Skip to main content

Stochastic Effects in Quorum Sensing

  • Chapter
  • First Online:
Book cover The Physical Basis of Bacterial Quorum Communication

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1355 Accesses

Abstract

Herein we review recent advances in the field of stochasticity in quorum sensing. The studies point toward the existence of mechanisms in bacteria for improving the signal-to-noise ratio in communication by adjusting the intensity of the fluctuations. Thus, in this chapter we first show how, at the onset of the QS transition, the autoinducer diffusion process conditions the QS dynamics and also, that the interplay between different sources of noise establishes ranges of diffusion values that minimize the noise at the autoinducer level. We also introduce a detailed model of the LuxI/LuxR system based on recently developed synthetic strains. This model allows us to illustrate how fluctuations interfere with the synchronization of the cell activation process and lead to a bimodal phenotypic distribution. In this context, we review the concept of precision in order to characterize the reliability of the QS communication process in the colony. In addition, we show that increasing the noise in the expression of LuxR helps cells to get activated at lower autoinducer concentrations but, at the same time, slows down the global response. These effects can be explained in the framework of the stochastic modification of the so-called phenotypic landscape. Finally, we present the main conclusions and discuss the relevance of these studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that “noise” has been used with two different meanings: a stochastic contribution and, in this case, a quantity that effectively measures the effects of that stochastic contribution.

References

  1. Raj A, van Oudenaarden A (2008) Cell 135:216

    Article  Google Scholar 

  2. Ullner E, Buceta J, Díez-Noguera A, García-Ojalvo J (2009) Biophys J 96:3573

    Article  Google Scholar 

  3. Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Nat Rev Genet 6:451

    Article  Google Scholar 

  4. Eldar A, Elowitz MB (2010) Nature 467:167

    Article  ADS  Google Scholar 

  5. Cai L, Dalal CK, Elowitz MB (2008) Nature 455:485

    Article  ADS  Google Scholar 

  6. Pai A, You L (2009) Mol Syst Biol 5:286

    Article  Google Scholar 

  7. Kaplan H, Greenberg E (1985) J Bacteriol 163:1210

    Google Scholar 

  8. Danino T, Mondragón-Palomino O, Tsimring L, Hasty J (2010) Nature 463(7279):326. DOI: 10.1038/nature08753

    Article  ADS  Google Scholar 

  9. Tanouchi Y, Tu D, Kim J, You L (2008) PLoS Comput Biol 4:e1000167

    Article  ADS  Google Scholar 

  10. Weber M, Buceta J (2011) BMC Syst Biol 5:11

    Article  Google Scholar 

  11. Erdmann T, Howard M, ten Wolde PR (2009) Phys Rev Lett 103:2

    Article  Google Scholar 

  12. Waters CM, Bassler BL (2005) Annu Rev Cell Dev Biol 21:319

    Article  Google Scholar 

  13. Zhu XM, Yin L, Hood L, Ao P (2004) J Bioinformatics Comput Biol 2:785

    Article  Google Scholar 

  14. Tian T, Burrage K (2006) PNAS 103:8372

    Article  ADS  Google Scholar 

  15. Wang J, Zhang J, Yuan Z, Zhou T (2007) BMC Syst Biol 1:50

    Article  Google Scholar 

  16. Frigola D, Casanellas L, Sancho JM, Ibañes M (2012) PLoS ONE 7:e31407

    Article  ADS  Google Scholar 

  17. Kepler T, Elston T (2001) Biophys J 81:3116

    Article  Google Scholar 

  18. Weber M, Buceta J (2013) BMC Syst Biol 7:6

    Article  Google Scholar 

  19. Hong D, Saidel WM, Man S, Martin JV (2007) J Theor Biol 245:726

    Article  MathSciNet  Google Scholar 

  20. Yu J, Xiao J, Ren X, Lao K, Xie XS (2006) Science 311:1600

    Article  ADS  Google Scholar 

  21. Choi PJ, Cai L, Frieda K, Xie XS (2009) Science 322:442

    Article  ADS  Google Scholar 

  22. Horsthemke W, Lefever R (1984) Noise-induced transitions: theory and applications in physics, chemistry and biology. Springer, New York

    MATH  Google Scholar 

  23. More MI, Finger LD, Stryker JL, Fuqua C, Eberhard A, Winans SC (1996) Science 272:1655

    Article  ADS  Google Scholar 

  24. Parsek MR, Val DL, Hanzelka BL, Cronan JE, Greenberg EP (1999) PNAS 96:4360

    Article  ADS  Google Scholar 

  25. Shahrezaei V, Swain PS (2008) PNAS 105:17256

    Article  ADS  Google Scholar 

  26. Kaufmann G, Sartorio R, Lee S, Rogers C, Meijler M, Moss J, Clapham B, Brogan A, Dickerson T, Janda K (2005) PNAS 102:309

    Article  ADS  Google Scholar 

  27. Roberts C, Anderson KL, Murphy E, Projan SJ, Mounts W, Hurlburt B, Smeltzer M, Overbeek R, Disz T, Dunman PM (2006) J Bacteriol 188:2593

    Article  Google Scholar 

  28. Anderson KL, Dunman PM (2009) Int J Microbiol 2009:525491

    Article  Google Scholar 

  29. Pearson J, Van Delden C, Iglewski B (1999) J Bacteriol 181:1203

    Google Scholar 

  30. Xavier K, Bassler B (2005) J Bacteriol 187:238

    Article  Google Scholar 

  31. Wang L, Hashimoto Y, Tsao C, Valdes J, Bentley W (2005) J Bacteriol 187:2066

    Article  Google Scholar 

  32. Herzberg M, Kaye I, Peti W, Wood T (2006) J Bacteriol 188:587

    Article  Google Scholar 

  33. Li J, Wang L, Hashimoto Y, Tsao CY, Wood TK, Valdes JJ, Zafiriou E, Bentley WE (2006) Mol Syst Biol 2:67

    Article  Google Scholar 

  34. Gillespie D (1977) J Phys Chem 81:2340

    Article  Google Scholar 

  35. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Science 297:1183

    Article  ADS  Google Scholar 

  36. Swain P, Elowitz M, Siggia E (2002) PNAS 99:12795

    Article  ADS  Google Scholar 

  37. Nealson K, Platt T, Hastings J (1970) J Bacteriol 104:313

    Google Scholar 

  38. Pérez PD, Hagen SJ (2010) PLoS ONE 5:e15473

    Article  ADS  Google Scholar 

  39. Anetzberger C, Pirch T, Jung K (2009) Mol Microbiol 73:267

    Article  Google Scholar 

  40. Boedicker JQ, Vincent ME, Ismagilov RF (2009) Angew Chemie 48:5908

    Article  Google Scholar 

  41. Hagen SJ, Son M, Weiss JT, Young JH (2010) J Biol Phys 36:317

    Article  Google Scholar 

  42. Pérez PD, Weiss JT, Hagen SJ (2011) BMC Syst Biol 5:153

    Article  Google Scholar 

  43. Williams JW, Cui X, Levchenko A, Stevens AM (2008) Mol Syst Biol 4:234

    Article  Google Scholar 

  44. Teng SW, Wang Y, Tu KC, Long T, Mehta P, Wingreen NS, Bassler BL, Ong NP (2010) Biophys J 98:2024

    Article  Google Scholar 

  45. Lyell NL, Dunn AK, Bose JL, Stabb EV (2010) J Bacteriol 192:5103

    Article  Google Scholar 

  46. Septer AN, Stabb EV (2012) PLoS ONE 7:e49590

    Article  ADS  Google Scholar 

  47. Sitnikov D, Shadel G, Baldwin T (1996) Mol General Genet 252:622

    Google Scholar 

  48. Shadel G, Baldwin T (1992) J Biol Chem 267:7690

    Google Scholar 

  49. Canela-Xandri O, Sagués F, Buceta J (2010) Biophys J 98:2459

    Article  Google Scholar 

  50. Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB (2005) Science 307:1962

    Article  ADS  Google Scholar 

  51. Urbanowski M, Lostroh C, Greenberg E (2004) J Bacteriol 186:631

    Article  Google Scholar 

  52. Süel GM, Kulkarni RP, Dworkin J, García-Ojalvo J, Elowitz MB (2007) Science 315:1716

    Article  ADS  Google Scholar 

  53. Cai L, Friedman N, Xie XS (2006) Nature 440:358

    Article  ADS  Google Scholar 

  54. Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A (2002) Nat Genet 31:69

    Article  Google Scholar 

  55. Gardiner C (1985) Handbook of stochastic methods: for physics, chemistry and the natural sciences. Springer, New York

    Google Scholar 

  56. Isaacs FJ, Hasty J, Cantor CR, Collins JJ (2003) PNAS 100:7714

    Article  ADS  Google Scholar 

  57. Ozbudak E, Thattai M, Lim H, Shraiman B, Van Oudenaarden A (2004) Nature 427:737

    Article  ADS  Google Scholar 

  58. Weber M, Buceta J (2013) PLoS ONE 8:e73487

    Article  ADS  Google Scholar 

  59. Gillespie D (2000) J Chem Phys 113:297

    Article  ADS  Google Scholar 

  60. Tu KC, Long T, Svenningsen SL, Wingreen NS, Bassler BL (2010) Mol Cell 37:567

    Article  Google Scholar 

  61. Balázsi G, van Oudenaarden A, Collins JJ (2011) Cell 144:910

    Article  Google Scholar 

  62. Goryachev AB, Toh DJ, Wee KB, Zhang HB, Zhang LH, Lee T (2005) PLoS Comput Biol 1:e37

    Article  ADS  Google Scholar 

  63. Long T, Tu KC, Wang Y, Mehta P, Ong NP, Bassler BL, Wingreen NS (2009) PLoS Biol 7:e68

    Article  Google Scholar 

  64. Anetzberger C, Schell U, Jung K (2012) BMC Microbiol 12:209

    Article  Google Scholar 

  65. Savageau Ma (2002) Math Biosci 180:237

    Google Scholar 

  66. Tiwari A, Ray JCJ, Narula J, Igoshin Oa (2011) Math Biosci 231:76

    Google Scholar 

  67. Nené NR, García-Ojalvo J, Zaikin A (2012) PLoS ONE 7:e32779

    Article  ADS  Google Scholar 

  68. Zheng XD, Yang XQ, Tao Y (2011) PLoS ONE 6:e17104

    Article  ADS  Google Scholar 

  69. Shahrezaei V, Ollivier J, Swain P (2008) Mol Syst Biol 4:196

    Article  Google Scholar 

  70. Mina P, di Bernardo M, Savery NJ, Tsaneva-Atanasova K (2013) J Roy Soc Interface Roy Soc 10:20120612

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Buceta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weber, M., Buceta, J. (2015). Stochastic Effects in Quorum Sensing. In: Hagen, S. (eds) The Physical Basis of Bacterial Quorum Communication. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1402-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1402-9_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1401-2

  • Online ISBN: 978-1-4939-1402-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics