F, Richards C. Mental practice for relearning locomotor skills. Phys Ther. 2010;90(2):240–51.

    Article  PubMed  Google Scholar 

  22. Beaumont G, Mercier C, Michon PE, Malouin F, Jackson PL. Decreasing phantom limb pain through observation of action and imagery: a case series. Pain Med. 2011;12(2):289–99.

    Article  PubMed  Google Scholar 

  23. De Vries S, Mulder T. Motor imagery and stroke rehabilitation: a critical discussion. J Rehabil Med. 2007;39(1):5–13.

    Article  PubMed  Google Scholar 

  24. Moseley GL. Graded motor imagery for pathologic pain: a randomized controlled trial. Neurology. 2006;67:2129–34.

    Article  PubMed  Google Scholar 

  25. Munzert J, Lorey B, Zentgraf K. Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Res Rev. 2009;60:306–26.

    Article  PubMed  Google Scholar 

  26. Mulder T. Motor imagery and action observation: cognitive tools for rehabilitation. J Neural Transm. 2007;114:1265–78.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Moseley GL. Imagined movements cause pain and swelling in a patient with complex regional pain syndrome. Neurology. 2004;62(1):1644.

    Article  PubMed  Google Scholar 

  28. Sharma N, Pomeroy VM, Baron JC. Motor imagery: a backdoor to the motor system after stroke? Stroke. 2006;37:1941–52.

    Article  PubMed  Google Scholar 

  29. Page SJ, Dunning K, Hermann V, Leonard A, Levine P. Longer versus shorter mental practice sessions for affected upper extremity movement after stroke: a randomized controlled trial. Clin Rehabil. 2011;25(7):627–37.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Page SJ, Levine P, Sisto S, Johnston MV. A randomized efficacy and feasibility study of imagery in acute stroke. Clin Rehabil. 2005;86:399–402.

    Google Scholar 

  31. Dijkerman HC, Letswaart M, Johnston M, MacWalter RS. Does motor imagery training improve hand function in chronic stroke patients? A pilot study. Clin Rehabil. 2004;18:538–49.

    Article  CAS  PubMed  Google Scholar 

  32. Liu KP, Chan CC, Lee TM, Hui-Chan CW. Mental imagery for promoting relearning for people after stroke a randomized controlled trial. Arch Phys Med Rehabil. 2004;85:1403–8.

    Article  PubMed  Google Scholar 

  33. Page SJ, Levine P, Sisto S, Johnston MV. A randomized efficacy and feasibility study of imagery in acute stroke. Clin Rehabil. 2001;15:233–40.

    Article  CAS  PubMed  Google Scholar 

  34. Subramanian L, Hindle JV, Johnston S, et al. Real-time functional magnetic resonance imaging neurofeedback for treatment of Parkinson’s disease. J Neurosci. 2011;31:16309–17.

    Article  CAS  PubMed  Google Scholar 

  35. Tamir R, Dickstein R, Huberman M. Integration of motor imagery and physical practice in group treatment applied to subjects with Parkinson’s disease. Neurorehabil Neural Repair. 2007;21:68–75.

    Article  PubMed  Google Scholar 

  36. MacIver K, Lloyd DM, Kelly S, Roberts N, Nurmikko T. Phantom limb pain, cortical reorganization and the therapeutic effect of mental imagery. Brain. 2008;131(8):2181–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Lacourse MG, Orr EL, Cramer SC, Cohen MJ. Brain activation during execution and motor imagery of novel and skilled sequential hand movements. Neuroimage. 2005;27(3):505–19.

    Article  PubMed  Google Scholar 

  38. Jackson PL, Lafleur MF, Malouin F, Richards CL, Doyon J. Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery. Neuroimage. 2003;20(2):1171–80.

    Article  PubMed  Google Scholar 

  39. Harden RN, Bruelh S, Perez RS, et al. Validation of proposed diagnostic criteria (the Budapest Criteria) for Complex Regional Pain Syndrome. Pain. 2010;150:268–74.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Moseley GL. Is successful rehabilitation of complex regional pain syndrome due to sustained attention to the affected limb? A randomised clinical trial. Pain. 2005;1–4:54–61.

    Article  Google Scholar 

  41. Cohen H, Harris N, McCabe CS. Distorting proprioception in patients with rheumatic diseases exacerbates sensory disturbances: further evidence for central pain mechanisms. Rheumatology. 2010;49(S1):i62.

    Google Scholar 

  42. Swart K, Stins JF, Beek PJ. Cortical changes in complex regional pain syndrome (CRPS). Eur J Pain. 2009;13:902–7.

    Article  PubMed  Google Scholar 

  43. Johnson S, Hall J, Barnett S, et al. Using graded motor imagery for complex regional pain syndrome in clinical practice: failure to improve pain. Eur J Pain. 2012;16(4):550–61.

    Article  CAS  PubMed  Google Scholar 

  44. Parsons LM, Fox PT, Downs JH, et al. Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature. 1995;375:54–8.

    Article  CAS  PubMed  Google Scholar 

  45. Viswanathan S, Fritz C, Grafton ST. Telling the right hand from the left hand: multisensory integration, not motor imagery, solves the problem. Psychol Sci. 2012;23(6):598–607.

    Article  PubMed  Google Scholar 

  46. Priganc VW, Stralka SW. Graded motor imagery. J Hand Therapy. 2011;24(2):164–9.

    Article  Google Scholar 

  47. McCabe CS, Haigh RC, Ring EFR, Halligan PW, Wall PD, Blake DR. A controlled pilot study of the utility of mirror visual feedback in the treatment of Complex Regional Pain Syndrome (Type 1). Rheumatology. 2003;42:97–101.

    Article  CAS  PubMed  Google Scholar 

  48. Moseley GL. Graded motor imagery is effective for long-standing complex regional pain syndrome: a randomised controlled trial. Pain. 2004;108(1–2):192–8.

    Article  CAS  PubMed  Google Scholar 

  49. McCabe CS, Haigh RC, Halligan PW, Blake DR. Simulating sensory-motor incongruence in healthy volunteers: implications for a cortical model of rheumatology pain. Rheumatology. 2005;44:509–16.

    Article  CAS  PubMed  Google Scholar 

  50. McCabe C, Bodamyali T, Cohen H, Blake DR. Somaesthetic disturbances in fibromyalgia are exaggerated by sensory-motor conflict: implications for chronicity of the disease? Rheumatology. 2007;46:1587–92.

    Article  CAS  PubMed  Google Scholar 

  51. Hall CR. Imagery in sport and exercise. In: Singer RN, Hausenblas HA, Janelle CM, editors. Handbook of sport psychology. 2nd ed. New York, NY: Wiley; 2001. p. 529–49.

    Google Scholar 

  52. Sirigu A, Duhamel JR, Cohen L, Pillon B, Dubois B, Agid Y. The mental representation of hand movements after parietal cortex damage. Science. 1996;273:1564–8.

    Article  CAS  PubMed  Google Scholar 

  53. Malouin F, Richards CL, Durand A, Doyon J. Clinical assessment of motor imagery after stroke. Neurorehabil Neural Repair. 2008;22:330–40.

    Article  PubMed  Google Scholar 

  54. Isaac A, Marks DF, Russell DG. An Instrument for assessing imagery of movement; the Vividness of Movement Imagery Questionnaire (VMIQ). J Ment Imag. 1986;10(4):23–30.

    Google Scholar 

  55. Campos A, Perez MJ. A factor analysis study of two measures of mental imagery. Percept Mot Skills. 1990;71:995–1001.

    Article  Google Scholar 

  56. Hall CR, Martin KA. Movement imagery abilities: a revision of the Movement Imagery Questionnaire. J Ment Imag. 1997;21:143–54.

    Google Scholar 

  57. Hall CR, Pongrac J. Movement imagery questionnaire. Faculty of Physical Education. London, ON: The University of Western Ontario; 1983.

    Google Scholar 

  58. Gregg M, Hall C, Butler A. The MIQ-RS, A suitable option for examining movement imagery ability. Evid Base Compl Alternative Med. 2010;7(2):249–57.

    Article  Google Scholar 

  59. Butler A, Cazeaux J, Fidler A, et al. The movement imagery questionnaire-revised, second edition (MIQ-RS) is a reliable and valid tool for evaluating motor imagery in stroke populations. Evid Base Compl Alternative Med. 2012;2012:1–11.

    Article  Google Scholar 

  60. Malouin F, Richards CL, Jackson P, Lafleur M, Durand A, Doyon J. The Kinesthetic and Visual Imagery Questionnaire (KVIQ) for Assessing Motor Imagery in Persons with Physical Disabilities: A Reliability and Construct Validity Study. Journal of Neurologic Physical Therapy. 2007;31(1):20–9.

    Article  PubMed  Google Scholar 

  61. McAvinue LP, Robertson IH. Measuring motor imagery ability: a review. Eur J Cogn Psychol. 2008;20(2):232–51.

    Article  Google Scholar 

  62. Malouin F, Richards CL, Durand A, Doyon J. Reliability of Mental Chronometry for Assessing Motor Imagery Ability After Stroke. Arch Phys Med Rehabil. 2008;89:311–9.

    Article  PubMed  Google Scholar 

  63. Zimmermann-Schlatter A, Schuster C, Puhan MA, Siekierka E, Steurer J. Efficacy of motor imagery in post-stroke rehabilitation: a systematic review. J Neuroeng Rehabil. 2008;5:8.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Roosink M, Zijdewind I. Corticospinal excitability during observation and imagery of simple and complex hand tasks: implications for motor rehabilitation. Behav Brain Res. 2010;213:35–41.

    Article  PubMed  Google Scholar 

  65. Braun S, Beurskens A, Kleynen M, Schols J, Wade D. Rehabilitation with mental practice has similar effects on mobility as rehabilitation with relaxation in people with Parkinson’s disease: a multicentre randomised trial. J Physiother. 2011;57:27–34.

    Article  PubMed  Google Scholar 

  66. Cramer SC, Orr EL, Cohen MJ, Lacourse MG. Effector of motor imagery training after chronic complete spinal cord injury. Exp Brain Res. 2006;177:233–42.

    Article  PubMed  Google Scholar 

  67. Lee G, Song C, Lee Y, Cho H, Lee S. Effects of motor imagery training on gait ability of patients with chronic stroke. J Phys Ther Sci. 2011;23(2):197–200.

    Article  Google Scholar 

Recommended Reading

  1. Halpern SD, Ubel PA, Caplan AL. Solid-organ transplantation in HIV-infected patients. N Engl J Med. 2002;347(4):284–7.

    Article  PubMed  Google Scholar 

  2. Lorant J, Nicolas A. Validation of the French translation of the Movement Imagery Questionnaire-Revised (MIQ-R). Science Motricité. 2004;53:57–68.

    Article  Google Scholar 

Download references

Acknowledgements

N. Walsh is funded by an Arthritis Research UK Career Development Fellowship, L. Jones is funded by the Chartered Society of Physiotherapy Charitable Trust, and C. McCabe is funded by an NIHR Career Development Fellowship. Stephen Tate provided the original line drawing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola E. Walsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Walsh, N.E., Jones, L., McCabe, C.S. (2015). The Mechanisms and Actions of Motor Imagery Within the Clinical Setting. In: Knotkova, H., Rasche, D. (eds) Textbook of Neuromodulation. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1408-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1408-1_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1407-4

  • Online ISBN: 978-1-4939-1408-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics