Skip to main content

Oxygen Vulnerability in the Immature Brain

  • Chapter
  • First Online:
  • 757 Accesses

Abstract

Newborns are susceptible to injury caused by oxidative stress due to the immaturity of endogenous radical scavenging systems. However, premature exposure to supraphysiological oxygen levels in premature infants and widely used oxygen therapy in critically ill patients often cannot be avoided. Therefore, appropriate therapeutic strategies are highly warranted.

This chapter will provide an overview on the known effects of oxygen in the critical phase of rapid brain development and its impact on perinatal brain injury.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kusuda S, et al. Trends in morbidity and mortality among very-low-birth-weight infants from 2003 to 2008 in Japan. Pediatr Res. 2012;72(5):531–8.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Stoll BJ, et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics. 2010;126(3):443–56.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Buchmann EJ, Pattinson RC, Nyathikazi N. Intrapartum-related birth asphyxia in South Africa – lessons from the first national perinatal care survey. S Afr Med J. 2002;92(11):897–901.

    CAS  PubMed  Google Scholar 

  4. Thornberg E, et al. Birth asphyxia: incidence, clinical course and outcome in a Swedish population. Acta Paediatr. 1995;84(8):927–32.

    Article  CAS  PubMed  Google Scholar 

  5. Martin JA, et al. Births: final data for 2005. Natl Vital Stat Rep. 2007;56(6):1–103.

    PubMed  Google Scholar 

  6. Ananth CV, et al. Trends in preterm birth and perinatal mortality among singletons: United States, 1989 through 2000. Obstet Gynecol. 2005;105(5 Pt 1):1084–91.

    Article  PubMed  Google Scholar 

  7. Marlow N, et al. Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J Med. 2005;352(1):9–19.

    Article  CAS  PubMed  Google Scholar 

  8. Hack M, et al. School-age outcomes in children with birth weights under 750 g. N Engl J Med. 1994;331(12):753–9.

    Article  CAS  PubMed  Google Scholar 

  9. Wood NS, et al. The EPICure study: associations and antecedents of neurological and developmental disability at 30 months of age following extremely preterm birth. Arch Dis Child Fetal Neonatal Ed. 2005;90(2):F134–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Doyle LW, Anderson PJ. Adult outcome of extremely preterm infants. Pediatrics. 2010;126(2):342–51.

    Article  PubMed  Google Scholar 

  11. Kaindl AM, Favrais G, Gressens P. Molecular mechanisms involved in injury to the preterm brain. J Child Neurol. 2009;24(9):1112–18.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Brown NC, et al. Neurobehavior at term and white and gray matter abnormalities in very preterm infants. J Pediatr. 2009;155(1):32–8. 38.e1.

    Article  PubMed  Google Scholar 

  13. Ferriero DM. Neonatal brain injury. N Engl J Med. 2004;351(19):1985–95.

    Article  CAS  PubMed  Google Scholar 

  14. Girard S, et al. Role of perinatal inflammation in cerebral palsy. Pediatr Neurol. 2009;40(3):168–74.

    Article  PubMed  Google Scholar 

  15. Ashton N, Ward B, Serpell G. Role of oxygen in the genesis of retrolental fibroplasia; a preliminary report. Br J Ophthalmol. 1953;37(9):513–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Campbell K. Intensive oxygen therapy as a possible cause of retrolental fibroplasia; a clinical approach. Med J Aust. 1951;2(2):48–50.

    CAS  PubMed  Google Scholar 

  17. Ikonomidou C, Kaindl AM. Neuronal death and oxidative stress in the developing brain. Antioxid Redox Signal. 2011;14(8):1535–50.

    Article  CAS  PubMed  Google Scholar 

  18. Rousset CI, et al. Mitochondria and perinatal brain injury. J Matern Fetal Neonatal Med. 2012;25 Suppl 1:35–8.

    Article  CAS  PubMed  Google Scholar 

  19. Bratton SB, Salvesen GS. Regulation of the Apaf-1-caspase-9 apoptosome. J Cell Sci. 2010;123(Pt 19):3209–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Reiss A, et al. Bacterial pore-forming cytolysins induce neuronal damage in a rat model of neonatal meningitis. J Infect Dis. 2011;203(3):393–400.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Li Z, Sheng M. Caspases in synaptic plasticity. Mol Brain. 2012;5:15.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Balduini W, Carloni S, Buonocore G. Autophagy in hypoxia-ischemia induced brain injury. J Matern Fetal Neonatal Med. 2012;25 Suppl 1:30–4.

