Skip to main content

Oxidative Stress in Epilepsy

  • Chapter
  • First Online:
  • 848 Accesses

Abstract

The brain is particularly susceptible to oxidative stress being the most aerobically active organ in the body due to its high metabolic demands. It also contains high concentrations of polyunsaturated fatty acids that are prone to lipid peroxidation and is rich in iron which can catalyze hydroxyl radical formation. There is evidence that neuronal hyperexcitability and oxidative injury produced by an excessive production of free radicals may play a role in the initiation and progression of epilepsy. Epilepsy is one of the most common neurological disorders and may provoke serious physical, psychological, socioeconomic consequences. Understanding the role of oxidative stress in the pathophysiology of seizures is essential to delineate appropriate therapeutic strategies. Compounds with neuroprotective or antioxidant function may exert positive effects when associated with antiepileptic drugs (AEDs). The latter themselves may play a role of antioxidants or neuroprotectants. In fact, most AEDs currently in use have been tested for a possible neuroprotective ability both in human and animal models of epilepsy.

The present review is intended to outline the current state of knowledge on the relationship between oxidative stress and epilepsy. Evidence of damage to lipids, DNA, and proteins as the consequence of seizure-related oxidative stress, occurring in various animal models of epilepsy, is reviewed. The role of compounds with neuroprotective effects in the therapeutic strategy to prevent or treat epilepsy is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

8-dG:

8-2′-deoxyguanosine

8-oxo-dG (8-OH-dG):

8-hydroxy-2′-deoxyguanosine

AEDs:

antiepileptic drugs

ATP:

adenosine triphosphate

BBB:

blood-brain barrier

CBZ:

carbamazepine

CoQ10:

ubiquinone or coenzymeQ10

CSF:

cerebral spinal fluid

Cu/ZnSOD:

copper-zinc SOD

DNA:

deoxyribonucleic acid

F2-Iso-Ps:

F2-isoprostanes

FBM:

felbamate

GABA:

γ-aminobutyric acid

GPx:

glutathione peroxidase

GPx-GR:

glutathione peroxidase-glutathione reductase

GSH:

glutathione tripeptide

H2O2 :

hydrogen peroxide

LEV:

levetiracetam

LMT:

lamotrigine

MLT:

melatonin

MnSOD:

manganese SOD

mtDNA:

mitochondrial DNA

NAC:

N-acetylcysteine

NADH:

nicotinamide adenine dinucleotide (reduced status)

NMDA receptor:

N-methyl-D-aspartate receptor

NO:

nitric oxide

PHT:

phenytoin

POLG1:

mitochondrial DNA polymerase γ

ROS:

reactive oxygen species

SOD:

superoxide dismutase

TPM:

topiramate

tRNAPhe:

phenylalanine transfer RNA

TRPM2:

transient receptor potential M2 channel

TSPO:

translocation protein

VPA:

valproic acid

References

  1. Ngugi AK, Bottomley C, Kleinschmidt I, Sander JW, Newton CR. Estimation of the burden of active and life-time epilepsy: a meta-analytic approach. Epilepsia. 2010;51(5):883–90.

    PubMed Central  PubMed  Google Scholar 

  2. Shorvon SD. The etiologic classification of epilepsy. Epilepsia. 2011;52(6):1052–57.

    PubMed  Google Scholar 

  3. Grosso S, Orrico A, Galli L, Di Bartolo R, Sorrentino V, Balestri P. SCN1A mutation associated with atypical Panayiotopoulos syndrome. Neurology. 2007;69(6):609–11.

    CAS  PubMed  Google Scholar 

  4. Shorvon SD. The causes of epilepsy: changing concepts of etiology of epilepsy over the past 150 years. Epilepsia. 2011;52(6):1033–44.

    PubMed  Google Scholar 

  5. McCormick DA, Contreras D. On the cellular and network bases of epileptic seizures. Annu Rev Physiol. 2001;63:815–46.

    CAS  PubMed  Google Scholar 

  6. Chuang YC. Mitochondrial dysfunction and oxidative stress in seizure-induced neuronal cell death. Acta Neurol Taiwan. 2010;19(1):3–15.

    PubMed  Google Scholar 

  7. Fujikawa DG. Prolonged seizures and cellular injury: understanding the connection. Epilepsy Behav. 2005;7(Suppl3):S3–S11.

    PubMed  Google Scholar 

  8. Azam F, Prasad M, Thangavel N. Targeting oxidative stress component in the therapeutics of epilepsy. Curr Top Med Chem. 2012;12(9):994–1007.

    CAS  PubMed  Google Scholar 

  9. Ashrafi MR, Shams S, Nouri M, Mohseni M, Shabanian R, Yekaninejad MS, Chegini N, Khodadad A, Safaralizadeh R. A probable causative factor for an old problem: selenium and glutathione peroxidase appear to play important roles in epilepsy pathogenesis. Epilepsia. 2007;48(9):1750–5.

    CAS  PubMed  Google Scholar 

  10. Wong-Ekkabut J, Xu Z, Triampo W, Tang IM, Tieleman DP, Monticelli L. Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys J. 2007;93(12):4225–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Mariani E, Polidori MC, Cherubini A, Mecocci P. Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;827(1):65–75.

