Skip to main content

AML-Selective Apoptosis Induction by Rationally Designed Death Ligand Fusion Proteins

  • Chapter
  • First Online:
Targeted Therapy of Acute Myeloid Leukemia

Part of the book series: Current Cancer Research ((CUCR))

  • 1966 Accesses

Abstract

In the past decade, antibody-based therapeutics have started to make good on their promise with potent clinical activity in several human malignancies, including acute myeloid leukemia (AML). In this chapter, various classes of antibody-based agents designed to selectively induce apoptotic cell death in AML will be discussed, including naked antibodies, antibody–drug conjugates, and immunotoxins. Moreover, the rationale for exploiting several of the body’s own immune effector molecules for the targeted elimination of AML cells is highlighted. In particular, this involves the use of the death ligand TNF-related apoptosis-inducing ligand (TRAIL). Recombinant fusion proteins in which an antitumor antibody fragment (scFv) is fused to soluble TRAIL proved to be essentially inactive while en route, but gain potent pro-apoptotic antitumor activity after selective binding to a predefined tumor-associated cell surface antigen. The use of death ligand fusion proteins may be of clinical significance in targeted approaches in AML.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

TRAIL:

TNF-related apoptosis-inducing ligand

sTRAIL:

soluble TRAIL

scFv:

single chain of the variable fragments

MAb:

monoclonal antibodies

CDC:

complement-dependent cytotoxicity

ADCC:

antibody-dependent cellular cytotoxicity

ADCP:

antibody-dependent cellular phagocytosis

NK:

natural killer

FcRn:

neonatal Fc receptor

FLT3:

FMS-related tyrosine kinase 3

bsAb:

bispecific antibodies

MHC:

major histocompatibility complex

BiTEs:

bispecific T-cell engager molecules

MNC:

mononuclear cell

GO:

Gemtuzumab Ozogamicin

VPA:

valproic acid

DT:

Diphtheria toxin

CTCL:

Cutaneous T-cell lymphoma

SCID:

Severe Combined Immune Deficiency

PE:

Pseudomonas exotoxin

ETA:

Pseudomonas exotoxin A

eEF2:

eukaryotic Elongation Factor 2

IL-3Rα:

alpha subunit of the interleukin-3 receptor

CLL-1:

C-type lectin-like molecule-1

RI:

RNAse inhibitor

CsA:

cyclosporine

FasL:

Fibroblast associated cell surface ligand

DD:

death domains

OPG:

osteoprotegerin

RANKL:

Receptor Activator of NFĸB ligand

DICS:

death inducing signaling complex

LSCs:

Leukemic stem cells

DARPins:

Designed Ankyrin Repeat Proteins

References

  • Almasan A, Ashkenazi A (2003) Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev 14:337–348

    Article  CAS  PubMed  Google Scholar 

  • Andersson Y, Engebraaten O, Fodstad O (2009) Synergistic anticancer effects of immunotoxin and cyclosporin in vitro and in vivo. Br J Cancer 101:1307–1315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ardelt W, Shogen K, Darzynkiewicz Z (2008) Onconase and amphinase, the antitumor ribonucleases from Rana pipiens oocytes. Curr Pharm Biotechnol 9:215–225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ashkenazi A (2002) Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2:420–430

    Article  CAS  PubMed  Google Scholar 

  • Bakker AB, van den Oudenrijn S, Bakker AQ, Feller N, van Meijer M, Bia JA, Jongeneelen MA, Visser TJ, Bijl N, Geuijen CA, Marissen WE, Radosevic K, Throsby M, Schuurhuis GJ, Ossenkoppele GJ, de Kruif J, Goudsmit J, Kruisbeek AM (2004) C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia. Cancer Res 64:8443–8450

    Article  CAS  PubMed  Google Scholar 

  • Balaian L, Ball ED (2004) Inhibition of acute myeloid leukemia cell growth by mono-specific and bi-specific anti-CD33 x anti-CD64 antibodies. Leuk Res 28:821–829

    Article  CAS  PubMed  Google Scholar 

  • Boatright KM, Renatus M, Scott FL, Sperandio S, Shin H, Pedersen IM, Ricci JE, Edris WA, Sutherlin DP, Green DR, Salvesen GS (2003) A unified model for apical caspase activation. Mol Cell 11:529–541

    Article  CAS  PubMed  Google Scholar 

  • Bodmer JL, Schneider P, Tschopp J (2002) The molecular architecture of the TNF superfamily. Trends Biochem Sci 27:19–26

    Article  CAS  PubMed  Google Scholar 

  • Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473:139–146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bremer E, Kuijlen J, Samplonius D, Walczak H, de Leij L, Helfrich W (2004) Target cell-restricted and -enhanced apoptosis induction by a scFv:sTRAIL fusion protein with specificity for the pancarcinoma-associated antigen EGP2. Int J Cancer 109:281–290

    Article  CAS  PubMed  Google Scholar 

  • Bremer E, Samplonius DF, Peipp M, van Genne L, Kroesen BJ, Fey GH, Gramatzki M, de Leij LF, Helfrich W (2005a) Target cell-restricted apoptosis induction of acute leukemic T cells by a recombinant tumor necrosis factor-related apoptosis-inducing ligand fusion protein with specificity for human CD7. Cancer Res 65:3380–3388

    Google Scholar 

  • Bremer E, Samplonius DF, van Genne L, Dijkstra MH, Kroesen BJ, de Leij LF, Helfrich W (2005b) Simultaneous inhibition of epidermal growth factor receptor (EGFR) signaling and enhanced activation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-mediated apoptosis induction by an scFv:sTRAIL fusion protein with specificity for human EGFR. J Biol Chem 280:10025–10033

    Google Scholar 

  • Brischwein K, Parr L, Pflanz S, Volkland J, Lumsden J, Klinger M, Locher M, Hammond SA, Kiener P, Kufer P, Schlereth B, Baeuerle PA (2007) Strictly target cell-dependent activation of T cells by bispecific single-chain antibody constructs of the BiTE class. J Immunother 30:798–807

    Article  CAS  PubMed  Google Scholar 

  • Cantor JR, Yoo TH, Dixit A, Iverson BL, Forsthuber TG, Georgiou G (2011) Therapeutic enzyme deimmunization by combinatorial T-cell epitope removal using neutral drift. Proc Natl Acad Sci USA 108:1272–1277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caron PC, Co MS, Bull MK, Avdalovic NM, Queen C, Scheinberg DA (1992) Biological and immunological features of humanized M195 (anti-CD33) monoclonal antibodies. Cancer Res 52:6761–6767

    CAS  PubMed  Google Scholar 

  • Castaigne S, Pautas C, Terre C, Raffoux E, Bordessoule D, Bastie JN, Legrand O, Thomas X, Turlure P, Reman O, de Revel T, Gastaud L, de Gunzburg N, Contentin N, Henry E, Marolleau JP, Aljijakli A, Rousselot P, Fenaux P, Preudhomme C, Chevret S, Dombret H, Acute Leukemia French Association (2012) Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet 379:1508–1516

    Article  CAS  PubMed  Google Scholar 

  • Chadwick DE, Jean LF, Jamal N, Messner HA, Murphy JR, Minden MD (1993) Differential sensitivity of human myeloma cell lines and normal bone marrow colony forming cells to a recombinant diphtheria toxin-interleukin 6 fusion protein. Br J Haematol 85:25–36

    Article  CAS  PubMed  Google Scholar 

  • Chamuleau ME, Ossenkoppele GJ, van Rhenen A, van Dreunen L, Jirka SM, Zevenbergen A, Schuurhuis GJ, van de Loosdrecht AA (2011) High TRAIL-R3 expression on leukemic blasts is associated with poor outcome and induces apoptosis-resistance which can be overcome by targeting TRAIL-R2. Leuk Res 35:741–749

    Article  CAS  PubMed  Google Scholar 

  • Chan CH, Blazar BR, Eide CR, Kreitman RJ, Vallera DA (1995) A murine cytokine fusion toxin specifically targeting the murine granulocyte–macrophage colony-stimulating factor (GM-CSF) receptor on normal committed bone marrow progenitor cells and GM-CSF-dependent tumor cells. Blood 86:2732–2740

    CAS  PubMed  Google Scholar 

  • Chen R, Palmer JM, Thomas SH, Tsai NC, Farol L, Nademanee A, Forman SJ, Gopal AK (2012) Brentuximab vedotin enables successful reduced-intensity allogeneic hematopoietic cell transplantation in patients with relapsed or refractory Hodgkin lymphoma. Blood 119:6379–6381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clancy L, Mruk K, Archer K, Woelfel M, Mongkolsapaya J, Screaton G, Lenardo MJ, Chan FK (2005) Preligand assembly domain-mediated ligand-independent association between TRAIL receptor 4 (TR4) and TR2 regulates TRAIL-induced apoptosis. Proc Natl Acad Sci USA 102:18099–18104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conticello C, Adamo L, Vicari L, Giuffrida R, Iannolo G, Anastasi G, Caruso L, Moschetti G, Cupri A, Palumbo GA, Gulisano M, De Maria R, Giustolisi R, Di Raimondo F (2008) Antitumor activity of bortezomib alone and in combination with TRAIL in human acute myeloid leukemia. Acta Haematol 120:19–30

    Article  CAS  PubMed  Google Scholar 

  • Corallini F, Rimondi E, Secchiero P (2008) TRAIL and osteoprotegerin: a role in endothelial physiopathology?. Front Biosci 13:135–147

    Article  CAS  PubMed  Google Scholar 

  • Cretney E, Takeda K, Yagita H, Glaccum M, Peschon JJ, Smyth MJ (2002) Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol 168:1356–1361

    Article  CAS  PubMed  Google Scholar 

  • de Bruyn M, Rybczynska AA, Wei Y, Schwenkert M, Fey GH, Dierckx RA, van Waarde A, Helfrich W, Bremer E (2010) Melanoma-associated Chondroitin Sulfate Proteoglycan (MCSP)-targeted delivery of soluble TRAIL potently inhibits melanoma outgrowth in vitro and in vivo. Mol Cancer 9:301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Bruyn M, Wei Y, Wiersma VR, Samplonius DF, Klip HG, van der Zee AG, Yang B, Helfrich W, Bremer E (2011) Cell surface delivery of TRAIL strongly augments the tumoricidal activity of T cells. Clin Cancer Res 17:5626–5637

    Article  CAS  PubMed  Google Scholar 

  • Del Poeta G, Stasi R, Venditti A, Cox C, Aronica G, Masi M, Bruno A, Simone MD, Buccisano F, Papa G (1995) CD7 expression in acute myeloid leukemia. Leuk Lymphoma 17:111–119

    Article  CAS  PubMed  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald DJ, Moskatel E, Ben-Josef G, Traini R, Tendler T, Sharma A, Antignani A, Mussai F, Wayne A, Kreitman RJ, Pastan I (2011) Enhancing immunotoxin cell-killing activity via combination therapy with ABT-737. Leuk Lymphoma 52 Suppl 2:79–81

    Article  CAS  PubMed  Google Scholar 

  • Frankel A, Liu JS, Rizzieri D, Hogge D (2008) Phase I clinical study of diphtheria toxin-interleukin 3 fusion protein in patients with acute myeloid leukemia and myelodysplasia. Leuk Lymphoma 49:543–553

    Article  CAS  PubMed  Google Scholar 

  • Gores GJ, Kaufmann SH (2001) Is TRAIL hepatotoxic? Hepatology 34:3–6

    Article  CAS  PubMed  Google Scholar 

  • Herbst RS, Eckhardt SG, Kurzrock R, Ebbinghaus S, O’Dwyer PJ, Gordon MS, Novotny W, Goldwasser MA, Tohnya TM, Lum BL, Ashkenazi A, Jubb AM, Mendelson DS (2010) Phase I dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer. J Clin Oncol 28:2839–2846

