Skip to main content

Hot-Melt Extrusion: The Process-Product-Performance Interplay

  • Chapter
  • First Online:
Book cover Discovering and Developing Molecules with Optimal Drug-Like Properties

Abstract

Hot-melt extrusion is commonly used to manufacture amorphous solid dispersions. This chapter focuses on the process-formulation-performance interplay of a hot-melt-extruded product within the framework of a hypothetical phase diagram. Special attention is paid to the liquidous curve and melt mixing, the mixed-phase glass transition temperature, and hypothetical lower and upper critical solution temperatures. With a complete understanding of the liquidous curve, rheological properties, and the thermal liabilities, a workable processing temperature range for hot-melt extrusion can be defined. Strategies and processing solutions are given to minimize or avoid thermal degradation. Finally, the heat, mass, and momentum balances are outlined and can be leveraged to model the extrusion process when appropriate material properties are understood. The fundamental concepts provided herein will facilitate successful manufacture and scale-up of the extrusion process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam G, Gibbs J (1965) On the temperature dependence of cooperative relaxation properties in glass‐forming liquids. J Chem Phys 43(1):139–146

    Article  CAS  Google Scholar 

  • Agrawal A, Dudhedia M, Patel A, Raikes M (2013) Characterization and performance assessment of solid dispersions prepared by hot melt extrusion and spray drying process. Int J Pharm 457(1):71–81

    Article  PubMed  CAS  Google Scholar 

  • Aitken-Nichol C, Zhang F, McGinity J (1996) Hot melt extrusion of acrylic films. Pharm Res 13(5):804–808

    Article  PubMed  CAS  Google Scholar 

  • Alba-Simionesco C, Fan J, Angell C (1999) Thermodynamic aspects of the glass transition phenomenon. II. Molecular liquids with variable interactions. J Chem Phys 110(11):5262–5272

    Article  CAS  Google Scholar 

  • Albers J, Alles R, Matthée K, Knop K, Nahrup J, Kleinebudde P (2009) Mechanism of drug release from polymethacrylate-based extrudates and milled strands prepared by hot-melt extrusion. Eur J Pharm Biopharm 71(2):387–394

    Article  PubMed  CAS  Google Scholar 

  • Andersen P (1998) The Werner and Pfleiderer twin-screw corotating extruder system. In: Todd D (ed) Plastics compounding: equipment and processing. Hanser Gardner Publications, Cincinnati, pp 71–124

    Google Scholar 

  • Andrews G, Jones D, Abu Diak O, McCoy C, Watts A, McGinity J (2008) The manufacture and characterisation of hot-melt extruded enteric tablets. Eur J Pharm Biopharm 69(1):264–273

    Article  PubMed  CAS  Google Scholar 

  • Andrews G, AbuDiak O, Jones D (2010) Physicochemical characterization of hot melt extruded bicalutamide–polyvinylpyrrolidone solid dispersions. J Pharm Sci 99(3):1322–1335

    Article  PubMed  CAS  Google Scholar 

  • Andronis V, Zografi G (1997) Molecular mobility of supercooled amorphous indomethacin, determined by dynamic mechanical analysis. Pharm Res 14(4):410–414

    Article  PubMed  CAS  Google Scholar 

  • Angell C (1995) Formation of glasses from liquids and biopolymers. Science 267(5206):1924–1935

    Article  PubMed  CAS  Google Scholar 

  • Angell C (2002) Origin and control of low-melting behavior in salts, polysalts, salt solvates, and glass formers. In: Gaune-Escard M (ed) Molten salts: from fundamentals to applications. NATO science series, vol 52. Springer, Netherlands, pp 305–320

    Google Scholar 

  • Angell C (2008) Glass-formers and viscous liquid slowdown since David Turnbull: enduring puzzles and new twists. MRS Bull 33(05):544–555

    Article  CAS  Google Scholar 

  • Baird J, Van Eerdenbrugh B, Taylor L (2010) A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci 99(9):3787–3806

    PubMed  CAS  Google Scholar 

  • Baird J, Santiago-Quinonez D, Rinaldi C, Taylor L (2012) Role of viscosity in influencing the glass-forming ability of organic molecules from the undercooled melt state. Pharm Res 29(1):271–284

    Article  PubMed  CAS  Google Scholar 

  • Bruce C, Manning M (2009) Melt extruded nicotine thin strips. US Patent WO2011081628, 30 Dec 2009

    Google Scholar 

  • Couchman P, Karasz F (1978) A classical thermodynamic discussion of the effect of composition on glass-transition temperatures. Macromolecules 11(1):117–119

    Article  CAS  Google Scholar 

  • Crowley M, Fredersdorf A, Schroeder B, Kucera S, Prodduturi S, Repka M, McGinity J (2004a) The influence of guaifenesin and ketoprofen on the properties of hot-melt extruded polyethylene oxide films. Eur J Pharm Sci 22(5):409–418

    Article  PubMed  CAS  Google Scholar 

  • Crowley M, Schroeder B, Fredersdorf A, Obara S, Talarico M, Kucera S, McGinity J (2004b) Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion. Int J Pharm 269(2):509–522

    Article  PubMed  CAS  Google Scholar 

  • Curatolo W, Nightingale J, Herbig S (2009) Utility of hydroxypropylmethylcellulose acetate succinate (HPMCAS) for initiation and maintenance of drug supersaturation in the GI milieu. Pharm Res 26(6):1419–1431

    Article  PubMed  CAS  Google Scholar 

  • DiNunzio J, Brough C, Hughey J, Miller D, Williams Iii R, McGinity J (2010) Fusion production of solid dispersions containing a heat-sensitive active ingredient by hot melt extrusion and Kinetisol® dispersing. Eur J Pharm Biopharm 74(2):340–351

    Article  PubMed  CAS  Google Scholar 

  • Dreiblatt A (2003) Process Design. In: Ghebre-Sellassie I, Martin C (eds) Pharmaceutical extrusion technology, vol. 133. Marcel Dekker Inc, New York, pp 153–169

    Google Scholar 

  • Dreiblatt A (2012) Technological considerations related to scale-up of hot-melt extrusion processes. In: Hot-melt extrusion: pharmaceutical applications. Wiley, Chichester. pp. 285–300

    Google Scholar 

  • Ferry J (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  • Flory P (1942) Thermodynamics of high polymer solutions. J Chem Phys 10(1):51–61

    Article  CAS  Google Scholar 

  • Forster A, Hempenstall J, Tucker I, Rades T (2001) Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int J Pharm 226(1–2):147–161

    Article  PubMed  CAS  Google Scholar 

  • Fukuda G, Chavez D, Bigio D (2014) Investigation of scale-up methodologies in twin-screw compounding. SPE ANTEC. pp. 1138–1146

    Google Scholar 

  • Gao J, Walsh G, Bigio D, Briber R, Wetzel M (1999) Residence-time distribution model for twin-screw extruders. AICHE J 45(12):2541–2549

    Article  CAS  Google Scholar 

  • Gaskell D (2003) Introduction to the thermodynamics of materials, 5th edn. Taylor & Francis, Washington

    Google Scholar 

  • Ghebremeskel A, Vernavarapu C, Lodaya M (2007) Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: selection of polymer-surfactant combinations using solubility parameters and testing the processability. Int J Pharm 328(2):119–129

    Article  PubMed  CAS  Google Scholar 

  • Ghosh I, Vippagunta R, Li S, Vippagunta S (2012) Key considerations for optimization of formulation and melt-extrusion process parameters for developing thermosensitive compound. Pharm Dev Technol 17(4):502–510

    Article  PubMed  CAS  Google Scholar 

  • Gordon M, Taylor J (1952) J Appl Chem 2:493–500

    Article  CAS  Google Scholar 

  • Greco S, Authelin J, Leveder C, Segalini A (2012) A practical method to predict physical stability of amorphous solid dispersions. Pharm Res 29(10):2792–2805

    Article  PubMed  CAS  Google Scholar 

  • Khougaz K, Clas S (2000) Crystallization inhibition in solid dispersions of MK-0591 and poly(vinylpyrrolidone) polymers. J Pharm Sci 89(10):1325–1334

    Article  PubMed  CAS  Google Scholar 

  • Lakshman J (2007) Process for making pharmaceutical compositions with a transient plasticizer. WO2007106182 A2

    Google Scholar 

  • Liu H, Wang P, Zhang X, Shen F, Gogos C (2010) Effects of extrusion process parameters on the dissolution behavior of indomethacin in Eudragit® E PO solid dispersions. Int J Pharm 383(1–2):161–169

    Article  PubMed  CAS  Google Scholar 

  • Low A, Parmentier J, Khong Y, Chai C, Tun T, Berania J, Liu X, Gokhale R, Chan S (2013) Effect of type and ratio of solubilising polymer on characteristics of hot-melt extruded orodispersible films. Int J Pharm 455(1–2):138–147

    Article  PubMed  CAS  Google Scholar 

  • Lowinger M (2011) Process development: scaling a melt extrusion process from conception to commercialization. Am Pharmaceut Rev 14(2):80–84

    Google Scholar 

  • Lu Q, Zografi G (1998) Phase behavior of binary and ternary amorphous mixtures containing indomethacin, citric acid, and PVP. Pharm Res 15(8):1202–1206

    Article  PubMed  CAS  Google Scholar 

  • Lyons J, Hallinan M, Kennedy J, Devine D, Geever L, Blackie P, Higginbotham C (2007) Preparation of monolithic matrices for oral drug delivery using a supercritical fluid assisted hot melt extrusion process. Int J Pharm 329(1–2):62–71