    Article  CAS  PubMed  Google Scholar 

  23. Maiuri MC, et al. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8(9):741–52.

    Article  CAS  PubMed  Google Scholar 

  24. Dammann O, et al. Lung and brain damage in preterm newborns. Are they related? How? Why? Biol Neonate. 2004;85(4):305–13.

    Article  PubMed  Google Scholar 

  25. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8(1):110–24.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Czeh M, Gressens P, Kaindl AM. The yin and yang of microglia. Dev Neurosci. 2011;33(3–4):199–209.

    Article  CAS  PubMed  Google Scholar 

  27. Kaur C, Ling EA. Periventricular white matter damage in the hypoxic neonatal brain: role of microglial cells. Prog Neurobiol. 2009;87(4):264–80.

    Article  CAS  PubMed  Google Scholar 

  28. Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J. 2012;441(2):523–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem. 1992;59(5):1609–23.

    Article  CAS  PubMed  Google Scholar 

  30. Dreiem A, Gertz CC, Seegal RF. The effects of methylmercury on mitochondrial function and reactive oxygen species formation in rat striatal synaptosomes are age-dependent. Toxicol Sci. 2005;87(1):156–62.

    Article  CAS  PubMed  Google Scholar 

  31. Kim SM, et al. Fos and Jun potentiate individual release sites and mobilize the reserve synaptic vesicle pool at the Drosophila larval motor synapse. Proc Natl Acad Sci U S A. 2009;106(10):4000–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Mast JD, et al. Reactive oxygen species act remotely to cause synapse loss in a Drosophila model of developmental mitochondrial encephalopathy. Development. 2008;135(15):2669–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Milton VJ, Sweeney ST. Oxidative stress in synapse development and function. Dev Neurobiol. 2012;72(1):100–10.

    Article  CAS  PubMed  Google Scholar 

  34. Davis JM, Auten RL. Maturation of the antioxidant system and the effects on preterm birth. Semin Fetal Neonatal Med. 2010;15(4):191–5.

    Article  PubMed  Google Scholar 

  35. Shim SY, Kim HS. Oxidative stress and the antioxidant enzyme system in the developing brain. Korean J Pediatr. 2013;56(3):107–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Baud O, et al. Glutathione peroxidase-catalase cooperativity is required for resistance to hydrogen peroxide by mature rat oligodendrocytes. J Neurosci. 2004;24(7):1531–40.

    Article  CAS  PubMed  Google Scholar 

  37. Baud O, et al. Developmental up-regulation of MnSOD in rat oligodendrocytes confers protection against oxidative injury. Eur J Neurosci. 2004;20(1):29–40.

    Article  PubMed  Google Scholar 

  38. Kwak DJ, Kwak SD, Gauda EB. The effect of hyperoxia on reactive oxygen species (ROS) in rat petrosal ganglion neurons during development using organotypic slices. Pediatr Res. 2006;60(4):371–6.

    Article  CAS  PubMed  Google Scholar 

  39. Vento M, Saugstad OD. Oxygen as a therapeutic agent in neonatology: a comprehensive approach. Semin Fetal Neonatal Med. 2010;15(4):185.

    Article  PubMed  Google Scholar 

  40. Solberg R, et al. Resuscitation of newborn piglets. short-term influence of FiO2 on matrix metalloproteinases, caspase-3 and BDNF. PLoS One. 2010;5(12):e14261.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Solberg R, et al. Resuscitation with supplementary oxygen induces oxidative injury in the cerebral cortex. Free Radic Biol Med. 2012;53(5):1061–7.

    Article  CAS  PubMed  Google Scholar 

  42. Dalen ML, et al. Resuscitation with 100% oxygen increases injury and counteracts the neuroprotective effect of therapeutic hypothermia in the neonatal rat. Pediatr Res. 2012;71(3):247–52.

    Article  CAS  PubMed  Google Scholar 

  43. Collins MP, et al. Hypocapnia and other ventilation-related risk factors for cerebral palsy in low birth weight infants. Pediatr Res. 2001;50(6):712–19.

    Article  CAS  PubMed  Google Scholar 

  44. Deulofeut R, Dudell G, Sola A. Treatment-by-gender effect when aiming to avoid hyperoxia in preterm infants in the NICU. Acta Paediatr. 2007;96(7):990–4.

