Skip to main content

Efficient Laboratory Methods to Assess Risk and Design Formulations

  • Chapter
  • First Online:

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 15))

Abstract

This chapter provides an overview of this section and discusses various strategies to reduce risk and design formulations. It provides a stepwise strategy to reduce risk and outlines the risk involved in incorporating different solid forms of drugs into drug products. It addresses solubility, BCS class, instability, and formulation design.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alsenz J, Kansey A (2007) High throughput solubility measurement in drug discovery and development. Adv Drug Deliv Rev 59:546–567

    Article  PubMed  CAS  Google Scholar 

  • Berge SM et al (1977) Pharmaceutical Salts. J Pharm Sci 66:1–19

    Article  PubMed  CAS  Google Scholar 

  • Box KJ, Volgyi G et al (2006) Equilibrium versus kinetic measurements of aqueous solubility, and the ability of compounds to supersaturate in solution—a validation study. J Pharm Sci 95(6):1298–1307

    Article  PubMed  CAS  Google Scholar 

  • Byrn S, Pfeiffer R, Ganey M, Hoiberg C, Poochikian G (1995) Pharmaceutical solids: a strategic approach to regulatory considerations. Pharm Res 12:945–954

    Article  PubMed  CAS  Google Scholar 

  • Fukuoka E, Makita M, Nakamura Y (1991) Glassy state of pharmaceuticals. V. Relaxation during cooling and heating of glass by differential scanning calorimetry. Chem Pharm Bull 39:2087–2090

    Article  CAS  Google Scholar 

  • Haleblian JK (1975) Characterization of habits and crystalline modifications of solids and their pharmaceutical applications. J Pharm Sci 64:1269–1288

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Choi DS, Chokshi H, Shah N et al (2013) Highly efficient miniaturized coprecipitation screening (MiCoS) for amorphous solid dispersion formulation development. Int J Pharm 450:53–62

    Article  PubMed  CAS  Google Scholar 

  • Huang K-S, Britton D, Etter MC, Byrn SR (1997) A novel class of phenol-pyridine co-crystals for second harmonic generation. J Mater Chem 7(5):713–720

    Article  CAS  Google Scholar 

  • Ilevbare GA, Taylor LS (2013) Liquid−liquid phase separation in highly supersaturated aqueous solutions of poorly water-soluble drugs: implications for solubility enhancing formulations. Cryst Growth Des 13:1497–1509

    Article  CAS  Google Scholar 

  • Kuhnert-Brandstätter M (1971) Thermomicroscopy in the analysis of pharmaceuticals. Pergamon, New York, NY

    Google Scholar 

  • Law D, Schmitt ED, Kennan I et al (2004) Ritonavir–Peg 8000 amorphous solid dispersions. J Pharm Sci 93(3):563–570

    Article  PubMed  CAS  Google Scholar 

  • Lindfors L, Forssen S, Skantze P et al (2006) Amorphous drug nanosuspensions. 2. Experimental determination of bulk monomer concentrations. Langmuir 22:911–916

    Article  PubMed  CAS  Google Scholar 

  • McNamara DP, Childs SL, Giordano J et al (2006) Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm Res 23:1888–1897

    Article  PubMed  CAS  Google Scholar 

  • Mullins JD, Macek TJ (1960) Some pharmaceutical properties of novobiocin. J Am Pharm Assoc Sci Ed 49:245–248

    Article  CAS  Google Scholar 

  • Newman A, Knipp G, Zografi G (2012) Assessing performance of amorphous solid dispersions. J Pharm Sci 101:1355–1377

    Article  PubMed  CAS  Google Scholar 

  • Ozaki S, Minamisono T et al (2012) Supersaturation–nucleation behavior of poorly soluble drugs and its impact on the oral absorption of drugs in thermodynamically high-energy forms. J Pharm Sci 101(1):214–222

    Article  PubMed  CAS  Google Scholar 

  • Pikal MJ, Lukes AL, Lang JE (1977) Thermal decomposition of amorphous β-lactam antibacterials. J Pharm Sci 66:1312–1316

    Article  PubMed  CAS  Google Scholar 

  • Taylor LA, Van Eerdenbrugh B, Bard JA (2010) Crystallization tendency of active pharmaceutical ingredients following rapid solvent evaporation—classification and comparison with crystallization tendency from undercooled melts. J Pharm Sci 99:3826–3838

    Article  PubMed  Google Scholar 

  • Vandecruys R, Peeters J, Verreck G, Brewster MC (2007) Use of a screening method to determine excipients which optimize the extent and stability of supersaturated drug solutions and application of this system to solid formulation design. Int J Pharm 342:168–175

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Byrn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Byrn, S.R., Haskell, R.J. (2015). Efficient Laboratory Methods to Assess Risk and Design Formulations. In: Templeton, A., Byrn, S., Haskell, R., Prisinzano, T. (eds) Discovering and Developing Molecules with Optimal Drug-Like Properties. AAPS Advances in the Pharmaceutical Sciences Series, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1399-2_8

Download citation

Publish with us

Policies and ethics