Skip to main content

Localization of Quorum Sensing by Extracellular Polymeric Substances (EPS): Considerations of In Situ Signaling

  • Chapter
  • First Online:
The Physical Basis of Bacterial Quorum Communication

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Quorum sensing (QS) and other forms of chemical sensing are now realized to be important processes regulating group behaviors of microbial cells involved in health-related pathogenic infections, commensal gut flora, as well as those in natural environments. The physical migration of molecules from a sender-cell to a receiver-cell most often occurs via simple diffusion. However, under in situ conditions, most QS activities occur within biofilms where groups of cells are suspended in a matrix of extracellular polymeric substances (EPS). In biofilms, the densities, compositions, and properties of EPS, which vary over small (i.e. micrometer) spatial scales, and the water pore spaces located between adjacent EPS molecules will influence the motion and direction(s) of signal molecules. Dense EPS gels have the capacity to interact with, localize, and concentrate signals and other small molecules. Therefore, it becomes essential to understand how the EPS matrix might influence signaling and the dispersion of signals; most especially in situ. This review addresses properties of the EPS matrix, and how signals may interact with the matrix to facilitate or diminish quorum sensing among microbial cells within a biofilm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boles BR, Thoendel M, Singh PK (2004) Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci U S A 101:16630–16635

    Article  ADS  Google Scholar 

  2. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  Google Scholar 

  3. Fuqua WC, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signaling. Nat Rev Mol Cell Biol 3:685–695

    Article  Google Scholar 

  4. Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311:1113–1116

    Article  ADS  Google Scholar 

  5. Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4:249–258

    Article  Google Scholar 

  6. Dandekar AA, Chugani S, Greenberg EP (2012) Bacterial quorum sensing and metabolic incentives to cooperate. Science 338:264–266

    Article  ADS  Google Scholar 

  7. Redfield RJ (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10:365–370

    Article  Google Scholar 

  8. Hense BA, Kuttler C, Müller J, Rothballer M, Hartmann A, Kreft J-U (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239

    Article  Google Scholar 

  9. Nealson KH, Platt T, Hastings JW (1970) Cellular control of synthesis and activity of bacterial luminescent systems. J Bacteriol 104:313–322

    Google Scholar 

  10. Nealson KH, Hastings JW (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43:496–518

    Google Scholar 

  11. Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–2449

    Article  Google Scholar 

  12. Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol Ann Rev 28:73–154

    Google Scholar 

  13. Wingender J, Neu TR, Flemming H-C (1999) Microbial extracellular polymeric substances. Springer, Berlin

    Book  Google Scholar 

  14. Neu TR, Manz B, Volke F, Dynes JJ, Hitchcock AP, Lawrence JR (2010) Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. FEMS Microbiol Ecol 72:1–21

    Article  Google Scholar 

  15. Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Google Scholar 

  16. Schauder S, Bassler BL (2001) The languages of bacteria. Genes Dev 15:1468–1480

    Article  Google Scholar 

  17. Diggle SP, Griffin AS, Campbell GS, West SA (2007) Cooperation and conflict in quorum sensing bacterial populations. Nature 450:411–414

    Article  ADS  Google Scholar 

  18. Geske GD, O’Neill JC, Blackwell HE (2008) Expanding dialogues: from natural autoinducers to non-natural analogues that modulate quorum sensing in Gram-negative bacteria. Chem Soc Rev 37:1432–1447

    Article  Google Scholar 

  19. Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ, Bittan-Banin G, Peres CM, Schmidt S, Juhaszova K, Sufrin JR, Harwood CS (2008) A new class of homoserine lactone quorum-sensing signals. Nature 454:595–599

    Article  ADS  Google Scholar 

  20. Schulz S (2014) A new bacterial chemical signal: mapping the chemical space used for communication. Chembiochem 15:498–500

    Article  Google Scholar 

  21. Brogioli D, Vailati A (2001) Diffusive mass transfer by non-equilibrium fluctuations: Fick’s law revisited. Phys Rev E 63:012105

    Article  ADS  Google Scholar 

  22. Decho AW, Frey RL, Ferry JL (2011) Chemical challenges to bacterial AHL signaling in the environment. Chem Rev 111:86–99

    Article  Google Scholar 

  23. Gantner S, Schmid M, Dürr C, Schuheggar R, Steidle A, Hutzler P, Langebartels C, Eberl L, Hartmann A, Dazzo FB (2006) In situ quantitation of the spatial scale of calling distances and population density independent N-acyhomoserine lactone-mediated communication by rhizobacteria colonized on plant roots. FEMS Microbiol Ecol 56:188–194

    Article  Google Scholar 

  24. Schmidt J, Flemming H-C (1999) Water binding in biofilms. Water Sci Technol 39:77–82

    Article  Google Scholar 

  25. Smith JD, Cappa CD, Wilson KR, Cohen RC, Geissler PL, Saykally RJ (2005) Unified description of temperature-dependent hydrogen bond rearrangements in liquid water. Proc Natl Acad Sci U S A 102:14171–14174

    Article  ADS  Google Scholar 

  26. Tokmachev AM, Tchougreeff AL, Dronskowski RR (2010) Hydrogen-bond networks in water clusters: an exhaustive quantum-chemical. Eur J Chem Phys Phys Chem 11:384–388

    Google Scholar 

  27. Nichols WW, Dorrington SM, Slack MP, Walmsley HL (1988) Inhibition of tobramycin diffusion by binding to alginate. Antimicrob Agents Chemother 32:518–523

    Article  Google Scholar 

  28. Stewart PS (1998) A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms. Biotechnol Bioeng 59:261–272

    Article  Google Scholar 

  29. Guiot E, Georges P, Brun A, Fontaine-Aupart MP, Bellon-Fontaine MN, Briandet R (2002) Heterogeneity of diffusion inside microbial biofilms determined by fluorescence correlation spectroscopy under two-photon excitation. Photochem Photobiol 75:570–578

    Article  Google Scholar 

  30. Stone G, Wood P, Dixon L, Keyhan M, Matin A (2002) Tetracycline rapidly reaches all the constituent cells of uropathogenic Escherichia coli biofilms. Antimicrob Agents Chemother 46:2458–2461

    Article  Google Scholar 

  31. Stewart PS (2003) Diffusion in biofilms. J Bacteriol 185:1485–1491

    Article  Google Scholar 

  32. Jefferson KK, Goldmann DA, Pier GB (2005) Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob Agents Chemother 49:2467–2473

    Article  Google Scholar 

  33. Rani SA, Pitts B, Stewart PS (2005) Rapid diffusion of fluorescent tracers into Staphylococcus epidermidis biofilms visualized by time lapse microscopy. Antimicrob Agents Chemother 49:728–732

    Article  Google Scholar 

  34. Gilbert Y, Deghorain M, Wang L, Xu B, Pollheimer PD, Gruber HJ, Errington J, Hallet B, Haulot X, Verbelen C, Hols P, Dufrêne YF (2007) Single-molecule force spectroscopy and imaging of the vancomycin/D-Ala-D-Ala interaction. Nano Lett 7:796–801

    Article  ADS  Google Scholar 

  35. Briandet R, Lacroix-Gueu P, Renault M, Lecart S, Meylheuc T, Bidnenko E, Steenkeste K, Bellon-Fontaine M-N, Fontaine-Aupart M-P (2008) Fluorescence correlation spectroscopy to study diffusion and reaction of bacteriophages inside biofilms. Appl Environ Microbiol 74:2135–2143

    Article  Google Scholar 

  36. Stewart PS, Davison WM, Steenbergen JN (2009) Daptomycin rapidly penetrates a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother 53:3505–3507

    Article  Google Scholar 

  37. Zhang Z, Nadezhina E, Wilkinson KJ (2010) Quantifying diffusion in a biofilm of Streptococcus mutans. Antimicrob Agents Chemother 55:1075–1081

    Article  Google Scholar 

  38. De Beer D, Stoodley P, Lewandowski Z (1997) Measurements of local diffusion coefficients in biofilms by microinjection and confocal microscopy. Biotechnol Bioeng 53:151–158

    Article  Google Scholar 

  39. Waharte F, Steenkeste K, Briandet R, Fontaine-Aupart MP (2010) Diffusion measurements inside biofilms by image-based fluorescence recovery after photobleaching (FRAP) analysis with a commercial confocal laser scanning microscope. Appl Environ Microbiol 76:5860–5869

    Article  Google Scholar 

  40. Daddi-Oubekka S, Briandet R, Wharate F, Fontaine-Aupart M-P, Steenkeste K (2011) Image-based fluorescence recovery after photobleaching (FRAP) to dissect vancomycin diffusion–reaction processes in Staphylococcus aureus biofilms. SPIE-OSA Clin Biomed Spectrosc Imaging II 8087 11:1–8

    Google Scholar 

  41. Daddi-Oubekka SD, Briandet R, Fontaine-Aupart M-P, Steenkeste K (2012) Correlative time-resolved fluorescence microscopy to assess antibiotic diffusion–reaction in biofilms. Antimicrob Agents Chemother 56:3349–3358

    Article  Google Scholar 

  42. Sutherland IW (2001) The biofilm matrix – an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227

    Article  Google Scholar 

  43. De Beer D, Stoodley P, Roe F, Lewandowski Z (2004) Effects of biofilm structure on oxygen distribution and mass transport. Biotechnol Bioeng 43:1131–1133

    Article  Google Scholar 

  44. Visscher PT, Reid RP, Bebout BM (2000) Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 28:919–922

    Article  ADS  Google Scholar 

  45. Braissant O, Cailleau G, Dupraz C, Verrechia EP (2003) Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids. J Sediment Res 73:485–490

    Article  Google Scholar 

  46. Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implications for formation of carbonate minerals. Geobiology 5:401–411

    Article  Google Scholar 

  47. Braissant O, Decho AW, Przekop KM, Gallagher KL, Glunk C, Dupraz C, Visscher PT (2009) Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat. FEMS Microbiol Ecol 67:293–307

    Article  Google Scholar 

  48. Decho AW, Visscher PT, Ferry J, Kawaguchi T, He L, Przekop KM, Norman RS, Reid RP (2009) Autoinducers extracted from microbial mats reveal a surprising diversity of N-acylhomoserine lactones (AHLs) and abundance changes that may related to diel pH. Environ Microbiol 11:409–420

    Article  Google Scholar 

  49. Peulen T-O, Wilkinson KJ (2011) Diffusion of nanoparticles in a biofilm. Environ Sci Technol 45:3367–3373

    Article  ADS  Google Scholar 

  50. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295–299

    Article  ADS  Google Scholar 

  51. Decho AW (1999) Imaging an alginate polymer gel matrix using atomic force microscopy. Carbohydr Res 315:330–333

    Article  Google Scholar 

  52. Verdugo P, Alldredge AL, Azam F, Kirchman DL, Passow U, Santschi PH (2004) The oceanic gel phase: a bridge in the DOM–POM continuum. Mar Chem 92:67–85

    Article  Google Scholar 

  53. Flemming H-C, Neu TR, Wozniak DJ (2007) The EPS matrix: the “house of biofilm cells”. J Bacteriol 189:7945–7947

    Article  Google Scholar 

  54. Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth-Sci Rev 96:141–162

    Article  ADS  Google Scholar 

  55. Nivens DE, Ohman DE, Williams J, Franklin MJ (2001) Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol 183: 1047–1057

    Article  Google Scholar 

  56. Friedman L, Kolter R (2004) Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186:4457–4465

    Article  Google Scholar 

  57. Jackson KD, Starkey M, Kremer S, Parsek MR, Wozniak DJ (2004) Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol 186:4466–4475

    Article  Google Scholar 

  58. Ma L, Jackson KD, Landry RM, Parsek MR, Wozniak DJ (2006) Analysis of Pseudomonas aeruginosa conditional Psl variant reveals roles for the Psl polysaccharide in adhesion and maintaining biofilm structure post attachment. J Bacteriol 188:8213–8221

    Article  Google Scholar 

  59. Wotton RS (2004) The ubiquity and many roles of exopolymers (EPS) in aquatic systems. Oceanogr Mar Biol Annu Rev 42:57–94

    Google Scholar 

  60. Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13:429–438

    Article  Google Scholar 

  61. Palmgren R, Nielsen, PH (1996) Accumulation of DNA in the exopolymeric matrix of activated sludge and bacterial cultures. Water Sci Technol 34(5–6):233–240

    Google Scholar 

  62. Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59:1114–1128

    Article  Google Scholar 

  63. Böckelmann U, Janke A, Kuhn R, Neu TR, Wecke J, Lawrence JR, Szewzyk U (2006) Bacterial extracellular DNA forming a defined network-like structure. FEMS Microbiol Lett 262:31–38

    Article  Google Scholar 

  64. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487

    Article  Google Scholar 

  65. Tang L, Schramm A, Neu TR, Revsbech NP, Meyer RL (2013) Extracellular DNA in adhesion and biofilm formation of four environmental isolates: a quantitative study. FEMS Microbiol Ecol 86:394–403

    Article  Google Scholar 

  66. Rice KC, Mann EE, Endres JL, Weiss EC, Cassat JE, Smeltzer MS, Bayles KW (2007) The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci U S A 104:8113–8118

    Article  ADS  Google Scholar 

  67. Tolker-Neilsen T, Høiby N (2009) Extracellular DNA and F-actin as targets in anti-biofilm cystic fibrosis therapy. Future Microbiol 4:645–647

    Article  Google Scholar 

  68. Bjarnsholt T, Pø Jensen MJ, Fiandaca JP, Hansen CR, Andersen CB, Pressler T, Givskov M, Høiby N (2009) Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pumonol 44:547–558

    Article  Google Scholar 

  69. Cui Y, Frey RL, Ferry JL, Ferguson PL (2009) Identification of hydroxyl radical oxidation products of N-hexanoyl-homoserine lactone by reversed-phase high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 23:1212–1220

    Article  Google Scholar 

  70. Tanaka T (1992) Phase transitions of gels. ACS Sym Ser 480:1–21

    Article  Google Scholar 

  71. Späth R, Flemming H-C, Wuertz W (1998) Sorption properties of biofilms. Water Sci Technol 37:2007–2210

    Article  Google Scholar 

  72. Decho AW (2000) Exopolymer microdomains as a structuring agent for heterogeneity within microbial biofilms. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, New York, pp 1–9

    Google Scholar 

  73. Lawrence JR, Swerhone GD, Kuhlicke U, Neu TR (2007) In situ evidence for microdomains in the polymer matrix of bacterial microcolonies. Can J Microbiol 53:450–458

    Article  Google Scholar 

  74. Aldeek F, Schneider R, Fontaine-Aupart M-P, Mustin C, Lécart S, Merlin C, Block J-C (2013) Patterned hydrophobic domains in the exopolymer matrix of Shewanella oneidensis MR-1 biofilms. Appl Environ Microbiol 79:1400–1402

    Article  Google Scholar 

  75. Neu TR, Swerhone GDW, Lawrence JR (2001) Assessment of lectin-binding analysis for in situ detection of glycoconjugates in biofilm systems. Microbiology 147:299–313

    Google Scholar 

  76. Böckelmann U, Manz W, Neu TR, Szewzyk U (2002) Investigation of lotic microbial aggregates by a combined technique of fluorescent in situ hybridization and lectin-binding-analysis. J Microbiol Methods 49:75–87

    Article  Google Scholar 

  77. Zippel B, Neu TR (2011) Characterization of EPS glycoconjugates in tufa forming biofilms by means of 2 fluorescence lectin-binding analysis. Appl Environ Microbiol 77:505–516

    Article  Google Scholar 

  78. Strathmann M, Wingender J, Flemming H-C (2002) Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa. J Microbiol Methods 50:237–248

    Article  Google Scholar 

  79. Mayer C, Moritz R, Kirschner C, Borchard W, Wingender J, Flemming H-C (1999) The role of intermolecular interactions: studies on model systems for bacterial biofilms. Int J Biol Macromol 26:3