    Article  PubMed  Google Scholar 

  45. Dobbing J, Sands J. Comparative aspects of the brain growth spurt. Early Hum Dev. 1979;3(1):79–83.

    Article  CAS  PubMed  Google Scholar 

  46. Bendix I, et al. Erythropoietin modulates autophagy signaling in the developing rat brain in an in vivo model of oxygen-toxicity. Int J Mol Sci. 2012;13(10):12939–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Dzietko M, et al. A critical role for Fas/CD-95 dependent signaling pathways in the pathogenesis of hyperoxia-induced brain injury. Ann Neurol. 2008;64(6):664–73.

    Article  CAS  PubMed  Google Scholar 

  48. Felderhoff-Mueser U, et al. Oxygen causes cell death in the developing brain. Neurobiol Dis. 2004;17(2):273–82.

    Article  CAS  PubMed  Google Scholar 

  49. Sifringer M, et al. Erythropoietin attenuates hyperoxia-induced oxidative stress in the developing rat brain. Brain Behav Immun. 2010;24(5):792–9.

    Article  CAS  PubMed  Google Scholar 

  50. Yis U, et al. Hyperoxic exposure leads to cell death in the developing brain. Brain Dev. 2008;30(9):556–62.

    Article  PubMed  Google Scholar 

  51. Bendix I, et al. Hyperoxia changes the balance of the thioredoxin/peroxiredoxin system in the neonatal rat brain. Brain Res. 2012;1484:68–75.

    Article  CAS  PubMed  Google Scholar 

  52. Hoehn T, et al. Hyperoxia causes inducible nitric oxide synthase-mediated cellular damage to the immature rat brain. Pediatr Res. 2003;54(2):179–84.

    Article  CAS  PubMed  Google Scholar 

  53. Tsao PC, et al. Cranial neurotransmitter alteration in newborn piglets exposed to oxygen. J Chin Med Assoc. 2012;75(9):449–53.

    Article  CAS  PubMed  Google Scholar 

  54. Gerstner B, et al. Maturation-dependent oligodendrocyte apoptosis caused by hyperoxia. J Neurosci Res. 2006;84(2):306–15.

    Article  CAS  PubMed  Google Scholar 

  55. Gerstner B, et al. Hyperoxia causes maturation-dependent cell death in the developing white matter. J Neurosci. 2008;28(5):1236–45.

    Article  CAS  PubMed  Google Scholar 

  56. Brehmer F, et al. Interaction of inflammation and hyperoxia in a rat model of neonatal white matter damage. PLoS One. 2012;7(11):e49023.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Ramani M, et al. Neurodevelopmental impairment following neonatal hyperoxia in the mouse. Neurobiol Dis. 2013;50:69–75.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Schmitz T, et al. Adolescent hyperactivity and impaired coordination after neonatal hyperoxia. Exp Neurol. 2012;235(1):374–9.

    Article  PubMed  Google Scholar 

  59. Morken TS, et al. Longitudinal diffusion tensor and manganese-enhanced MRI detect delayed cerebral gray and white matter injury after hypoxia-ischemia and hyperoxia. Pediatr Res. 2013;73(2):171–9.

    Article  CAS  PubMed  Google Scholar 

  60. Ritter J, et al. Neonatal hyperoxia exposure disrupts axon-oligodendrocyte integrity in the subcortical white matter. J Neurosci. 2013;33(21):8990–9002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Vottier G, et al. Deleterious effect of hyperoxia at birth on white matter damage in the newborn rat. Dev Neurosci. 2011;33(3–4):261–9.

    Article  CAS  PubMed  Google Scholar 

  62. Felderhoff-Mueser U, et al. Caspase-1-processed interleukins in hyperoxia-induced cell death in the developing brain. Ann Neurol. 2005;57(1):50–9.

    Article  CAS  PubMed  Google Scholar 

  63. Favrais G, et al. Systemic inflammation disrupts the developmental program of white matter. Ann Neurol. 2011;70(4):550–65.

    Article  CAS  PubMed  Google Scholar 

  64. Prager S, et al. CEACAM1 expression in oligodendrocytes of the developing rat brain shows a spatiotemporal relation to myelination and is altered in a model of encephalopathy of prematurity. Dev Neurosci. 2013;35(2–3):226–40.

    Article  CAS  PubMed  Google Scholar 

  65. Kaindl AM, et al. Erythropoietin protects the developing brain from hyperoxia-induced cell death and proteome changes. Ann Neurol. 2008;64(5):523–34.

    Article  CAS  PubMed  Google Scholar 

  66. Perlman JM, et al. Part 11: neonatal resuscitation: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation. 2010;122(16 Suppl 2):S516–38.

    Article  PubMed  Google Scholar 

  67. Klinger G, et al. Do hyperoxaemia and hypocapnia add to the risk of brain injury after intrapartum asphyxia? Arch Dis Child Fetal Neonatal Ed. 2005;90(1):F49–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Kapadia VS, et al. Perinatal asphyxia with hyperoxemia within the first hour of life is associated with moderate to severe hypoxic-ischemic encephalopathy. J Pediatr. 2013;163(4):949–54.

    Article  PubMed  Google Scholar 

  69. Sabir H, et al. Increased inspired oxygen in the first hours of life is associated with adverse outcome in newborns treated for perinatal asphyxia with therapeutic hypothermia. J Pediatr. 2012;161(3):409–16.

    Article  PubMed  Google Scholar 

  70. Dalen ML, et al. Early protective effect of hypothermia in newborn pigs after hyperoxic, but not after normoxic, reoxygenation. J Perinat Med. 2010;38(5):545–56.

    Article  CAS  PubMed  Google Scholar 

  71. Robertson NJ, et al. Melatonin augments hypothermic neuroprotection in a perinatal asphyxia model. Brain. 2013;136(Pt 1):90–105.

    Article  PubMed  Google Scholar 

  72. SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network, et al. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med. 2010;362(21):1959–69.

    Article  PubMed Central  Google Scholar 

  73. Saugstad OD, Aune D. In search of the optimal oxygen saturation for extremely low birth weight infants: a systematic review and meta-analysis. Neonatology. 2011;100(1):1–8.

    Article  PubMed  Google Scholar 

  74. Schmidt B, et al. Effects of targeting higher vs lower arterial oxygen saturations on death or disability in extremely preterm infants: a randomized clinical trial. JAMA. 2013;309(20):2111–20.

    Article  CAS  PubMed  Google Scholar 

  75. Juul S, Felderhoff-Mueser U. Epo and other hematopoietic factors. Semin Fetal Neonatal Med. 2007;12(4):250–8.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Asimiadou S, et al. Protection with estradiol in developmental models of apoptotic neurodegeneration. Ann Neurol. 2005;58(2):266–76.

    Article  CAS  PubMed  Google Scholar 

  77. Liu M, et al. Neuroprotection of sex steroids. Minerva Endocrinol. 2010;35(2):127–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Tulchinsky D, et al. Plasma estrone, estradiol, estriol, progesterone, and 17-hydroxyprogesterone in human pregnancy. I. Normal pregnancy. Am J Obstet Gynecol. 1972;112(8):1095–100.

    CAS  PubMed  Google Scholar 

  79. Gerstner B, et al. 17beta-estradiol protects against hypoxic/ischemic white matter damage in the neonatal rat brain. J Neurosci Res. 2009;87(9):2078–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Gerstner B, et al. Estradiol attenuates hyperoxia-induced cell death in the developing white matter. Ann Neurol. 2007;61(6):562–73.

    Article  CAS  PubMed  Google Scholar 

  81. Trotter A, et al. Follow-up examination at the age of 15 months of extremely preterm infants after postnatal estradiol and progesterone replacement. J Clin Endocrinol Metab. 2001;86(2):601–3.

    Article  CAS  PubMed  Google Scholar 

  82. Trotter A, et al. Effect of oestradiol and progesterone replacement on bronchopulmonary dysplasia in extremely preterm infants. Arch Dis Child Fetal Neonatal Ed. 2007;92(2):F94–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Sifringer M, et al. Prevention of neonatal oxygen-induced brain damage by reduction of intrinsic apoptosis. Cell Death Dis. 2012;3:e250.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Felderhoff-Müser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Felderhoff-Müser, U. (2014). Oxygen Vulnerability in the Immature Brain. In: Dennery, P., Buonocore, G., Saugstad, O. (eds) Perinatal and Prenatal Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1405-0_14

Download citation

Publish with us

Policies and ethics