Skip to main content

Strategies and Methods for Drug Candidate Phase Optimization in Discovery Space

  • Chapter
  • First Online:

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 15))

Abstract

Identification of an optimal crystalline phase of a preclinical drug candidate plays a critical role in drug development, impacting bioavailability, solubility, stability, and physicochemical properties. Historically, drug candidate phase optimization was delayed until the development stage. More recently, however, these efforts have been moved earlier during the discovery stage. As such, an early understanding of a drug candidate’s phase behavior can clarify development liabilities and allow for more rapid development. This chapter begins with a rational for early phase optimization and describes critical attributes of an optimal development phase that impact scale-up and formulation design and performance. As detailed discussion on methods of phase screening, preparation and characterization is presented along with a brief section on preclinical formulation as it pertains to the selected solid state phase.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraham NL, Probert MIJ (2006) A periodic genetic algorithm with real-space representation for crystal structure and polymorph prediction. Phys Rev B 23(22):224104–224110

    Article  Google Scholar 

  • Anderton C (2007) A valuable technique for polymorph screening. Am Pharm Rev 10:34–40

    CAS  Google Scholar 

  • Bak A et al (2008) The co-crystal approach to improve the exposure of a water-insoluble compound: AMG 517 sorbic acid co-crystal characterization and pharmacokinetics. J Pharm Sci 97(9):3942–3956

    Article  PubMed  CAS  Google Scholar 

  • Bastin RJ, Bowker MJ, Slater BJ (2000) Salt selection and optimisation procedures for pharmaceutical New chemical entities. Org Proc Res Dev 4(5):427–435

    Article  CAS  Google Scholar 

  • Bauer J, Spanton S, Henry R, Quick J, Dziki W, Porter W, Morris J (2001) Ritonavir: an extraordinary example of conformational polymorphism. Pharm Res 18(6):859–866

    Article  PubMed  CAS  Google Scholar 

  • Berge SM, Bighley LD, Monkhouse DC (1977) Pharmaceutical salts. J Pharm Sci 66(1):1–19

    Article  PubMed  CAS  Google Scholar 

  • Bernstein J (2002) Polymorphism in molecular crystals. IUCr monographs on crystallography, vol 14. http://books.google.com/books/about/Polymorphism_in_Molecular_Crystals.html?id=Rg97h45jtIkC

  • Byrn S, Pfeiffer RR, Stowell JG (1999) Solid-state chemistry of drugs, 2nd edn. SSCI, Inc., West Lafayette

    Google Scholar 

  • Cardew PT, Davey RJ (1985) The kinetics of solvent-mediated phase transformations. Proc R Soc A398:415–428

    Article  Google Scholar 

  • Chemburkar SR et al (2000) Dealing with the impact of ritonavir polymorphs on the late stages of bulk drug process development. Org Process Res Dev 4(5):413–417

    Article  CAS  Google Scholar 

  • Chen C-C, Song Y (2004) Solubility modeling with a non-random Two-liquid segment activity coefficient model. Ind Eng Chem Res 43:8354

    Article  Google Scholar 

  • Chen S, Guzei IA, Yu L (2005) New polymorphs of ROY and New record for coexisting polymorphs of solved structures. J Am Chem Soc 127:9881–9885

    Article  PubMed  CAS  Google Scholar 

  • Craig D, Reading M (2006) Thermal analysis of pharmaceuticals. CRC, Boca Raton, FL

    Book  Google Scholar 

  • Dey A, Pati NN, Desiraju GR (2006) Crystal structure prediction with the supramolecular synthon approach: experimental structures of 2-amino-4-ethylphenol and 3-amino-2-naphthol and comparison with prediction. Cryst Eng Comm 8:751–755

    Article  CAS  Google Scholar 

  • Dressman JB, Reppas C (2000) In vitro-in vivo correlations for lipophilic, poorly water-soluble drugs. Eur J Pharm Sci 11:S73–S80

    Article  PubMed  CAS  Google Scholar 

  • DiMasi JA, Feldman L, Seckler A, Wilson A (2010) Trends in risks associated with new drug development: success rates for investigational drugs. Clin Pharmacol Ther 87:272–277

    Article  PubMed  CAS  Google Scholar 

  • Florence AJ, Johnston A, Price SL, Nowell H, Kennedy AR, Shankland N (2006) An automated parallel crystallisation search for predicted crystal structures and packing motifs of carbamazepine. J Pharm Sci 95:1918–1930