    Article  Google Scholar 

  80. Flemming H-C (1995) Sorption sites in biofilms. Water Sci Technol 32:27–33

    Article  Google Scholar 

  81. Decho AW, Visscher PT, Reid RP (2005) Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeogr Palaeoclimatol Palaeoecol 219:71–86

    Article  Google Scholar 

  82. Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437:422–425

    Article  ADS  Google Scholar 

  83. Schooling SR, Beveridge TJ (2006) Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188:5945–5947

    Article  Google Scholar 

  84. Mashburn-Warren L, Mclean RJC, Whiteley M (2008) Gram-negative outer membrane vesicles: beyond the cell surface. Geobiology 6:214–219

    Article  Google Scholar 

  85. Ophir T, Gutnik DL (1994) A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol 60:740–745

    Google Scholar 

  86. Potts M (1994) Desiccation tolerance in prokaryotes. Microbiol Rev 58:755–805

    Google Scholar 

  87. Potts M (1999) Mechanisms of desiccation tolerance in cyanobacteria. Eur J Phycol 34:319–326

    Article  Google Scholar 

  88. Potts M (2001) Desiccation tolerance: a simple process? Trends Microbiol 9:553–559

    Article  Google Scholar 

  89. Buitink J, Leprince O (2004) Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology 48:215–228

    Article  Google Scholar 

  90. Yarwood JM, Bartels DJ, Volper EM, Greenberg EP (2004) Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol 186:1838–1850

    Article  Google Scholar 

  91. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    Article  Google Scholar 

  92. Houry A, Gohar M, Deschamps J, Tischenko E, Aymerich S, Gruss A, Briandet R (2012) Bacterial swimmers that infiltrate and take over the biofilm matrix. Proc Natl Acad Sci U S A 109:13088–13093

    Article  ADS  Google Scholar 

  93. Miller SD, Haddock SHD, Elvidge CD, Lee TF (2005) Detection of a bioluminescent milky sea from space. Proc Natl Acad Sci U S A 102:14181–14184

    Article  ADS  Google Scholar 

  94. Nealson KH, Hastings JW (2006) Quorum sensing on a global scale: massive numbers of bioluminescent bacteria make milky seas. Appl Environ Microbiol 72:2295

    Article  Google Scholar 

  95. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang I, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A 103:11358–11363

    Article  ADS  Google Scholar 

  96. Dubey GP, Ben-Yehuda S (2011) Intercellular nanotubes mediate bacterial communication. Cell 144:590–600

    Article  Google Scholar 

  97. Chao Y, Zhang T (2012) Surface-enhanced Raman scattering (SERS) revealing chemical variation during biofilm formation: from initial attachment to mature biofilm. Anal Bioanal Chem 404:1465–1475

    Article  Google Scholar 

  98. Zeiri L, Bronk BV, Shabtai Y, Eichler J, Efrima S (2004) Surface-enhanced Raman spectroscopy as a tool for probing specific biochemical components in bacteria. Appl Spectrosc 58:33–40

    Article  ADS  Google Scholar 

  99. Pezacki JP, Blake JA, Danielson DC, Kennedy DC, Lyn RK, Singaravelu R (2011) Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nat Chem Biol 7:137–145

    Article  Google Scholar 

  100. Hunter RC, Beveridge TJ (2005) High-resolution visualization of Pseudomonas aeruginosa PAO1 biofilms by freeze-substitution transmission electron microscopy. J Bacteriol 187:7619–7630

    Article  Google Scholar 

  101. Dohnalkova AC, Marshall MJ, Arey BW, Williams KH, Buck EC, Fredrickson JK (2011) Imaging hydrated microbial extracellular polymers: comparative analysis by electron microscopy. Appl Environ Microbiol 77:1254–1262

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan W. Decho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Decho, A.W. (2015). Localization of Quorum Sensing by Extracellular Polymeric Substances (EPS): Considerations of In Situ Signaling. In: Hagen, S. (eds) The Physical Basis of Bacterial Quorum Communication. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1402-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1402-9_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1401-2

  • Online ISBN: 978-1-4939-1402-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics