Skip to main content

Oxidative Stress and Glutathione Synthesis Rates in Early Postnatal Life

  • Chapter
  • First Online:
Perinatal and Prenatal Disorders

Abstract

During fetal-to-neonatal transition and early postnatal life, infants are exposed to increased oxidative stress. Term infants are fully capable to counteract this increased oxidative stress due to their antioxidant defenses. However, preterm infants are highly susceptible to oxidative stress, because they have both increased reactive oxygen species (ROS) formation as well as compromised antioxidant defenses.

In this chapter, we will discuss the role of glutathione (GSH, the most important intracellular antioxidant) in early postnatal life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maltepe E, Saugstad OD. Oxygen in health and disease: regulation of oxygen homeostasis – clinical implications. Pediatr Res. 2008;65(3):261–8.

    Article  Google Scholar 

  2. Vento M, Asensi M, Sastre J, Lloret A, Garcia-Sala F, Minana JB, et al. Hyperoxemia caused by resuscitation with pure oxygen may alter intracellular redox status by increasing oxidized glutathione in asphyxiated newly born infants. Semin Perinatol. 2002;26(6):406–10.

    Article  PubMed  Google Scholar 

  3. Comporti M, Signorini C, Leoncini S, Buonocore G, Rossi V, Ciccoli L. Plasma F2-isoprostanes are elevated in newborns and inversely correlated to gestational age. Free Radic Biol Med. 2004;37(5):724–32.

    Article  CAS  PubMed  Google Scholar 

  4. Pallardo FV, Sastre J, Asensi M, Rodrigo F, Estrela JM, Vina J. Physiological changes in glutathione metabolism in foetal and newborn rat liver. Biochem J. 1991;274(Pt 3):891–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Noori S, Wlodaver A, Gottipati V, McCoy M, Schultz D, Escobedo M. Transitional changes in cardiac and cerebral hemodynamics in term neonates at birth. J Pediatr. 2012;160(6):943–8.

    Article  PubMed  Google Scholar 

  6. Noori S, Stavroudis TA, Seri I. Systemic and cerebral hemodynamics during the transitional period after premature birth. Clin Perinatol. 2009;36(4):723–36, v.

    Article  PubMed  Google Scholar 

  7. Friel JK, Friesen RW, Harding SV, Roberts LJ. Evidence of oxidative stress in full-term healthy infants. Pediatr Res. 2004;56(6):878–82.

    Article  CAS  PubMed  Google Scholar 

  8. Frank L, Groseclose EE. Preparation for birth into an O2-rich environment: the antioxidant enzymes in the developing rabbit lung. Pediatr Res. 1984;18(3):240–4.

    Article  CAS  PubMed  Google Scholar 

  9. Frank L, Sosenko IR. Prenatal development of lung antioxidant enzymes in four species. J Pediatr. 1987;110(1):106–10.

    Article  CAS  PubMed  Google Scholar 

  10. Frank L, Sosenko IR. Failure of premature rabbits to increase antioxidant enzymes during hyperoxic exposure: increased susceptibility to pulmonary oxygen toxicity compared with term rabbits. Pediatr Res. 1991;29(3):292–6.

    Article  CAS  PubMed  Google Scholar 

  11. Ezaki S, Suzuki K, Kurishima C, Miura M, Weilin W, Hoshi R, et al. Resuscitation of preterm infants with reduced oxygen results in less oxidative stress than resuscitation with 100 % oxygen. J Clin Biochem Nutr. 2009;44(1):111–8.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Vento M, Moro M, Escrig R, Arruza L, Villar G, Izquierdo I, et al. Preterm resuscitation with low oxygen causes less oxidative stress, inflammation, and chronic lung disease. Pediatrics. 2009;124(3):e439–49.

    Article  PubMed  Google Scholar 

  13. Wang CL, Anderson C, Leone TA, Rich W, Govindaswami B, Finer NN. Resuscitation of preterm neonates by using room air or 100 % oxygen. Pediatrics. 2008;121(6):1083–9.

    Article  PubMed  Google Scholar 

  14. Solberg R, Andresen JH, Escrig R, Vento M, Saugstad OD. Resuscitation of hypoxic newborn piglets with oxygen induces a dose-dependent increase in markers of oxidation. Pediatr Res. 2007;62(5):559–63.

    Article  CAS  PubMed  Google Scholar 

  15. Cheah FC, Pillow JJ, Kramer BW, Polglase GR, Nitsos I, Newnham JP, et al. Airway inflammatory cell responses to intra-amniotic lipopolysaccharide in a sheep model of chorioamnionitis. Am J Physiol Lung Cell Mol Physiol. 2009;296(3):L384–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Raijmakers MT, Roes EM, Poston L, Steegers EA, Peters WH. The transient increase of oxidative stress during normal pregnancy is higher and persists after delivery in women with pre-eclampsia. Eur J Obstet Gynecol Reprod Biol. 2008;138(1):39–44.

    Article  CAS  PubMed  Google Scholar 

  17. Moison RM, van Hoof EJ, Clahsen PC, van Zoeren-Grobben D, Berger HM. Influence of plasma preparations and donor red blood cells on the antioxidant capacity of blood from newborn babies: an in vitro study. Acta Paediatr. 1996;85(2):220–4.

    Article  CAS  PubMed  Google Scholar 

  18. Hirano K, Morinobu T, Kim H, Hiroi M, Ban R, Ogawa S, et al. Blood transfusion increases radical promoting non-transferrin bound iron in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2001;84(3):F188–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kapoor K, Basu S, Das BK, Bhatia BD. Lipid peroxidation and antioxidants in neonatal septicemia. J Trop Pediatr. 2006;52(5):372–5.

    Article  PubMed  Google Scholar 

  20. Laborie S, Lavoie JC, Chessex P. Increased urinary peroxides in newborn infants receiving parenteral nutrition exposed to light. J Pediatr. 2000;136(5):628–32.

    Article  CAS  PubMed  Google Scholar 

  21. Buonocore G, Perrone S, Longini M, Vezzosi P, Marzocchi B, Paffetti P, et al. Oxidative stress in preterm neonates at birth and on the seventh day of life. Pediatr Res. 2002;52(1):46–9.

    Article  CAS  PubMed  Google Scholar 

  22. Perrone S, Mussap M, Longini M, Fanos V, Bellieni CV, Proietti F, et al. Oxidative kidney damage in preterm newborns during perinatal period. Clin Biochem. 2007;40(9–10):656–60.

    Article  CAS  PubMed  Google Scholar 

  23. Ahola T, Levonen AL, Fellman V, Lapatto R. Thiol metabolism in preterm infants during the first week of life. Scand J Clin Lab Invest. 2004;64(7):649–58.

    Article  CAS  PubMed  Google Scholar 

  24. Georgeson GD, Szony BJ, Streitman K, Varga IS, Kovacs A, Kovacs L, et al. Antioxidant enzyme activities are decreased in preterm infants and in neonates born via caesarean section. Eur J Obstet Gynecol Reprod Biol. 2002;103(2):136–9.

    Article  CAS  PubMed  Google Scholar 

  25. Perrone S, Salvi G, Bellieni CV, Buonocore G. Oxidative stress and nutrition in the preterm newborn. J Pediatr Gastroenterol Nutr. 2007;45:S178–82.

    Article  CAS  PubMed  Google Scholar 

  26. Yeung MY. Influence of early postnatal nutritional management on oxidative stress and antioxidant defence in extreme prematurity. Acta Paediatr. 2006;95(2):153–63.

    Article  PubMed  Google Scholar 

  27. Friel JK, Martin SM, Langdon M, Herzberg GR, Buettner GR. Milk from mothers of both premature and full-term infants provides better antioxidant protection than does infant formula. Pediatr Res. 2002;51(5):612–8.

    Article  PubMed  Google Scholar 

  28. L’Abbe MR, Friel JK. Superoxide dismutase and glutathione peroxidase content of human milk from mothers of premature and full-term infants during the first 3 months of lactation. J Pediatr Gastroenterol Nutr. 2000;31(3):270–4.

    Article  PubMed  Google Scholar 

  29. Corpeleijn WE, Kouwenhoven SM, Paap MC, van Vliet I, Scheerder I, Muizer Y, et al. Intake of own mother’s milk during the first days of life is associated with decreased morbidity and mortality in very low birth weight infants during the first 60 days of life. Neonatology. 2012;102(4):276–81.

    Article  CAS  PubMed  Google Scholar 

  30. Witschi A, Reddy S, Stofer B, Lauterburg BH. The systemic availability of oral glutathione. Eur J Clin Pharmacol. 1992;43(6):667–9.

    Article  CAS  PubMed  Google Scholar 

  31. Lyons J, Rauh-Pfeiffer A, Ming-Yu Y, Lu XM, Zurakowski D, Curley M, et al. Cysteine metabolism and whole blood glutathione synthesis in septic pediatric patients. Crit Care Med. 2001;29(4):870–7.

    Article  CAS  PubMed  Google Scholar 

  32. Malmezat T, Breuille D, Capitan P, Mirand PP, Obled C. Glutathione turnover is increased during the acute phase of sepsis in rats. J Nutr. 2000;130(5):1239–46.

    CAS  PubMed  Google Scholar 

  33. Hansson L, Seidegard J, Johansson L, Jeppsson B. Influence of glutathione metabolising enzymes in rats with gram-negative sepsis. Eur J Surg. 2000;166(9):728–33.

    Article  CAS  PubMed  Google Scholar 

  34. Biolo G, Antonione R, De Cicco M. Glutathione metabolism in sepsis. Crit Care Med. 2007;35(9 Suppl):S591–5.

    Article  CAS  PubMed  Google Scholar 

  35. Kidd PM. Glutathione: systemic protectant against oxidative and free radical damage. Altern Med Rev. 1997;2(3):155–76.

    Google Scholar 

  36. Giustarini D, Milzani A, Dalle-Donne I, Rossi R. Red blood cells as a physiological source of glutathione for extracellular fluids. Blood Cells Mol Dis. 2007;40(2):174–9.

    Article  PubMed  Google Scholar 

  37. Berggren M, Dawson J, Moldeus P. Glutathione biosynthesis in the isolated perfused rat lung: utilization of extracellular glutathione. FEBS Lett. 1984;176(1):189–92.

    Article  CAS  PubMed  Google Scholar 

  38. Clahsen PC, Moison RM, Holtzer CA, Berger HM. Recycling of glutathione during oxidative stress in erythrocytes of the newborn. Pediatr Res. 1992;32(4):399–402.

    Article  CAS  PubMed  Google Scholar 

  39. Griffith OW, Meister A. Glutathione: interorgan translocation, turnover, and metabolism. Proc Natl Acad Sci U S A. 1979;76(11):5606–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Heffner JE, Repine JE. Pulmonary strategies of antioxidant defense. Am Rev Respir Dis. 1989;140(2):531–54.

    Article  CAS  PubMed  Google Scholar 

  41. van Asbeck BS, Hoidal J, Vercellotti GM, Schwartz BA, Moldow CF, Jacob HS. Protection against lethal hyperoxia by tracheal insufflation of erythrocytes: role of red cell glutathione. Science. 1985;227(4688):756–9.

    Article  PubMed  Google Scholar 

  42. Schierbeek H, Rook D, te Braake FW, Dorst KY, Voortman G, Godin JP, et al. Simultaneous analysis of (13)C-glutathione as its dimeric form GSSG and its precursor [1-(13)C]glycine using liquid chromatography/isotope ratio mass spectrometry. Rapid Commun Mass Spectrom. 2009;23(18):2897–902.

    Article  CAS  PubMed  Google Scholar 

  43. Darmaun D, Smith SD, Sweeten S, Sager BK, Welch S, Mauras N. Evidence for accelerated rates of glutathione utilization and glutathione depletion in adolescents with poorly controlled type 1 diabetes. Diabetes. 2005;54(1):190–6.

    Article  CAS  PubMed  Google Scholar 

  44. Jahoor F, Jackson A, Gazzard B, Philips G, Sharpstone D, Frazer ME, et al. Erythrocyte glutathione deficiency in symptom-free HIV infection is associated with decreased synthesis rate. Am J Physiol. 1999;276(1 Pt 1):E205–11.

    CAS  PubMed  Google Scholar 

  45. Te Braake FW, Schierbeek H, de Groof K, Vermes A, Longini M, Buonocore G, et al. Glutathione synthesis rates after amino acid administration directly after birth in preterm infants. Am J Clin Nutr. 2008;88(2):333–9.

    Google Scholar 

  46. Pastore A, Federici G, Bertini E, Piemonte F. Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta. 2003;333(1):19–39.

    Article  CAS  PubMed  Google Scholar 

  47. Papp A, Nemeth I, Karg E, Papp E. Glutathione status in retinopathy of prematurity. Free Radic Biol Med. 1999;27(7–8):738–43.

    Article  CAS  PubMed  Google Scholar 

  48. Vento M, Aguar M, Escobar J, Arduini A, Escrig R, Brugada M, et al. Antenatal steroids and antioxidant enzyme activity in preterm infants: influence of gender and timing. Antioxid Redox Signal. 2009;11(12):2945–55.