    Article  PubMed  CAS  Google Scholar 

  • Marsac P, Shamblin S, Taylor L (2006a) Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility. Pharm Res 23(10):2417–2426

    Article  PubMed  CAS  Google Scholar 

  • Marsac PJ, Konno H, Taylor LS (2006b) A comparison of the physical stability of amorphous felodipine and nifedipine systems. Pharm Res 23(10):2306–2316

    Article  PubMed  CAS  Google Scholar 

  • Marsac P, Li T, Taylor L (2009) Estimation of drug-polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm Res 26(1):139–151

    Article  PubMed  CAS  Google Scholar 

  • Marsac P, Taylor L, Xi H, Birrell L, Liu Z, Lau H (2012) A novel method for accessing the enthalpy of mixing active pharmaceutical ingredients with polymers. Paper presented at the American Association for Pharmaceutical Scientists National Meeting, Chicago, IL. Nov, 2012

    Google Scholar 

  • Newman A, Engers D, Bates S, Ivanisevic I, Kelly R, Zografi G (2008) Characterization of amorphous API:polymer mixtures using X-ray powder diffraction. J Pharm Sci 97(11):4840–4856

    Article  PubMed  CAS  Google Scholar 

  • Noyes A, Whitney W (1897) The rate of solution of solid substances in their own solutions. J Am Chem Soc 19(12):930–934

    Article  Google Scholar 

  • Qian F, Huang J, Zhu Q, Haddadin R, Gawel J, Garmise R, Hussain M (2010) Is a distinctive single T-g a reliable indicator for the homogeneity of amorphous solid dispersion? Int J Pharm 395(1–2):232–235

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein M, Colby R (2003) Polymer physics. OUP, Oxford

    Google Scholar 

  • Sarode A, Obara S, Tanno F, Sandhu H, Iyer R, Shah N (2014) Stability assessment of hypromellose acetate succinate (HPMCAS) NF for application in hot melt extrusion (HME). Carbohydr Polym 101:146–153

    Article  PubMed  CAS  Google Scholar 

  • Schenck L, Troup G, Lowinger M, Li L, McKelvey C (2010) Achieving a hot melt extrusion design space for the production of solid solutions, chemical engineering in the pharmaceutical industry. Wiley, Rahway, pp 819–836

    Google Scholar 

  • Steiner R (2003) Extruder Design. In: Ghebre-Sellassie I, Martin C (eds) Pharmaceutical extrusion technology, vol. 133. Marcel Dekker, New York, pp 19–38

    Google Scholar 

  • Sun Y, Tao J, Zhang G, Yu L (2010) Solubilities of crystalline drugs in polymers: an improved analytical method and comparison of solubilities of indomethacin and nifedipine in PVP, PVP/VA, and PVAc. J Pharm Sci 99(9):4023–4031

    PubMed  CAS  Google Scholar 

  • Tian Y, Booth J, Meehan E, Jones D, Li S, Andrews G (2013) Construction of drug-polymer thermodynamic phase diagrams using Flory-Huggins interaction theory: identifying the relevance of temperature and drug weight fraction to phase separation within solid dispersions. Mol Pharm 10(1):236–248

    Article  PubMed  CAS  Google Scholar 

  • Verreck G, Decorte A, Heymans K, Adriaensen J, Cleeren D, Jacobs A, Liu D, Tomasko D, Arien A, Peeters J, Rombaut P, Van den Mooter G, Brewster M (2005) The effect of pressurized carbon dioxide as a temporary plasticizer and foaming agent on the hot stage extrusion process and extrudate properties of solid dispersions of itraconazole with PVP-VA 64. Eur J Pharm Sci 26(3–4):349–358

    Article  PubMed  CAS  Google Scholar 

  • Verreck G, Decorte A, Heymans K, Adriaensen J, Liu D, Tomasko D, Arien A, Peeters J, Van den Mooter G, Brewster M (2006) Hot stage extrusion of p-amino salicylic acid with EC using CO2 as a temporary plasticizer. Int J Pharm 327(1–2):45–50

    Article  PubMed  CAS  Google Scholar 

  • Williams M, Landel R, Ferry J (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77(14):3701–3707

    Article  CAS  Google Scholar 

  • Wu C, McGinity J (2003) Influence of methylparaben as a solid-state plasticizer on the physicochemical properties of Eudragit (R) RS PO hot-melt extrudates. Eur J Pharm Biopharm 56(1):95–100

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Marsac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Boersen, N. et al. (2015). Hot-Melt Extrusion: The Process-Product-Performance Interplay. In: Templeton, A., Byrn, S., Haskell, R., Prisinzano, T. (eds) Discovering and Developing Molecules with Optimal Drug-Like Properties. AAPS Advances in the Pharmaceutical Sciences Series, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1399-2_11

Download citation

Publish with us

Policies and ethics