    CAS  PubMed  Google Scholar 

  12. Jellinger KA. General aspects of neurodegeneration. J Neural Transm. 2003;65:101–44.

    Google Scholar 

  13. Shin EJ, Jeong JH, Chung YH, Kim WK, Ko KH, Bach JH, Hong JS, Yoneda Y, Him HC. Role of oxidative stress in epileptic seizures. Neurochem Int. 2011;59(2):122–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Eng J Med. 2000;342(5):314–9.

    CAS  Google Scholar 

  15. Devi PU, Manocha A, Vohora D. Seizures, antiepileptics, antioxidants and oxidative stress: an insight for researchers. Expert Opin Pharmacother. 2008;9:3169–77.

    CAS  PubMed  Google Scholar 

  16. Candelario-Jalil E, Ajamieh HH, Sam S, Martínez G, León Fernández OS. Nimesulide limits kainate-induced oxidative damage in the rat hippocampus. Eur J Pharmacol. 2000;390:295–8.

    CAS  PubMed  Google Scholar 

  17. Patel M, Liang LP, Roberts II LJ. Enhanced hippocampal F2-isoprostane formation following kainite-induced seizures. J Neurochem. 2001;79:1065–9.

    CAS  PubMed  Google Scholar 

  18. Rola R, Swiader M, Czuczwar SJ. Electroconvulsions elevate the levels of lipid peroxidation products in mice. Pol J Pharmacol. 2002;54:521–4.

    CAS  PubMed  Google Scholar 

  19. Barichello T, Bonatto F, Agostinho FR, Reinke A, Moreira JC, Dal-Pizzol F, Izquierdo I, Quevedo J. Structure-related oxidative damage in rat brain after acute and chronic electroshock. Neurochem Res. 2004;24(9):1749–53.

    Google Scholar 

  20. Gilberti EA, Trombetta LD. The relationship between stress protein induction and the oxidative defense system in the rat hippocampus following kainic acid administration. Toxicol Lett. 2000;116(1–2):17–26.

    CAS  PubMed  Google Scholar 

  21. Dal-Pizzol F, Klamt F, Vianna MM, Schröder N, Quevedo J, Benfato MS, Moreira JC, Walz R. Lipid peroxidation in hippocampus early and late after status epilepticus induced by pilocarpine or kainic acid in Wistar rats. Neurosci Lett. 2000;291(3):179–82.

    CAS  PubMed  Google Scholar 

  22. Waldbaum S, Patel M. Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res. 2010;88(1):23–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Liang LP, Ho YS, Patel M. Mitochondrial superoxide production in kainate-induced hippocampal damage. Neuroscience. 2000;101(3):563–70.

    CAS  PubMed  Google Scholar 

  24. Patel M. Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radic Biol Med. 2004;37(12):1951–62.

    CAS  PubMed  Google Scholar 

  25. Gutteridge JM, Halliwell B. Free radicals and antioxidants in the year 2000. A historical look to the future. Ann N Y Acad Sci. 2000;899:136–47.

    CAS  PubMed  Google Scholar 

  26. Jarrett SG, Liang LP, Hellier JL, Staley KJ, Patel M. Mitochondrial DNA damage and impaired base excision repair during epileptogenesis. Neurobiol Dis. 2008;30(1):130–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Liang LP, Patel M. Mitochondrial oxidative stress and increased seizure susceptibility in Sod2 (−/+) mice. Free Radic Biol Med. 2004;36(5):542–54.

    CAS  PubMed  Google Scholar 

  28. Bruce AJ, Baudry M. Oxygen free radicals in rat limbic structures after kainite-induced seizures. Free Radic Biol Med. 1995;18(6):993–1002.

    CAS  PubMed  Google Scholar 

  29. Cheng H, Fu YS, Guo JW. Ability of GDNF to diminish free radical production leads to protection against kainate-induced excitotoxicity in hippocampus. Hippocampus. 2004;14(1):77–86.

    CAS  PubMed  Google Scholar 

  30. Tejada S, Sureda A, Roca C, Gamundi A, Esteban S. Antioxidant response and oxidative damage in brain cortex after high dose of pilocarpine. Brain Res Bull. 2007;71(4):372–75.

    CAS  PubMed  Google Scholar 

  31. Freitas RM, Vasconcelos SM, Souza FC, Viana GS, Fonteles MM. Oxidative stress in the hippocampus after pilocarpine-induced status epilepticus in Wistar rats. FEBS J. 2005;272(6):1307–12.

    CAS  PubMed  Google Scholar 

  32. Candelario-Jalil E, Al-Dalain SM, Castillo R, Martínez OS. Selective vulnerability to kainate-induced oxidative damage in different rat brain regions. J Appl Toxicol. 2001;21(5):403–7.

    CAS  PubMed  Google Scholar 

  33. Rauca C, Wiswedel I, Zerbe R, Keilhoff G, Krug M. The role of superoxide dismutase and alpha-tocopherol in the development of seizures and kindling induced by pentylenetetrazol-influence of the radical scavenger alpha-phenyl-N-tert-butyl nitrone. Brain Res. 2004;1009(1–2):203–12.

    CAS  PubMed  Google Scholar 

  34. Freitas RM. Investigation of oxidative stress involvement in hippocampus in epilepsy model induced by pilocarpine. Neurosci Lett. 2009;462(3):225–9.

    CAS  PubMed  Google Scholar 

  35. Bellissimo MI, Amado D, Abdalla DS, Ferreira EC, Cavalheiro EA, Naffah-Mazzacoratti MG. Superoxide dismutase, glutathione peroxidase activities and the hydroperoxide concentration are modified in the hippocampus of epileptic rats. Epilepsy Res. 2001;461(2):121–8.

    Google Scholar 

  36. Patel M, Li QY. Age dependence of seizure-induced oxidative stress. Neuroscience. 2003;118(2):431–7.

    CAS  PubMed  Google Scholar 

  37. Sullivan PG, Dubé C, Dorenbos K, Steward O, Baram TZ. Mitochondrial uncoupling protein-2 protects the immature brain from excitotoxic neuronal death. Ann Neurol. 2003;53:711–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Folbergrová J, Jesina P, Drahota Z, Lisý V, Haugvicová R, Vojtísková A, Houstĕk J. Mitochondrial complex I inhibition in cerebral cortex of immature rats following homocysteic acid-induced seizures. Exp Neurol. 2007;204(2):597–609.

    PubMed  Google Scholar 

  39. Folbergrová J, Otáhal J, Druga R. Brain superoxide anion formation in immature rats during seizures: protection by selected compounds. Exp Neurol. 2012;233(1):421–9.

    PubMed  Google Scholar 

  40. Freitas RM, Nascimento VS, Vasconcelos SM, Sousa FC, Viana GS, Fonteles MM. Catalase activity in cerebellum, hippocampus, frontal cortex and striatum after status epilepticus induced by pilocarpine in Wistar rats. Neurosci Lett. 2004;365(2):102–5.

    CAS  PubMed  Google Scholar 

  41. Xavier SM, Barbosa CO, Barros DO, Silva RF, Oliveira AA, Freitas RM. Vitamin C antioxidant effects in hippocampus of adult Wistar rats after seizures and status epilepticus induced by pilocarpine. Neurosci Lett. 2007;420(1):76–9.

    CAS  PubMed  Google Scholar 

  42. Barros DO, Xavier SM, Barbosa CO, Silva RF, Maia FD, Oliveira AA, Freitas RM, Takahashi RN. Effects of the vitamin E in catalase activities in hippocampus after status epilepticus induced by pilocarpine in Wistar rats. Neurosci Lett. 2007;416(3):227–30.

    CAS  PubMed  Google Scholar 

  43. Rajasekaran K. Seizure-induced oxidative stress in rat brain regions: blockade by nNOS inhibition. Pharmacol Biochem Behav. 2005;80(2):263–72.

    CAS  PubMed  Google Scholar 

  44. Liang LP, Patel M. Seizure-induced changes in mitochondrial redox status. Free Rad Biol Med. 2006;40(2):316–22.

    CAS  PubMed  Google Scholar 

  45. Eraković V, Zupan G, Varljen J, Radosević S, Simonić A. Electroconvulsive shock in rats: changes in superoxide dismutase and glutathione peroxidase activity. Brain Res Mol Brain Res. 2000;76(2):266–74.

    PubMed  Google Scholar 

  46. Eraković V, Zupan G, Varljen J, Simonić A. Pentylenetetrazol-induced seizures and kindling: changes in free fatty acids, superoxide dismutase, and glutathione peroxidase activity. Neurochem Int. 2003;42(2):173–8.

    PubMed  Google Scholar 

  47. Cendes F. Progressive hippocampal and extrahippocampal atrophy in drug resistant epilepsy. Curr Opin Neurol. 2005;18(2):173–7.

    PubMed  Google Scholar 

  48. Sutula TP, Hagen J, Pitkänen A. Do epileptic seizures damage the brain? Curr Opin Neurol. 2003;16(2):189–95.

    PubMed  Google Scholar 

  49. Wallace DC, Zheng X, Lott MT, et al. Familial mitochondrial encephalomyophathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell. 1988;55(4):601–10.

    CAS  PubMed  Google Scholar 

  50. Wu SB, Ma YS, Wu YT, Chen YC, Wei YH. Mitochondrial DNA mutation-elicited oxidative stress, oxidative damage, and altered gene expression in cultured cells of patients with MERRF syndrome. Mol Neurobiol. 2010;41(2–3):256–66.

    CAS  PubMed  Google Scholar 

  51. Zsurka G, Baron M, Stewart JD, et al. Clonally expanded mitochondrial DNA mutations in epileptic individuals with mutated DNA polymerase γ. J Neuropath Exp Neurol. 2008;67(9):857–66.

    CAS  PubMed  Google Scholar 

  52. Zsurka G, Hampel KG, Nelson I, et al. Severe epilepsy as the major symptom of new mutations in the mitochondrial tRNAPhe gene. Neurology. 2010;74(6):507–12.

    CAS  PubMed  Google Scholar 

  53. Ezz HS, Khadrawy YA, Noor NA. The neuroprotective effect of curcumin and Nigella sativa oil against oxidative stress in the pilocarpine model of epilepsy: a comparison with valproate. Neurochem Res. 2011;36(11):2195–204.

    PubMed  Google Scholar 

  54. Júnior HV, de França Fonteles MM, Mendes de Freitas R. Acute seizure activity promotes lipid peroxidation, increased nitrite levels and adaptive pathways against oxidative stress in the frontal cortex and striatum. Oxid Med Cell Longev. 2009;2(3):130–7.

    PubMed Central  PubMed  Google Scholar 

  55. Yi▯ U, Seςkin E, Kurul SH, Kuralay F, Dirik E. Effects of epilepsy and valproic acid on oxidant status in children with idiopathic epilepsy. Epilepsy Res. 2009;84:232–7.

    Google Scholar 

  56. Verrotti A, Scardapane A, Franzoni E, Manco R, Chiarelli F. Increased oxidative stress in epileptic children treated with valproic acid. Epilepsy Res. 2008;78:171–7.

    CAS  PubMed  Google Scholar 

  57. Michoulas A, Tong V, Teng XW, Chang TK, Abbott FS, Farrell K. Oxidative stress in children receiving valproic acid. J Pediatr. 2006;149:692–6.

    CAS  PubMed  Google Scholar 

  58. Akarsu S, Yilmaz S, Ozan S, Kurt A, Benzer F, Gurgoze MK. Effects of febrile and afebrile seizures on oxidant state in children. Pediatr Neurol. 2007;36:307–11.

    PubMed  Google Scholar 

  59. Vanhatalo S, Riikonen R. Markedly elevated nitrate/nitrite levels in the cerebrospinal fluid of children with progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO syndrome). Epilepsia. 2000;41:705–8.

    CAS  PubMed  Google Scholar 

  60. Grosso S, Longini M, Rodriguez A, Proietti F, Piccini B, Balestri P, Buonocore G. Oxidative stress in children affected by epileptic encephalopathies. J Neuro Sci. 2011;300(1–2):103–6.

    CAS  Google Scholar 

  61. Zsurka G, Kunz WS. Mitochondrial dysfunction in neurological disorders with epileptic phenotypes. J Bioenerg Biomembr. 2010;42(6):443–8.

    CAS  PubMed  Google Scholar 

  62. Khurana DS, Salganicoff L, Melvin JJ, Hobdell EF, Valencia I, Hardison HH, Marks HG, Grover WD, Legido A. Epilepsy and respiratory chain defects in children with mitochondrial encephalopathies. Neuropediatrics. 2008;39(1):8–13.

    CAS  PubMed  Google Scholar 

  63. Katano M, Numata T, Aguan K, Hara Y, Kiyonaka S, Yamamoto S, Miki T, Sawamura S, Suzuki T, Yamakawa K, Mori Y. The juvenile myoclonic epilepsy-related protein EFHC1 interacts with the redox-sensitive TRPM2 channel linked to cell death. Cell Calcium. 2012;51(2):179–85.

    CAS  PubMed  Google Scholar 

  64. Prasad AN, Levin S, Rupar CA, Prasad C. Menkes disease and infantile epilepsy. Brain Dev. 2011;30(10):866–76.

    Google Scholar 

  65. Miyata R, Hayashi M, Tanuma N, Shioda K, Fukatsu R, Mizutani S. Oxidative stress in neurodegeneration in dentatorubral-pallidoluysian atrophy. J Neurol Sci. 2008;264(1–2):133–9.

    CAS  PubMed  Google Scholar 

  66. Shin EJ, Suh SK, Lim YK, Jhoo WK, Hjelle OP, Ottersen OP, Shin CY, Ko KH, Kim WK, Kim DS, Chun W, Ali S, Kim HC. Ascorbate attenuates trimethyltin-induced oxidative burden and neuronal degeneration in the rat hippocampus by maintaining glutathione homeostasis. Neuroscience. 2005;33:715–27.

    Google Scholar 

  67. Edwards MJ, Hargreaves IP, Heales SJ, Jones SJ, Ramachandran V, Bhatia KP, Sisodiya S. N-acetylcysteine and Unverricht-Lundborg disease: variable response and possible side effects. Neurology. 2002;59(9):1447–9.

    CAS  PubMed  Google Scholar 

  68. Ben-Menachem E, Kyllerman M, Marklund S. Superoxide dismutase and glutathione peroxidase function in progressive myoclonus epilepsies. Epilepsy Res. 2000;40:33–9.

    CAS  PubMed  Google Scholar 

  69. Heard K, Schaeffer TH. Massive acetylcysteine overdose associated with cerebral edema and seizures. Clin Toxicol (Phila). 2011;49(5):423–5.

    CAS  Google Scholar 

  70. Praninskiene R, Dumalakiene I, Kemezys R, Mauricas M, Jucaite A. Melatonin secretion in children with epilepsy. Epilepsy Behav. 2012;25(3):315–22.

    PubMed  Google Scholar 

  71. Appleton RE, Jones AP, Gamble C, Williamson PR, Wiggs L, Montgomery P, Sutcliffe A, Barker C, Gringras P. The use of MElatonin in children with neurodevelopmental disorders and impaired sleep: a randomised, double-blind, placebo-controlled, parallel study (MENDS). Health Technol Assess. 2012;16(40):i–239.

    CAS  PubMed  Google Scholar 

  72. Goldberg-Stern H, Oren H, Peled N, Garty BZ. Effect of melatonin on seizure frequency in intractable epilepsy: a pilot study. J Child Neurol. 2012;27(12):1524–8.

    PubMed  Google Scholar 

  73. Paprocka J, Dec R, Jamroz E, Marszał E. Melatonin and childhood refractory epilepsy–a pilot study. Med Sci Monit. 2010;16(9):CR389–96.

    CAS  PubMed  Google Scholar 

  74. Antón-Tay F, Díaz JL, Fernández-Guardiola A. On the effect of melatonin upon human brain. Its possible therapeutic implications. Life Sci I. 1971;10(15):841–50.

    PubMed  Google Scholar 

  75. Ardura J, Andres J, Garmendia JR, Ardura F. Melatonin in epilepsy and febrile seizures. J Child Neurol. 2010;25(7):888–91.

    PubMed  Google Scholar 

  76. Brigo F, Del Felice A. Melatonin as add-on treatment for epilepsy. Cochrane Database Syst Rev. 2012;6:CD006967.

    PubMed  Google Scholar 

  77. Molina-Carballo A, Muñoz-Hoyos A, Reiter RJ, Sánchez-Forte M, Moreno-Madrid F, Rufo-Campos M, Molina-Font JA, Acuña-Castroviejo D. Utility of high doses of melatonin as adjunctive anticonvulsant therapy in a child with severe myoclonic epilepsy: two years’ experience. J Pineal Res. 1997;23(2):97–105.

    CAS  PubMed  Google Scholar 

  78. Veinbergs I, Mallory M, Sagara Y, Masliah E. Vitamin E supplementation prevents spatial learning deficits and dendritic alterations in aged apolipoprotein E-deficient mice. Eur J Neurosci. 2000;12(12):4541–6.

    CAS  PubMed  Google Scholar 

  79. Tamai H, Wakamiya E, Mino M, Iwakoshi M. Alpha-tocopherol and fatty acid levels in red blood cells in patients treated with antiepileptic drugs. J Nutr Sci Vitaminol (Tokyo). 1988;34(6):627–31.

    CAS  Google Scholar 

  80. Ogunmekan AO. Vitamin E deficiency and seizures in animals and man. Can J Neurol Sci. 1979;6(1):43–5.

    CAS  PubMed  Google Scholar 

  81. Sudha K, Rao AV, Rao A. Oxidative stress and antioxidants in epilepsy. Clin Chim Acta. 2001;303(1–2):19–24.

    CAS  PubMed  Google Scholar 

  82. Ogunmekan AO, Hwang PA. A randomized, double-blind, placebo-controlled, clinical trial of D-alpha-tocopheryl acetate (vitamin E), as add-on therapy, for epilepsy in children. Epilepsia. 1989;30(1):84–9.

    CAS  PubMed  Google Scholar 

  83. Sullivan C, Capaldi N, Mack G, Buchanan N. Seizures and natural vitamin E. Med J Aust. 1990;152(11):613–4.

    CAS  PubMed  Google Scholar 

  84. Raju GB, Behari M, Prasad K, Ahuja GK. Randomized, double-blind, placebo-controlled, clinical trial of D-alpha-tocopherol (vitamin E) as add-on therapy in uncontrolled epilepsy. Epilepsia. 1994;35(2):368–72.

    CAS  PubMed  Google Scholar 

  85. Kishida KT, Klann E. Sources and targets of reactive oxygen species in synaptic plasticity and memory. Antioxid Redox Signal. 2007;9(2):233–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Fransen M. Cyclophilin D: a therapeutic target to counteract reactive oxygen species-mediated damage in neurodegenerative disease? Brain. 2012;135(Pt 12):3525–6.

    PubMed  Google Scholar 

  87. Berger I, Segal I, Shmueli D, Saada A. The effect of antiepileptic drugs on mitochondrial activity: a pilot study. J Child Neurol. 2010;25(5):541–5.

    PubMed  Google Scholar 

  88. Jain KK. The handbook of neuroprotection. New York: Humana Press; 2011.

    Google Scholar 

  89. Gathwala G, Marwah A, Gahlaut V, Marwah P. Effect of high-dose phenobarbital on oxidative stress in perinatal asphyxia: an open label randomized controlled trial. Indian Pediatr. 2011;48(8):613–7.

    PubMed  Google Scholar 

  90. Sarnowska A, Beresewicz M, Zabłocka B, Domańska-Janik K. Diazepam neuroprotection in excitotoxic and oxidative stress involves a mitochondrial mechanism additional to the GABAAR and hypothermic effects. Neurochem Int. 2009;55(1–3):164–73.

    CAS  PubMed  Google Scholar 

  91. Kovacic P, Somanathan R. Zolpidem, a clinical hypnotic that affects electronic transfer, alters synaptic activity through potential GABA receptors in the nervous system without significant free radical generation. Oxid Med Cell Longev. 2009;2(1):52–7.

    PubMed Central  PubMed  Google Scholar 

  92. Tanguy M, Seguin P, Laviolle B, Bleichner JP, Morandi X, Malledant Y. Cerebral microdialysis effects of propofol versus midazolam in severe traumatic brain injury. J Neurotrauma. 2012;29(6):1105–10.

    PubMed  Google Scholar 

  93. Núñez MJ, Novío S, Amigo G, Freire-Garabal M. The antioxidant potential of alprazolam on the redox status of peripheral blood leukocytes in restraint-stressed mice. Life Sci. 2011;89(17–18):650–4.

    PubMed  Google Scholar 

  94. Méndez-Cuesta LA, Márquez-Valadez B, Pérez-De La Cruz V, Escobar-Briones C, Galván-Arzate S, Alvarez-Ruiz Y, Maldonado PD, Santana RA, Santamaría A, Carrillo-Mora P. Diazepam blocks striatal lipid peroxidation and improves stereotyped activity in a rat model of acute stress. Basic Clin Pharmacol Toxicol. 2011;109(5):350–6.

    PubMed  Google Scholar 

  95. Hamed SA, Abdellah MM. Trace elements and electrolytes homeostasis and their relation to antioxidant enzyme activity in brain hyperexcitability of epileptic patients. J Pharma Sci. 2004;96(4):349–59.

    CAS  Google Scholar 

  96. Ficarra S, Misiti F, Russo A, Carelli-Alinovi C, Bellocco E, Barreca D, Laganà G, Leuzzi U, Toscano G, Giardina B, Galtieri A, Tellone E. Antiepileptic carbamazepine drug treatment induces alteration of membrane in red blood cells: possible positive effects on metabolism and oxidative stress. Biochimie. 2012; pii: S0300-9084(12)00481-6.

    Google Scholar 

  97. Wallis RA, Panizzon KL. Felbamate neuroprotection against CA1 traumatic neuronal injury. Eur J Pharmacol. 1995;294(2–3):475–82.

    CAS  PubMed  Google Scholar 

  98. White HS, Wolf HH, Swinyard EA, Skeen GA, Sofia RD. A neuropharmacological evaluation of felbamate as a novel anticonvulsant. Epilepsia. 1992;33(3):564–72.

    CAS  PubMed  Google Scholar 

  99. Pellock JM, Perhach JL, Sofia RD. In: Levy RH, Mattson RH, Meldrum BS, Perucca E, editors. Antiepileptic drugs. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2002. p. 301–18.

    Google Scholar 

  100. Leone AM, Kao LM, McMillian MK, Nie AY, Parker JB, Kelley MF, Usuki E, Parkinson A, Lord PG, Johnson MD. Evaluation of felbamate and other antiepileptic drug toxicity potential based on hepatic protein covalent binding and gene expression. Chem Res Toxicol. 2007;20(4):600–8.

    CAS  PubMed  Google Scholar 

  101. Kumar P, Kalonia H, Kumar A. Possible GABAergic mechanism in the neuroprotective effect of gabapentin and lamotrigine against 3-nitropropionic acid induced neurotoxicity. Eur J Pharmacol. 2012;674(2–3):265–74.

    CAS  PubMed  Google Scholar 

  102. Arora T, Mehta AK, Sharma KK, Mediratta PK, Banerjee BD, Garg GR, Sharma AK. Effect of carbamazepine and lamotrigine on cognitive function and oxidative stress in brain during chemical epileptogenesis in rats. Basic Clin Pharmacol Toxicol. 2010;106(5):372–7.

    CAS  PubMed  Google Scholar 

  103. Agarwal NB, Agarwal NK, Mediratta PK, Sharma KK. Effect of lamotrigine, oxcarbazepine and topiramate on cognitive functions and oxidative stress in PTZ-kindled mice. Seizure. 2011;20(3):257–62.

    PubMed  Google Scholar 

  104. Grosso S, Franzoni E, Coppola G, Iannetti P, Verrotti A, Cordelli DM, Marchiani V, Pascotto A, Spalice A, Acampora B, Morgese G, Balestri P. Efficacy and safety of levetiracetam: an add-on trial in children with refractory epilepsy. Seizure. 2005;14(4):248–53.

    CAS  PubMed  Google Scholar 

  105. Grosso S, Cordelli DM, Franzoni E, Coppola G, Capovilla G, Zamponi N, Verrotti A, Morgese G, Balestri P. Efficacy and safety of levetiracetam in infants and young children with refractory epilepsy. Seizure. 2007;16(4):345–50.

    CAS  PubMed  Google Scholar 

  106. Oliveira AA, Almeida JP, Freitas RM, Nascimento VS, Aguiar LM, Júnior HV, Fonseca FN, Viana GS, Sousa FC, Fonteles MM. Effects of levetiracetam in lipid peroxidation level, nitrite-nitrate formation and antioxidant enzymatic activity in mice brain after pilocarpine-induced seizures. Cell Mol Neurobiol. 2007;27(3):395–406.

    CAS  PubMed  Google Scholar 

  107. Gibbs JE, Walker MC, Cock HR. Levetiracetam: antiepileptic properties and protective effects on mitochondrial dysfunction in experimental status epilepticus. Epilepsia. 2006;47(3):469–78.ef.

    CAS  PubMed  Google Scholar 

  108. Ozden H, Kabay SC, Toker A, Ustüner MC, Ozbayer C, Ustüner D, Günes HV. The effects of levetiracetam on urinary 15f-2t-isoprostane levels in epileptic patients. Seizure. 2010;19(8):514–6.

    PubMed  Google Scholar 

  109. Mariotti V, Melissari E, Amar S, Conte A, Belmaker RH, Agam G, Pellegrini S. Effect of prolonged phenytoin administration on rat brain gene expression assessed by DNA microarrays. Exp Biol Med (Maywood). 2010;235(3):300–10.

    CAS  Google Scholar 

  110. Winn LM, Wells PG. Phenytoin-initiated DNA oxidation in murine embryo culture, and embryo protection by the antioxidative enzymes superoxide dismutase and catalase: evidence for reactive oxygen species-mediated DNA oxidation in the molecular mechanism of phenytoin teratogenicity. Mol Pharmacol. 1995;48(1):112–20.

    CAS  PubMed  Google Scholar 

  111. Lu W, Uetrecht JP. Peroxidase-mediated bioactivation of hydroxylated metabolites of carbamazepine and phenytoin. Drug Metab Dispos. 2008;36(8):1624–36.

    CAS  PubMed  Google Scholar 

  112. Mahle C, Dasgupta A. Decreased total antioxidant capacity and elevated lipid hydroperoxide concentrations in sera of epileptic patients receiving phenytoin. Life Sci. 1997;61(4):437–43.

    CAS  PubMed  Google Scholar 

  113. Liu CS, Wu HM, Kao SH, Wei YH. Phenytoin-mediated oxidative stress in serum of female epileptics: a possible pathogenesis in the fetal hydantoin syndrome. Hum Exp Toxicol. 1997;16(3):177–81.

    CAS  PubMed  Google Scholar 

  114. Grosso S, Galimberti D, Farnetani MA, Cioni M, Mostardini R, Vivarelli R, Di Bartolo RM, Bernardoni E, Berardi R, Morgese G, Balestri P. Efficacy and safety of topiramate in infants according to epilepsy syndromes. Seizure. 2005;14(3):183–9.

    CAS  PubMed  Google Scholar 

  115. Costa C, Martella G, Picconi B, Prosperetti C, Pisani A, Di Filippo M, Pisani F, Bernardi G, Calabresi P. Multiple mechanisms underlying the neuroprotective effects of antiepileptic drugs against in vitro ischemia. Stroke. 2006;37(5):1319–26.

    CAS  PubMed  Google Scholar 

  116. Kubera M, Budziszewska B, Jaworska-Feil L, Basta-Kaim A, Leśkiewicz M, Tetich M, Maes M, Kenis G, Marciniak A, Czuczwar SJ, Jagła G, Nowak W, Lasoń W. Effect of topiramate on the kainate-induced status epilepticus, lipid peroxidation and immunoreactivity of rats. Pol J Pharmacol. 2004;56(5):553–61.

    CAS  PubMed  Google Scholar 

  117. Naziroğlu M, Uğuz AC, Gokçimen A, Bülbül M, Karatopuk DU, Türker Y, Cerçi C. Tenoxicam modulates antioxidant redox system and lipid peroxidation in rat brain. Neurochem Res. 2008;33(9):1832–7.

    PubMed  Google Scholar 

  118. Kutluhan S, Naziroğlu M, Celik O, Yilmaz M. Effects of selenium and topiramate on lipid peroxidation and antioxidant vitamin levels in blood of pentylentetrazol-induced epileptic rats. Biol Trace Elem Res. 2009;129(1–3):181–9.

    CAS  PubMed  Google Scholar 

  119. Armagan A, Kutluhan S, Yilmaz M, Yilmaz N, Bülbül M, Vural H, Soyupek S, Naziroglu M. Topiramate and vitamin e modulate antioxidant enzyme activities, nitric oxide and lipid peroxidation levels in pentylenetetrazol-induced nephrotoxicity in rats. Basic Clin Pharmacol Toxicol. 2008;103(2):166–70.

    CAS  PubMed  Google Scholar 

  120. Pavone A, Cardile V. An in vitro study of new antiepileptic drugs and astrocytes. Epilepsia. 2003;44 Suppl 10:34–9.

    CAS  PubMed  Google Scholar 

  121. Cárdenas-Rodríguez N, Coballase-Urrutia E, Huerta-Gertrudis B, García-Cruz ME, Pedraza-Chaverri J, Coria-Jiménez R, Bandala C, Ruíz-García M. Antioxidant activity of topiramate: an antiepileptic agent. Neurol Sci. 2012;4.

    Google Scholar 

  122. Zhang YJ, Zhang M, Wang XC, Yu YH, Jin PJ, Wang Y. Effects of sodium valproate on neutrophils’ oxidative metabolism and oxidant status in children with idiopathic epilepsy. Zhonghua Er Ke Za Zhi. 2011;49(10):776–81.

    PubMed  Google Scholar 

  123. Chaudhary S, Parvez S. An in vitro approach to assess the neurotoxicity of valproic acid-induced oxidative stress in cerebellum and cerebral cortex of young rats. Neuroscience. 2012;225:258–68.

    CAS  PubMed  Google Scholar 

  124. Zhang Z, Qin X, Zhao X, Tong N, Gong Y, Zhang W, Wu X. Valproic acid regulates antioxidant enzymes and prevents ischemia/reperfusion injury in the rat retina. Curr Eye Res. 2012;37(5):429–37.

    CAS  PubMed  Google Scholar 

  125. Menon B, Ramalingam K, Kumar RV. Oxidative stress in patients with epilepsy is independent of antiepileptic drugs. Seizure. 2012;21(10):780–4.

    PubMed  Google Scholar 

  126. Tung EW, Winn LM. Valproic acid increases formation of reactive oxygen species and induces apoptosis in postimplantation embryos: a role for oxidative stress in valproic acid-induced neural tube defects. Mol Pharmacol. 2011;80(6):979–87.

    CAS  PubMed  Google Scholar 

  127. Khan S, Ahmad T, Parekh CV, Trivedi PP, Kushwaha S, Jena G. Investigation on sodium valproate induced germ cell damage, oxidative stress and genotoxicity in male Swiss mice. Reprod Toxicol. 2011;32(4):385–94.

    CAS  PubMed  Google Scholar 

  128. Yildiz M, Simsek G, Uzun H, Uysal S, Sahin S, Balci H. Assessment of low-density lipoprotein oxidation, paraoxonase activity, and arterial distensibility in epileptic children who were treated with antiepileptic drugs. Cardiol Young. 2010;20(5):547–54.

    PubMed  Google Scholar 

  129. Reiter RJ, Korkmaz A, Paredes SD, Manchester LC, Tan DX. Melatonin reduces oxidative/nitrosative stress due to drugs, toxins, metals, and herbicides. Neuro Endocrinol Lett. 2008;29(5):609–13.

    CAS  PubMed  Google Scholar 

  130. Freitas RM. The evaluation of effects of lipoic acid on the lipid peroxidation, nitrite formation and antioxidant enzymes in the hippocampus of rats after pilocarpine-induced seizures. Neurosci Lett. 2009;455(2):140–4.

    CAS  PubMed  Google Scholar 

  131. Santos LF, Freitas RL, Xavier SM, Saldanha GB, Freitas RM. Neuroprotective actions of vitamin C related to decreased lipid peroxidation and increased catalase activity in adult rats after pilocarpine-induced seizures. Pharmacol Biochem Behav. 2008;89(1):1–5.

    CAS  PubMed  Google Scholar 

  132. Traber MG. Vitamin E, regulatory mechanisms. Annu Rev Nutr. 2007;27:347–62.

    CAS  PubMed  Google Scholar 

  133. Arakawa M, Ito Y. N-acetylcysteine and neurodegenerative diseases: basic and clinical pharmacology. Cerebellum. 2007;6(4):308–14.

    CAS  PubMed  Google Scholar 

  134. Shin HJ, Lee JY, Son E, Lee DH, Kim HJ, Kang SS, Cho GJ, Choi WS, Roh GS. Curcumin attenuates the kainic acid-induced hippocampal cell death in the mice. Neurosci Lett. 2007;416:49–54.

    CAS  PubMed  Google Scholar 

  135. Kwon YS, Park DH, Shin EJ, Kwon MS, Ko KH, Kim WK, Jhoo JH, Jhoo WK, Wie MB, Jung BD, Kim HC. Antioxidant propolis attenuates kainate-induced neurotoxicity via adenosine A1 receptor modulation in the rat. Neurosci Lett. 2004;355(3):231–5.

    CAS  PubMed  Google Scholar 

  136. Ilhan A, Iraz M, Kamisli S, Yigitoglu R. Pentylenetetrazol-induced kindling seizure attenuated by Ginkgo biloba extract (EGb 761) in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30(8):1504–10.

    CAS  PubMed  Google Scholar 

  137. Chuang YC, Chen SD, Liou CW, Lin TK, Chang WN, Chan SH, Chang AY. Contribution of nitric oxide, superoxide anion, and peroxynitrite to activation of mitochondrial apoptotic signaling in hippocampal CA3 subfield following experimental temporal lobe status epilepticus. Epilepsia. 2009;50:731–46.

    CAS  PubMed  Google Scholar 

  138. Kim HC, Choi DY, Jhoo WK, Lee DW, Koo CH, Kim C. Aspalatone, a new antiplatelet agent, attenuates the neurotoxicity induced by kainic acid in the rat. Life Sci. 1997;61(24):PL 373–81.

    CAS  Google Scholar 

  139. McConnell H, Duncan D. In: McConnell H, Snyder PJ, editors. Psychiatric comorbidity in epilepsy: basic mechanisms, diagnosis, and treatment. Washington, DC: American Psychiatric Press; 1998. p. 245–362.

    Google Scholar 

  140. de Freitas RL, Santos IM, de Souza GF, Tomé Ada R, Saldanha GB, de Freitas RM. Oxidative stress in rat hippocampus caused by pilocarpine-induced seizures is reversed by buspirone. Brain Res Bull. 2010;81(4–5):505–9.

    PubMed  Google Scholar 

  141. Zhou J, Tang XC. Huperzine A attenuates apoptosis and mitochondria-dependent caspase-3 in rat cortical neurons. FEBS Lett. 2002;526(1–3):21–5.

    CAS  PubMed  Google Scholar 

  142. Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS. Progress report on new antiepileptic drugs: a summary of the Tenth Eilat Conference (EILAT X). Epilepsy Res. 2010;92(2–3):89–124.

    PubMed  Google Scholar 

  143. Acharya MM, Hattiangady B, Shetty AK. Progress in neuroprotective strategies for preventing epilepsy. Prog Neurobiol. 2008;84(4):363–404.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Grosso M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grosso, S., Geronzi, U. (2014). Oxidative Stress in Epilepsy. In: Dennery, P., Buonocore, G., Saugstad, O. (eds) Perinatal and Prenatal Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1405-0_20

Download citation

Publish with us

Policies and ethics