    Article  PubMed  CAS  Google Scholar 

  • Gibson M (2009) Pharmaceutical preformulation and formulation: a practical guide from candidate drug selection to commercial dosage form, 2nd edn. Interpharm CRC, Boca Raton, FL

    Google Scholar 

  • Good D, Rodriguez N (2008) Solubility advantage of pharmaceutical cocrystals. Crystal Growth Design 9:2252–2264

    Article  Google Scholar 

  • Gould PL (1986) Salt selection of basic drugs. Int J Pharm 33:201–217

    Article  CAS  Google Scholar 

  • Greenspan L (1977) Humidity fixed points of binary saturated aqueous solutions. J Res National Bureau of Standards—A 81A(1977):89–96

    Article  Google Scholar 

  • Hancock BC, Parks M (2000) What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res 17(4):397–404

    Article  PubMed  CAS  Google Scholar 

  • Higgins J (2009) Perspectives on preformulation programs at the discovery-development interface. Am Pharm Rev 12:42–46

    CAS  Google Scholar 

  • Hilgers A (2003) Predicting oral absorption of drugs: a case study with a novel class of antimicrobial agents. Pharm Res 20(8):1149–1155

    Article  PubMed  CAS  Google Scholar 

  • Hilfiker R (2006) Polymorphism in the pharmaceutical industry. Wiley, Weinheim

    Book  Google Scholar 

  • Hulme AT, Price SL (2007) Toward the prediction of organic hydrate crystal structures. J Chem Theory Comput 3:1597–1608

    Article  CAS  Google Scholar 

  • Jenkins R, Snyder RL (1996) Introduction to powder X-ray diffractometry. Chemical analysis: a series of monographs on analytical chemistry and its applications, vol 138, Wiley Hoboken, NJ

    Google Scholar 

  • Kaushal A, Gupta P, Bansal A (2004) Amorphous drug delivery systems: molecular aspects, design and performance. Crit Rev Ther Drug Carrier Syst 21:133–193

    Article  PubMed  CAS  Google Scholar 

  • Kerns EH, Di L (2008) Drug-like properties: concepts, structure design and methods. Academic, London

    Google Scholar 

  • Kojima T, Onoue S, Nurase N, Katoh F, Mano T, Matsuda Y (2006) Crystalline form information from multiwell plate salt screening by use of raman spectroscopy. Pharm Res 24:806–812

    Article  Google Scholar 

  • Kommuru TR, Gurley B, Khan MA, Reddy IK (2001) Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int J Pharm 212:233–246

    Article  PubMed  CAS  Google Scholar 

  • Kwong E, Higgins J, Templeton AC (2011) Strategies for bringing drug delivery tools into discovery. Int J Pharm 412:1–7

    Article  PubMed  CAS  Google Scholar 

  • Lancaster RW et al (2006) Racemic progesterone: predicted in silico and produced in the solid state. Chem Commun 4921–4923

    Google Scholar 

  • Lieberman HA, Lachman L, Schwartz JB (1989) Pharmaceutical dosage forms: tablets, vol 1. Marcel Dekker, Inc., New York, pp 1–73

    Google Scholar 

  • Lipinski CA, Lombardo R, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  • Mass J, Kamm W, Hauck G (2007) An integrated early formulation strategy-from Hit evaluation to pre-clinical candidate profiling. Eur J Pharm Biopham 66:1–10

    Article  Google Scholar 

  • Meenan PA, Anderson SR, Klug D (2002) The influence of impurities and solvents on crystallization. In: Myerson AS (ed) Handbook of industrial crystallization, 2nd edn. Butterworth-Heinemann, Boston, pp 67–100

    Chapter  Google Scholar 

  • Merisko-Liversidge E, Liversidge G, Cooper E (2003) Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci 18:113–120

    Article  PubMed  CAS  Google Scholar 

  • Morissette SL, Almarsson O, Peterson M, Remenar J, Read M, Lemmo A, Ellis S, Cima M, Gardener C (2004) High throughput crystallisation: polymorphs, co-crystals and solvates of pharmaceutical solids. Adv Drug Deliv Rev 56:275–300

    Article  PubMed  CAS  Google Scholar 

  • Morissette SL, Soukasene S, Levinson D, Cima MJ, Almarsson O (2003) Elucidation of crystal form diversity of the HIV protease inhibitor ritonavir by high-throughput crystallization. Proc Natl Acad Sci 100(5):2180–2184

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Myerson AS (2002) Handbook of industrial crystallization, 2nd edn. Butterworth-Heinemann, Woburn

    Google Scholar 

  • Nakanishi T et al (1998) Synthesis of NK109, an anticancer benzo[c]phenanthridine alkaloid. J Org Chem 63:4235

    Article  CAS  Google Scholar 

  • Neumann MA, Perrin MA (2005) J Phys Chem B 109:15531–15541

    Article  PubMed  CAS  Google Scholar 

  • Newman AW et al (2008) Chaper 14. Salt and cocrystal form selection in preclinical development handbook. Wiley-Interscience, Hoboken, pp 455–481

    Book  Google Scholar 

  • Nowell H, Price SL (2005) Validation of a search technique for crystal structure prediction of flexible molecules by application to piracetam. Acta Crystallogr Sect A: Struct Sci B61:558–568

    Article  CAS  Google Scholar 

  • Nyvlt J (1995) The Ostwald rule of stages. Cryst Res Technol 30:443–449

    Article  CAS  Google Scholar 

  • Ouvard C, Price SL (2004) Cryst Growth Des 4:1119–1127

    Article  Google Scholar 

  • Palucki M, Higgins J, Templeton A, Kwong E (2010) Early optimization of the solid state phase and Pre-clinical toxicology formulation for potential drug candidates. J Med Chem 53(16):5897–5905

    Article  PubMed  CAS  Google Scholar 

  • Porter CJ, Trevakis NL, Charman WN (2007) Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 6:231–248

    Article  PubMed  CAS  Google Scholar 

  • Saesmaa T, Makela T, Tannienen VP (1990) Physical studies on the benzathine and embonate salts of some blactam antibiotics. Part 1. X-Ray powder diffractometric study. Acta Pharm Fenn 99:157

    CAS  Google Scholar 

  • Serajuddin A, Sheen P, Mufson D, Bernstein D, Augustine MA (1986) Preformulation study of a poorly water-soluble drug, alpha-pentyl-3-(2-quinolinylmethoxy)benzenemethanol: selection of the base for dosage form design. J Pharm Sci 75(5):492–496

    Article  PubMed  CAS  Google Scholar 

  • Stahl PH, Wermuth CG (2011) Handbook of pharmaceutical salts—properties, selection and use (2nd Revised Edition). Int Union of Pure and Applied Chemistry, Wiley

    Google Scholar 

  • Stephenson GA, Aburub A, Woods TA (2011) Physical stability of salts of weak bases in the solid-state. J Pharm Sci 100:1607–1617

    Article  PubMed  CAS  Google Scholar 

  • Thorson MR et al (2011) A microfluidic platform for pharmaceutical salt screening. Lab Chip 11:3829–3837

    Article  PubMed  CAS  Google Scholar 

  • Tung HH, Tabora J, Variankaval N, Bakken D, Chen C-C (2008) Prediction of pharmaceutical solubility Via NRTL-SAC and COSMO-SAC. J Pharm Sci 97(5):1813–1820

    Article  PubMed  CAS  Google Scholar 

  • Variankaval N, Wenslow R, Murray J, Hartman R, Helmy R, Kwong E, Clas S, Dalton C, Santos I (2006) Preparation and solid-state characterization of nonstoichiometric cocrystals of a phosphodiesterase-IV inhibitor and L-tartaric acid. Cryst Growth Des 6(3):690–700

    Article  CAS  Google Scholar 

  • Variankaval N, Cote A, Doherty MF (2008) From form to function: crystallization of active pharmaceutical ingredients. AIChE J 54(7):1682–1688

    Article  CAS  Google Scholar 

  • Wexler A, Hasegawa S (1954) Relative humidity-temperature relationships of some saturated salt solutions in the temperature range 0 °C to 50 °C. J Res Nat Bur Stand (US) 53(1):19–26

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael McNevin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

McNevin, M., Higgins, J. (2015). Strategies and Methods for Drug Candidate Phase Optimization in Discovery Space. In: Templeton, A., Byrn, S., Haskell, R., Prisinzano, T. (eds) Discovering and Developing Molecules with Optimal Drug-Like Properties. AAPS Advances in the Pharmaceutical Sciences Series, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1399-2_7

Download citation

Publish with us

Policies and ethics