Skip to main content

The Oxidative Stress in the Fetus and in the Newborn

  • Chapter
  • First Online:
Perinatal and Prenatal Disorders

Abstract

Free radical (FR) generation is an unavoidable consequence of life in an oxygen-rich atmosphere. FRs can be considered a double-edged sword. Their beneficial effects occur at moderate concentrations and include their physiological roles in cellular responses to noxia, as in defense against infectious agents, in the function of a number of cellular signaling pathways, and in the induction of a mitogenic response. The overproduction of FRs and the insufficiency of antioxidant mechanisms result in oxidative stress (OS), a deleterious process and important mediator of damage to cell structures and tissues. OS can occur before birth as a consequence of hypoxic–ischemic or inflammatory processes and also at birth in all newborns because of the hyperoxic challenge during the transition from the hypoxic intrauterine environment to extrauterine life. During the perinatal period, OS can be magnified by other predisposing conditions such as hyperoxia, hypoxia, ischemia, hypoxia–reperfusion, inflammation, and high levels of non-protein-bound iron (NPBI).

Epidemiological studies linked OS occurring during fetal stages and early infancy with adverse outcomes later in life, indicating that OS is an early event in the etiology of many chronic diseases. Fetuses and newborns are particularly susceptible to OS and damage due to the increased generation of FRs, the lack of adequate antioxidant protection, and the inability to induce antioxidant defenses during the hyperoxic challenge at birth. This impairment in the oxidative balance has been thought to be the common link among different pathologies grouped together as “free radical disease in the neonate” that include retinopathy of prematurity (which may lead to blindness in severe cases), bronchopulmonary dysplasia (a particularly debilitating pulmonary disease of the preterm infant), periventricular leukomalacia (an important cause of severe neurodisability), and necrotizing enterocolitis.

In this chapter, we will discuss in detail these perinatal diseases. Particularly, we will analyze the current knowledge about the role of OS in their pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelhamid AE, Chuang SL, Hayes P, Fell JM. In vitro cow’s milk protein-specific inflammatory and regulatory cytokine responses in preterm infants with necrotizing enterocolitis and sepsis. Pediatr Res. 2011;69:165–9.

    CAS  PubMed  Google Scholar 

  2. Ackerman 4th WE, Rovin BH, Kniss DA. Epidermal growth factor and interleukin-1beta utilize divergent signaling pathways to synergistically upregulate cyclooxygenase-2 gene expression in human amnion-derived WISH cells. Biol Reprod. 2004;71:2079–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001;357:593–615.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Alexander VN, Northrup V, Bizzarro MJ. Antibiotic exposure in the newborn intensive care unit and the risk of necrotizing enterocolitis. J Pediatr. 2011;159:392–7.

    PubMed Central  PubMed  Google Scholar 

  5. Auten RL, Davis JM. Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatr Res. 2009;66:121–7.

    CAS  PubMed  Google Scholar 

  6. Aydemir C, Dilli D, Uras N, et al. Total oxidant status and oxidative stress are increased in infants with necrotizing enterocolitis. J Pediatr Surg. 2011;46:2096–100.

    PubMed  Google Scholar 

  7. Baburamani AA, Ek CJ, Walker DW, Castillo-Melendez M. Vulnerability of the developing brain to hypoxic-ischemic damage: contribution of the cerebral vasculature to injury and repair? Front Physiol. 2012;3:424.

    PubMed Central  PubMed  Google Scholar 

  8. Bachowski S, Kolaja KL, Xu Y, et al. Role of oxidative stress in the mechanism of dieldrin’s hepatotoxicity. Ann Clin Lab Sci. 1997;27:196–209.

    CAS  PubMed  Google Scholar 

  9. Back SA, Gan X, Li Y, Rosenberg PA, Volpe JJ. Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. J Neurosci. 1998;18(16):6241–53.

    CAS  PubMed  Google Scholar 

  10. Back SA, Luo NL, Mallinson RA, et al. Selective vulnerability of preterm white matter to oxidative damage defined by F2-isoprostanes. Ann Neurol. 2005;58:108–20.

    CAS  PubMed  Google Scholar 

  11. Bányász I, Bokodi G, Vásárhelyi B, et al. Genetic polymorphisms for vascular endothelial growth factor in perinatal complications. Eur Cytokine Netw. 2006;17:266–70.

    PubMed  Google Scholar 

  12. Baregamian N, Song J, Bailey CE, Papaconstantinou J, Evers BM, Chung DH. Tumor necrosis factor-alpha and apoptosis signal-regulating kinase 1 control reactive oxygen species release, mitochondrial autophagy, and c-Jun N-terminal kinase/p38 phosphorylation during necrotizing enterocolitis. Oxid Med Cell Longev. 2009;2:297–306.

    PubMed Central  PubMed  Google Scholar 

  13. Baregamian N, Song J, Papaconstantinou J, Hawkins HK, Evers BM, Chung DH. Intestinal mitochondrial apoptotic signaling is activated during oxidative stress. Pediatr Surg Int. 2011;27:871–7.

    PubMed Central  PubMed  Google Scholar 

  14. Baud O, Greene AE, Li J, Wang H, Volpe JJ, Rosenberg PA. Glutathione peroxidase-catalase cooperativity is required for resistance to hydrogen peroxide by mature rat oligodendrocytes. J Neurosci. 2004;24(7):1531–40.

    CAS  PubMed  Google Scholar 

  15. Bray RC, Cockle SA, Fielden EM, Roberts PB, Rotilio G, Calabrese L. Reduction and inactivation of superoxide dismutase by hydrogen peroxide. Biochem J. 1974;139(1):43–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Buonocore G, Groenendaal F. Anti-oxidant strategies. Semin Fetal Neonatal Med. 2007;12:287–95.

    PubMed  Google Scholar 

  17. Buonocore G, Perrone S. Biomarkers of hypoxic brain injury in the neonate. Clin Perinatol. 2004;31(1):107–16.

    CAS  PubMed  Google Scholar 

  18. Buonocore G, Perrone S, Longini M, et al. Oxidative stress in preterm neonates at birth and on the seventh day of life. Pediatr Res. 2002;52:46–9.

    CAS  PubMed  Google Scholar 

  19. Buonocore G, Perrone S, Longini M, Terzuoli L, Bracci R. Total hydroperoxide and advanced oxidation protein products in preterm hypoxic babies. Pediatr Res. 2000;47:221–4.

    CAS  PubMed  Google Scholar 

  20. Buonocore G, Perrone S, Tataranno ML. Oxygen toxicity: chemistry and biology of reactive oxygen species. Semin Fetal Neonatal Med. 2010;15:186–90.

    PubMed  Google Scholar 

  21. Buonocore G, Zani S, Perrone S, Caciotti B, Bracci R. Intraerythrocyte nonprotein-bound iron and plasma malondialdehyde in the hypoxic newborn. Free Radic Biol Med. 1998;25:766–70.

    CAS  PubMed  Google Scholar 

  22. Byfield G, Budd S, Hartnett ME. The role of supplemental oxygen and JAK/STAT signaling in intravitreous neovascularization in a ROP rat model. Invest Ophthalmol Vis Sci. 2009;50:3360–5.

    PubMed Central  PubMed  Google Scholar 

  23. Castillo-Meléndez M, Chow JA, Walker DW. Lipid peroxidation, caspase-3 immunoreactivity, and pyknosis in late-gestation fetal sheep brain after umbilical cord occlusion. Pediatr Res. 2004;55(5):864–71.

    PubMed  Google Scholar 

  24. Chen W, Hunt DM, Lu H, Hunt RC. Expression of antioxidant protective proteins in the rat retina during prenatal and postnatal development. Invest Ophthalmol Vis Sci. 1999;40:744–51.

    CAS  PubMed  Google Scholar 

  25. Chow LC, Wright KW, Sola A. Can changes in clinical practice decrease the incidence of severe retinopathy of prematurity in very low birth weight infants? Pediatrics. 2003;111:339–45.

    PubMed  Google Scholar 

  26. Ciccoli L, Rossi V, Leoncini S, et al. Iron release in erythrocytes and plasma non protein-bound iron in hypoxic and non hypoxic newborns. Free Radic Res. 2003;37:51–8.

    CAS  PubMed  Google Scholar 

  27. Claud EC, Zhang X, Petrof EO, Sun J. Developmentally regulated tumor necrosis factor-alpha induced nuclear factor-kappaB activation in intestinal epithelium. Am J Physiol Gastrointest Liver Physiol. 2007;292:G1411–9.

    CAS  PubMed  Google Scholar 

  28. Comporti M, Signorini C, Buonocore G, Ciccoli L. Iron release, oxidative stress and erythrocyte ageing. Free Radic Biol Med. 2002;32(7):568–76.

    CAS  PubMed  Google Scholar 

  29. Conner EM, Grisham MB. Inflammation, free radicals, and antioxidants. Nutrition. 1996;12:274–7.

    CAS  PubMed  Google Scholar 

  30. Cunningham S, Fleck BW, Elton RA, McIntosh N. Transcutaneous oxygen levels in retinopathy of prematurity. Lancet. 1995;346:1464–5.

    CAS  PubMed  Google Scholar 

  31. Davies KJ. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life. 2000;50:279–89.

    CAS  PubMed  Google Scholar 

  32. Dennery PA. Effects of oxidative stress on embryonic development. Birth Defects Res C Embryo Today. 2007;81:155–62.

    CAS  PubMed  Google Scholar 

  33. Dorrell MI, Aguilar E, Scheppke L, Barnett FH, Friedlander M. Combination angiostatic therapy completely inhibits ocular and tumor angiogenesis. Proc Natl Acad Sci U S A. 2007;104:967–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Eriksson UJ, Cederberg J, Wentzel P. Congenital malformations in offspring of diabetic mothers—animal and human studies. Rev Endocr Metab Disord. 2003;4:79–93.

    CAS  PubMed  Google Scholar 

  35. Escobar J, Teramo K, Stefanovic V, Andersson S, Asensi MA, Arduini A, et al. Amniotic fluid oxidative and nitrosative stress biomarkers correlate with fetal chronic hypoxia in diabetic pregnancies. Neonatology. 2013;103(3):193–8.

    CAS  PubMed  Google Scholar 

  36. Fellman V. Respiratory distress syndrome of neonates today. Duodecim. 1997;113:1024–31.

    CAS  PubMed  Google Scholar 

  37. Fialkow L, Wang Y, Downey GP. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med. 2007;42:153–64.

    CAS  PubMed  Google Scholar 

  38. Folkerth RD, Keefe RJ, Haynes RL, Trachtenberg FL, Volpe JJ, Kinney HC. Interferon-gamma expression in periventricular leukomalacia in the human brain. Brain Pathol. 2004;14:265–74.

    CAS  PubMed  Google Scholar 

  39. Gaasch JA, Lockman PR, Geldenhuys WJ, Allen DD, Van der Schyf CJ. Brain iron toxicity: differential responses of astrocytes, neurons, and endothelial cells. Neurochem Res. 2007;32:1196–208.

    CAS  PubMed  Google Scholar 

  40. Gazzolo D, Perrone S, Paffetti P, et al. Non protein bound iron concentrations in amniotic fluid. Clin Biochem. 2005;38:674–7.

    CAS  PubMed  Google Scholar 

  41. Gladstone Jr IM, Levine RL. Oxidation of proteins in neonatal lungs. Pediatrics. 1994;93:764–8.

    PubMed  Google Scholar 

  42. Groneck P, Speer CP. Interleukin-8 in pulmonary effluent fluid of preterm infants. J Pediatr. 1993;123:839–40.

    CAS  PubMed  Google Scholar 

  43. Gutteridge JM. The role of superoxide and hydroxyl radicals in phospholipid peroxidation catalysed by iron salts. FEBS Lett. 1982;150:454–8.

    CAS  PubMed  Google Scholar 

  44. Haagsman HP. Interactions of surfactant protein A with pathogens. Biochim Biophys Acta. 1998;1408:264–77.

    CAS  PubMed  Google Scholar 

  45. Hartnett ME. The effects of oxygen stresses on the development of features of severe retinopathy of prematurity: knowledge from the 50/10 OIR model. Doc Ophthalmol. 2010;120:25–39.

    PubMed Central  PubMed  Google Scholar 

  46. Ikeda K, Toda M, Tanaka K, Tokumaru S, Kojo S. Increase of lipid hydroperoxides in liver mitochondria and inhibition of cytochrome oxidase by carbon tetrachloride intoxication in rats. Free Radic Res. 1998;28(4):403–10.

    CAS  PubMed  Google Scholar 

  47. Inder T, Mocatta T, Darlow B, Spencer C, Volpe JJ, Winterbourn C. Elevated free radical products in the cerebrospinal fluid of VLBW infants with cerebral white matter injury. Pediatr Res. 2002;52:213–8.

    CAS  PubMed  Google Scholar 

  48. Inder TE, Graham P, Sanderson K, Taylor BJ. Lipid peroxidation as a measure of oxygen free radical damage in the very low birthweight infant. Arch Dis Child Fetal Neonatal Ed. 1994;70:F107–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Jawerbaum A, Gonzalez E. Diabetic pregnancies: the challenge of developing in a pro-inflammatory environment. Curr Med Chem. 2006;13:2127–38.

    CAS  PubMed  Google Scholar 

  50. Jay Forman H, Torres M. Redox signaling in macrophages. Mol Aspects Med. 2001;22:189–216.

    CAS  Google Scholar 

  51. Jo N et al. Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization. Am J Pathol. 2006;168:2036–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Joung KE, Kim HS, Lee J, et al. Correlation of urinary inflammatory and oxidative stress markers in very low birth weight infants with subsequent development of bronchopulmonary dysplasia. Free Radic Res. 2011;45:1024–32.

    CAS  PubMed  Google Scholar 

  53. Kim M, Christley S, Alverdy JC, Liu D, An G. Immature oxidative stress management as a unifying principle in the pathogenesis of necrotizing enterocolitis: insights from an agent-based model. Surg Infect. 2012;13(1):18–32.

    Google Scholar 

  54. Kramerov AA et al. Expression of protein kinase CK2 in astroglial cells of normal and neovascularized retina. Am J Pathol. 2006;168:1722–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Kuwano T, Nakao S, Yamamoto H, et al. Cyclooxygenase 2 is a key enzyme for inflammatory cytokine-induced angiogenesis. FASEB J. 2004;18:300–10.

    CAS  PubMed  Google Scholar 

  56. Lappas M, Hiden U, Desoye G, Froehlich J, Hauguel-de Mouzon S, Jawerbaum A. The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid Redox Signal. 2011;15(12):3061–100.

    CAS  PubMed  Google Scholar 

  57. Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J. 2012;441:523–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Lee JH. An update on necrotizing enterocolitis: pathogenesis and preventive strategies. Korean J Pediatr. 2011;54:368–72.

    PubMed Central  PubMed  Google Scholar 

  59. Li SY, Fu ZJ, Lo AC. Hypoxia-induced oxidative stress in ischemic retinopathy. Oxid Med Cell Longev. 2012;2012:426769.

    PubMed Central  PubMed  Google Scholar 

  60. Lineham JD, Smith RM, Dahlenburg GW, et al. Circulating insulin-like growth factor I levels in newborn premature and full-term infants followed longitudinally. Early Hum Dev. 1986;13:37–46.

    CAS  PubMed  Google Scholar 

  61. Liu PM, Fang PC, Huang CB, et al. Risk factors of retinopathy of prematurity in premature infants weighing less than 1600 g. Am J Perinatol. 2005;22:115–20.

    PubMed  Google Scholar 

  62. Longini M, Perrone S, Kenanidis A, Vezzosi P, Marzocchi B, Petraglia F, et al. Isoprostanes in amniotic fluid: a predictive marker for fetal growth restriction in pregnancy. Free Radic Biol Med. 2005;38(11):1537–41.

    CAS  PubMed  Google Scholar 

  63. McCarthy SM, Bove PF, Matthews DE, Akaike T, van der Vliet A. Nitric oxide regulation of MMP-9 activation and its relationship to modifications of the cysteine switch. Biochemistry. 2008;47:5832–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. McColm JR, Cunningham S, Wade J, et al. Hypoxic oxygen fluctuations produce less severe retinopathy than hyperoxic fluctuations in a rat model of retinopathy of prematurity. Pediatr Res. 2004;55:107–13.

    CAS  PubMed  Google Scholar 

  65. McCrea HJ, Ment LR. The diagnosis, management, and postnatal prevention of intraventricular hemorrhage in the preterm neonate. Clin Perinatol. 2008;35:777–92.

    PubMed Central  PubMed  Google Scholar 

  66. McQuillen PS, Ferriero DM. Selective vulnerability in the developing central nervous system. Pediatr Neurol. 2004;30:227–35.

    PubMed  Google Scholar 

  67. Moonen RM, Paulussen AD, Souren NY, Kessels AG, Rubio-Gozalbo ME, Villamor E. Carbamoyl phosphate synthetase polymorphisms as a risk factor for necrotizing enterocolitis. Pediatr Res. 2007;62:188–90.

    CAS  PubMed  Google Scholar 

  68. Myatt L, Cui X. Oxidative stress in the placenta. Histochem Cell Biol. 2004;122:369–82.

    CAS  PubMed  Google Scholar 

  69. Nankervis CA, Giannone PJ, Reber KM. The neonatal intestinal vasculature: contributing factors to necrotizing enterocolitis. Semin Perinatol. 2008;32:83–91.

    PubMed  Google Scholar 

  70. Niesman MR, Johnson KA, Penn JS. Therapeutic effect of liposomal superoxide dismutase in an animal model of retinopathy of prematurity. Neurochem Res. 1997;22:597–605.

    CAS  PubMed  Google Scholar 

  71. O’Brien JS, Sampson EL. Lipid composition of the normal human brain: gray matter, white matter, and myelin. J Lipid Res. 1965;6(4):537–44.

    PubMed  Google Scholar 

  72. Okado-Matsumoto A, Fridovich I. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu, Zn-SOD in mitochondria. J Biol Chem. 2001;276:38388–93.

    CAS  PubMed  Google Scholar 

  73. Ornoy A. Embryonic oxidative stress as a mechanism of teratogenesis with special emphasis on diabetic embryopathy. Reprod Toxicol. 2007;24:31–41.

    CAS  PubMed  Google Scholar 

  74. Ozawa H, Nishida A, Mito T, Takashima S. Development of ferritin-containing cells in the pons and cerebellum of the human brain. Brain Dev. 1994;16(2):92–5.

    CAS  PubMed  Google Scholar 

  75. Parinandi NL, Kleinberg MA, Usatyuk PV, et al. Hyperoxia-induced NAD(P)H oxidase activation and regulation by MAP kinases in human lung endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2003;284:L26–38.

    CAS  PubMed  Google Scholar 

  76. Parravicini E, Fromm F. Necrotizing enterocolitis. In: Buonocore G, editor. Neonatology a practical approach to neonatal management. Milano: Springer; 2011. p. 724–30.

    Google Scholar 

  77. Penn JS. Oxygen-induced retinopathy in the rat: vitamins C and E as potential therapies. Invest Ophthalmol Vis Sci. 1992;33:1836–45.

    CAS  PubMed  Google Scholar 

  78. Penn JS, Henry MM, Tolman BL. Exposure to alternating hypoxia and hyperoxia causes severe proliferative retinopathy in the newborn rat. Pediatr Res. 1994;36:724–31.

    CAS  PubMed  Google Scholar 

  79. Penn JS, Tolman BL, Bullard LE. Effect of a water-soluble vitamin E analog, Trolox C, on retinal vascular development in an animal model of retinopathy of prematurity. Free Radic Biol Med. 1997;22:977–84.

    CAS  PubMed  Google Scholar 

  80. Perrone S, Bracci R, Buonocore G. New biomarkers of fetal-neonatal hypoxic stress. Acta Paediatr Suppl. 2002;91:135–8.

    CAS  PubMed  Google Scholar 

  81. Perrone S, Longini M, Bellieni CV, Centini G, Kenanidis A, De Marco L, et al. Early oxidative stress in amniotic fluid of pregnancies with Down syndrome. Clin Biochem. 2007;40:177–80.

    CAS  PubMed  Google Scholar 

  82. Perrone S, Tataranno ML, Negro S, et al. Early identification of the risk for free radical-related diseases in preterm newborns. Early Hum Dev. 2010;86:241–4.

    CAS  PubMed  Google Scholar 

  83. Perrone S, Tataranno ML, Negro S, et al. May oxidative stress biomarkers in cord blood predict the occurrence of necrotizing enterocolitis in preterm infants? J Matern Fetal Neonatal Med. 2012;1:128–31.

    Google Scholar 

  84. Perrone S, Vezzosi P, Longini M, et al. Biomarkers of oxidative stress in babies at high risk for retinopathy of prematurity. Front Biosci. 2009;1:547–52.

    Google Scholar 

  85. Pierce EA, Foley ED, Smith LE. Regulation of vascular endothelial growth factor by oxygen in a model of retinopathy of prematurity. Arch Ophthalmol. 1996;114:1219–28.

    CAS  PubMed  Google Scholar 

  86. Pomfy M, Húska J. The state of the microcirculatory bed after total ischaemia of the brain. An experimental ultrastructural study. Funct Dev Morphol. 1992;2:253–8.

    CAS  PubMed  Google Scholar 

  87. Raghuveer TS, Bloom BT. A paradigm shift in the prevention of retinopathy of prematurity. Neonatology. 2011;100:116–29.

    CAS  PubMed  Google Scholar 

  88. Raju TN, Langenberg P, Bhutani V, Quinn GE. Vitamin E prophylaxis to reduce retinopathy of prematurity: a reappraisal of published trials. J Pediatr. 1997;131:844–50.

    CAS  PubMed  Google Scholar 

  89. Reid MV, Murray KA, Marsh ED, Golden JA, Simmons RA, Grinspan JB. Delayed myelination in an intrauterine growth retardation model is mediated by oxidative stress upregulating bone morphogenetic protein 4. J Neuropathol Exp Neurol. 2012;71(7):640–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Rivera JC, Sapieha P, Joyal JS, et al. Understanding retinopathy of prematurity: update on pathogenesis. Neonatology. 2011;100:343–53.

    CAS  PubMed  Google Scholar 

  91. Ryu S, Kohen R, Samuni A, Ornoy A. Nitroxide radicals protect cultured rat embryos and yolk sacs from diabetic-induced damage. Birth Defects Res A Clin Mol Teratol. 2007;79:604–11.

    CAS  PubMed  Google Scholar 

  92. Saito Y, Omoto T, Cho Y, et al. The progression of retinopathy of prematurity and fluctuation in blood gas tension. Graefes Arch Clin Exp Ophthalmol. 1993;231:151–6.

    CAS  PubMed  Google Scholar 

  93. Saugstad OD. Bronchopulmonary dysplasia-oxidative stress and antioxidants. Semin Neonatol. 2003;8:39–49.

    PubMed  Google Scholar 

  94. Saugstad OD. Oxygen and retinopathy of prematurity. J Perinatol. 2006;26:S46–50.

    CAS  PubMed  Google Scholar 

  95. Savman K, Nilsson UA, Blennow M, Kjellmer I, Whitelaw A. Non-protein-bound iron is elevated in cerebrospinal fluid from preterm infants with posthemorrhagic ventricular dilatation. Pediatr Res. 2001;49(2):208–12.

    CAS  PubMed  Google Scholar 

  96. Sävman K, Nilsson UA, Thoresen M, Kjellmer I. Non-protein-bound iron in brain interstitium of newborn pigs after hypoxia. Dev Neurosci. 2005;27(2–4):176–84.

    PubMed  Google Scholar 

  97. Shastry BS. Genetic susceptibility to advanced retinopathy of prematurity (ROP). J Biomed Sci. 2010;17:69.

    PubMed Central  PubMed  Google Scholar 

  98. Takahashi M. Oxidative stress and redox regulation on in vitro development of mammalian embryos. J Reprod Dev. 2012;58(1):1–9.

    CAS  PubMed  Google Scholar 

  99. Tan S, Zhou F, Nielsen VG, Wang Z, Gladson CL, Parks DA. Sustained hypoxia-ischemia results in reactive nitrogen and oxygen species production and injury in the premature fetal rabbit brain. J Neuropathol Exp Neurol. 1998;57(6):544–53.

    CAS  PubMed  Google Scholar 

  100. Tin W, Milligan DWA, Pennefather PM, Hey E. Pulse oximetry, severe retinopathy, and outcome at one year in babies of less than 28 weeks gestation. Arch Dis Child Fetal Neonatal Ed. 2001;84:106–10.

    Google Scholar 

  101. Treszl A, Kaposi A, Hajdú J, Szabó M, Tulassay T, Vásárhelyi B. The extent to which genotype information may add to the prediction of disturbed perinatal adaptation: none, minor, or major? Pediatr Res. 2007;62:610–4.

    PubMed  Google Scholar 

  102. Ulfig N, Bohl J, Neudörfer F, Rezaie P. Brain macrophages and microglia in human fetal hydrocephalus. Brain Dev. 2004;26:307–15.

    PubMed  Google Scholar 

  103. Ushio-Fukai M. Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovasc Res. 2006;71:226–35.

    CAS  PubMed  Google Scholar 

  104. Van Buren P, Velez RL, Vaziri ND, Zhou XJ. Iron overdose: a contributor to adverse outcomes in randomized trials of anemia correction in CKD. Int Urol Nephrol. 2011;44(2):499–507.

    PubMed Central  PubMed  Google Scholar 

  105. Varsila E, Hallman M, Andersson S. Free-radical-induced lipid peroxidation during the early neonatal period. Acta Paediatr. 1994;83:692–5.

    CAS  PubMed  Google Scholar 

  106. Varsila E, Pesonen E, Andersson S. Early protein oxidation in the neonatal lung is related to development of chronic lung disease. Acta Paediatr. 1995;84:1296–9.

    CAS  PubMed  Google Scholar 

  107. Volpe JJ. Perinatal brain injury: from pathogenesis to neuroprotection. Ment Retard Dev Disabil Res Rev. 2001;7:56–64.

    CAS  PubMed  Google Scholar 

  108. Won SM, Lee JH, Park UJ, Gwag J, Gwag BJ, Lee YB. Iron mediates endothelial cell damage and blood-brain barrier opening in the hippocampus after transient forebrain ischemia in rats. Exp Mol Med. 2011;43:121–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Yang Y, Loscalzo J. Regulation of tissue factor expression in human microvascular endothelial cells by nitric oxide. Circulation. 2000;101:2144–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Buonocore M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Perrone, S., Tataranno, M.L., Santacroce, A., Buonocore, G. (2014). The Oxidative Stress in the Fetus and in the Newborn. In: Dennery, P., Buonocore, G., Saugstad, O. (eds) Perinatal and Prenatal Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1405-0_21

Download citation

Publish with us

Policies and ethics