    Article  CAS  PubMed  Google Scholar 

  49. Frosali S, Di Simplicio P, Perrone S, Di Giuseppe D, Longini M, Tanganelli D, et al. Glutathione recycling and antioxidant enzyme activities in erythrocytes of term and preterm newborns at birth. Biol Neonate. 2004;85(3):188–94.

    Article  CAS  PubMed  Google Scholar 

  50. Rook D, Te Braake FW, Schierbeek H, Longini M, Buonocore G, van Goudoever JB. Glutathione synthesis rates in early postnatal life. Pediatr Res. 2010;67(4):407–11.

    Article  CAS  PubMed  Google Scholar 

  51. Jain A, Mehta T, Auld PA, Rodrigues J, Ward RF, Schwartz MK, et al. Glutathione metabolism in newborns: evidence for glutathione deficiency in plasma, bronchoalveolar lavage fluid, and lymphocytes in prematures. Pediatr Pulmonol. 1995;20(3):160–6.

    Article  CAS  PubMed  Google Scholar 

  52. Jean-Baptiste D, Rudolph N. Sequential postnatal changes in erythrocyte glutathione and sulfhydryl content: a possible adaptational response to the extrauterine environment. Biol Neonate. 2003;84(2):142–6.

    Article  PubMed  Google Scholar 

  53. Levonen AL, Lapatto R, Saksela M, Raivio KO. Expression of gamma-glutamylcysteine synthetase during development. Pediatr Res. 2000;47(2):266–70.

    Article  CAS  PubMed  Google Scholar 

  54. Lestas AN, Rodeck CH. Normal glutathione content and some related enzyme activities in the fetal erythrocytes. Br J Haematol. 1984;57(4):695–702.

    Article  CAS  PubMed  Google Scholar 

  55. Martin JA, Pereda J, Martinez-Lopez I, Escrig R, Miralles V, Pallardo FV, et al. Oxidative stress as a signal to up-regulate gamma-cystathionase in the fetal-to-neonatal transition in rats. Cell Mol Biol (Noisy-le-grand). 2007;53(Suppl):OL1010–7.

    Google Scholar 

  56. Vina J, Vento M, Garcia-Sala F, Puertes IR, Gasco E, Sastre J, et al. L-cysteine and glutathione metabolism are impaired in premature infants due to cystathionase deficiency. Am J Clin Nutr. 1995;61(5):1067–9.

    CAS  PubMed  Google Scholar 

  57. Riedijk MA, van Beek RH, Voortman G, de Bie HM, Dassel AC, van Goudoever JB. Cysteine: a conditionally essential amino acid in low-birth-weight preterm infants? Am J Clin Nutr. 2007;86(4):1120–5.

    CAS  PubMed  Google Scholar 

  58. Thomas B, Gruca LL, Bennett C, Parimi PS, Hanson RW, Kalhan SC. Metabolism of methionine in the newborn infant: response to the parenteral and enteral administration of nutrients. Pediatr Res. 2008;64(4):381–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Lavoie JC, Chessex P. Development of glutathione synthesis and gamma-glutamyltranspeptidase activities in tissues from newborn infants. Free Radic Biol Med. 1998;24(6):994–1001.

    Article  CAS  PubMed  Google Scholar 

  60. Jobe AH, Kallapur SG. Long term consequences of oxygen therapy in the neonatal period. Semin Fetal Neonatal Med. 2010;15(4):230–5.

    Google Scholar 

  61. Hulst JM, Goudoever JB, Zimmermann LJI, Hop WCJ, Albers MJIJ, Tibboel D, et al. The effect of cumulative energy and protein deficiency on anthropometric parameters in a pediatric ICU population. Clin Nutr. 2004;23(6):1381–9.

    Article  PubMed  Google Scholar 

  62. Manzella D, Grella R, Esposito K, Cacciapuoti F, Arciello A, Giugliano D, et al. Oral amino acid administration decreases oxidative stress and improves brachial reactivity in elderly individuals. Am J Hypertens. 2005;18(6):858–63.

    Article  CAS  PubMed  Google Scholar 

  63. van den Akker CH, te Braake FW, Schierbeek H, Rietveld T, Wattimena DJ, Bunt JE, et al. Albumin synthesis in premature neonates is stimulated by parenterally administered amino acids during the first days of life. Am J Clin Nutr. 2007;86(4):1003–8.

    PubMed  Google Scholar 

  64. Stipanuk MH, Coloso RM, Garcia RA, Banks MF. Cysteine concentration regulates cysteine metabolism to glutathione, sulfate and taurine in rat hepatocytes. Clin Nutr. 1992;122(3):420–7.

    CAS  Google Scholar 

  65. Stipanuk MH, Dominy Jr JE, Lee JI, Coloso RM. Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. Clin Nutr. 2006;136(6 Suppl):1652S–959.

    CAS  Google Scholar 

  66. Vlaardingerbroek H, van Goudoever JB, van den Akker CH. Initial nutritional management of the preterm infant. Early Hum Dev. 2009;85(11):691–5.

    Article  CAS  PubMed  Google Scholar 

  67. Vlaardingerbroek H, Vermeulen MJ, Rook D, van den Akker CH, Dorst K, Wattimena JL, et al. Safety and efficacy of early parenteral lipid and high-dose amino acid administration to very low birth weight infants. J Pediatr. 2013;163(3):638–44.

    Google Scholar 

  68. Alexander-North LS, North JA, Kiminyo KP, Buettner GR, Spector AA. Polyunsaturated fatty acids increase lipid radical formation induced by oxidant stress in endothelial cells. J Lipid Res. 1994;35(10):1773–85.

    CAS  PubMed  Google Scholar 

  69. Helbock HJ, Motchnik PA, Ames BN. Toxic hydroperoxides in intravenous lipid emulsions used in preterm infants. Pediatrics. 1993;91(1):83–7.

    CAS  PubMed  Google Scholar 

  70. Skouroliakou M, Konstantinou D, Koutri K, Kakavelaki C, Stathopoulou M, Antoniadi M, et al. A double-blind, randomized clinical trial of the effect of omega-3 fatty acids on the oxidative stress of preterm neonates fed through parenteral nutrition. Eur J Clin Nutr. 2010;64(9):940–7.

    Article  CAS  PubMed  Google Scholar 

  71. Koksal N, Kavurt AV, Cetinkaya M, Ozarda Y, Ozkan H. Comparison of lipid emulsions on antioxidant capacity in preterm infants receiving parenteral nutrition. Pediatr Int. 2011;53(4):562–6.

    Article  CAS  PubMed  Google Scholar 

  72. Roggero P, Mosca F, Gianni ML, Orsi A, Amato O, Migliorisi E, et al. F2-isoprostanes and total radical-trapping antioxidant potential in preterm infants receiving parenteral lipid emulsions. Nutrition. 2010;26(5):551–5.

    Google Scholar 

  73. Gobel Y, Koletzko B, Bohles HJ, Engelsberger I, Forget D, Le Brun A, et al. Parenteral fat emulsions based on olive and soybean oils: a randomized clinical trial in preterm infants. J Pediatr Gastroenterol Nutr. 2003;37(2):161–7.

    Article  PubMed  Google Scholar 

  74. Webb AN, Hardy P, Peterkin M, Lee O, Shalley H, Croft KD, et al. Tolerability and safety of olive oil-based lipid emulsion in critically ill neonates: a blinded randomized trial. Nutrition. 2008;24(11–12):1057–64.

    Article  CAS  PubMed  Google Scholar 

  75. Vlaardingerbroek H, Veldhorst MA, Spronk S, van den Akker CH, van Goudoever JB. Parenteral lipid administration to very-low-birth-weight infants – early introduction of lipids and use of new lipid emulsions: a systematic review and meta-analysis. Am J Clin Nutr. 2012;96(2):255–68.

    Article  CAS  PubMed  Google Scholar 

  76. Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics. 2002;110(2 Pt 1):285–91.

    Article  PubMed  Google Scholar 

  77. Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics. 2010;126(3):443–56.

    Article  PubMed Central  PubMed  Google Scholar 

  78. van der Zwet WC, Kaiser AM, van Elburg RM, Berkhof J, Fetter WP, Parlevliet GA, et al. Nosocomial infections in a Dutch neonatal intensive care unit: surveillance study with definitions for infection specifically adapted for neonates. J Hosp Infect. 2005;61(4):300–11.

    Article  PubMed  Google Scholar 

  79. Adams-Chapman I, Stoll BJ. Neonatal infection and long-term neurodevelopmental outcome in the preterm infant. Curr Opin Infect Dis. 2006;19(3):290–7.

    Article  PubMed  Google Scholar 

  80. Stoll BJ, Hansen NI, Adams-Chapman I, Fanaroff AA, Hintz SR, Vohr B, et al. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA. 2004;292(19):2357–65.

    Article  CAS  PubMed  Google Scholar 

  81. Volpe JJ. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res. 2001;50(5):553–62.

    Article  CAS  PubMed  Google Scholar 

  82. Martins PS, Kallas EG, Neto MC, Dalboni MA, Blecher S, Salomao R. Upregulation of reactive oxygen species generation and phagocytosis, and increased apoptosis in human neutrophils during severe sepsis and septic shock. Shock. 2003;20(3):208–12.

    Article  CAS  PubMed  Google Scholar 

  83. de Souza LF, Ritter C, Pens Gelain D, Andrades M, Bernard EA, Moreira JC, et al. Mitochondrial superoxide production is related to the control of cytokine release from peritoneal macrophage after antioxidant treatment in septic rats. J Surg Res. 2007;141(2):252–6.

    Article  PubMed  Google Scholar 

  84. Andrades M, Ritter C, Moreira JC, Dal-Pizzol F. Oxidative parameters differences during non-lethal and lethal sepsis development. J Surg Res. 2005;125(1):68–72.

    Article  CAS  PubMed  Google Scholar 

  85. Victor VM, Rocha M, De la Fuente M. Immune cells: free radicals and antioxidants in sepsis. Int Immunopharmacol. 2004;4(3):327–47.

    Article  CAS  PubMed  Google Scholar 

  86. Crimi E, Sica V, Slutsky AS, Zhang H, Williams-Ignarro S, Ignarro LJ, et al. Role of oxidative stress in experimental sepsis and multisystem organ dysfunction. Free Radic Res. 2006;40(7):665–72.

    Article  CAS  PubMed  Google Scholar 

  87. von Dessauer B, Bongain J, Molina V, Quilodran J, Castillo R, Rodrigo R. Oxidative stress as a novel target in pediatric sepsis management. J Crit Care. 2011;26(1):103.e1–7.

    Google Scholar 

  88. Davis JM, Auten RL. Maturation of the antioxidant system and the effects on preterm birth. Semin Fetal Neonatal Med. 2010 Aug;15(4):191–5.

    Google Scholar 

  89. Poggi C, Giusti B, Vestri A, Pasquini E, Abbate R, Dani C. Genetic polymorphisms of antioxidant enzymes in preterm infants. J Matern Fetal Neonatal Med. 2012;25 Suppl 4:131–4.

    PubMed  Google Scholar 

  90. Manar MH, Brown MR, Gauthier TW, Brown LA. Association of glutathione-S-transferase-P1 (GST-P1) polymorphisms with bronchopulmonary dysplasia. J Perinatol. 2004;24(1):30–5.

    Article  CAS  PubMed  Google Scholar 

  91. Oretti C, Marino S, Mosca F, Colnaghi MR, De Iudicibus S, Drigo I, et al. Glutathione-S-transferase-P1 I105V polymorphism and response to antenatal betamethasone in the prevention of respiratory distress syndrome. Eur J Clin Pharmacol. 2009;65(5):483–91.

    Article  CAS  PubMed  Google Scholar 

  92. Raijmakers MT, de Galan-Roosen TE, Schilders GW, Merkus JM, Steegers EA, Peters WH. The Tyr113His polymorphism in exon 3 of the microsomal epoxide hydrolase gene is a risk factor for perinatal mortality. Acta Obstet Gynecol Scand. 2004;83(11):1056–60.

    Article  PubMed  Google Scholar 

  93. Komina AV, Korostileva KA, Gyrylova SN, Belonogov RN, Ruksha TG. Interaction between single nucleotide polymorphism in catalase gene and catalase activity under the conditions of oxidative stress. Physiol Res. 2013;61(6):655–8.

    Google Scholar 

  94. Bresciani G, Gonzalez-Gallego J, da Cruz IB, de Paz JA, Cuevas MJ. The Ala16Val MnSOD gene polymorphism modulates oxidative response to exercise. Clin Biochem. 2013;46(4–5):335–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes B. van Goudoever .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rook, D., van Goudoever, J.B. (2014). Oxidative Stress and Glutathione Synthesis Rates in Early Postnatal Life. In: Dennery, P., Buonocore, G., Saugstad, O. (eds) Perinatal and Prenatal Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1405-0_13

Download citation

Publish with us

Policies and ethics