    Article  CAS  PubMed  Google Scholar 

  • Hofmann M, Grosse-Hovest L, Nubling T, Pyz E, Bamberg ML, Aulwurm S, Buhring HJ, Schwartz K, Haen SP, Schilbach K, Rammensee HG, Salih HR, Jung G (2012) Generation, selection and preclinical characterization of an Fc-optimized FLT3 antibody for the treatment of myeloid leukemia. Leukemia 26:1228–1237

    Article  CAS  PubMed  Google Scholar 

  • Horita H, Frankel AE, Thorburn A (2008) Acute myeloid leukemia-targeted toxin activates both apoptotic and necroptotic death mechanisms. PLoS One 3:e3909.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jean LF, Murphy JR (1991) Diphtheria toxin receptor-binding domain substitution with interleukin 6: genetic construction and interleukin 6 receptor-specific action of a diphtheria toxin-related interleukin 6 fusion protein. Protein Eng 4:989–994

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12:1167–1174

    Article  PubMed  Google Scholar 

  • Jurcic JG (2012) What happened to anti-CD33 therapy for acute myeloid leukemia?. Curr Hematol.Malig Rep 7:65–73.

    Article  PubMed  Google Scholar 

  • Kataoka T (2005) The caspase-8 modulator c-FLIP. Crit Rev Immunol 25:31–58

    Article  CAS  PubMed  Google Scholar 

  • Kelley SK, Harris LA, Xie D, Deforge L, Totpal K, Bussiere J, Fox JA (2001) Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: characterization of in vivo efficacy, pharmacokinetics, and safety. J Pharmacol Exp Ther 299:31–38

    CAS  PubMed  Google Scholar 

  • Koenecke C, Hofmann M, Bolte O, Gielow P, Dammann E, Stadler M, Franzke A, Boerner AR, Eder M, Ganser A, Knapp W, Hertenstein B (2008) Radioimmunotherapy with [188Re]-labelled anti-CD66 antibody in the conditioning for allogeneic stem cell transplantation for high-risk acute myeloid leukemia. Int J Hematol 87:414–421

    Article  PubMed  Google Scholar 

  • Kreitman RJ (2009) Recombinant immunotoxins containing truncated bacterial toxins for the treatment of hematologic malignancies. BioDrugs 23:1–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kreitman RJ, Pastan I (2006) Immunotoxins in the treatment of hematologic malignancies. Curr Drug Targets 7:1301–1311

    Article  CAS  PubMed  Google Scholar 

  • Kuo TT, Aveson VG (2011) Neonatal Fc receptor and IgG-based therapeutics. MAbs 3:422–430

    Article  PubMed Central  PubMed  Google Scholar 

  • Kushner BH, Cheung IY, Kramer K, Modak S, Cheung NK (2007) High-dose cyclophosphamide inhibition of humoral immune response to murine monoclonal antibody 3F8 in neuroblastoma patients: broad implications for immunotherapy. Pediatr Blood Cancer 48:430–434

    Article  PubMed  Google Scholar 

  • Lakkis F, Steele A, Pacheco-Silva A, Rubin-Kelley V, Strom TB, Murphy JR (1991) Interleukin 4 receptor targeted cytotoxicity: genetic construction and in vivo immunosuppressive activity of a diphtheria toxin-related murine interleukin 4 fusion protein. Eur J Immunol 21:2253–2258

    Article  CAS  PubMed  Google Scholar 

  • Lapusan S, Vidriales MB, Thomas X, de Botton S, Vekhoff A, Tang R, Dumontet C, Morariu-Zamfir R, Lambert JM, Ozoux ML, Poncelet P, San Miguel JF, Legrand O, Deangelo DJ, Giles FJ, Marie JP (2012) Phase I studies of AVE9633, an anti-CD33 antibody-maytansinoid conjugate, in adult patients with relapsed/refractory acute myeloid leukemia. Invest New Drugs 30:1121–1131

    Article  CAS  PubMed  Google Scholar 

  • Linenberger ML (2005) CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia 19:176–182

    Article  CAS  PubMed  Google Scholar 

  • Lomax JE, Eller CH, Raines RT (2012) Rational design and evaluation of mammalian ribonuclease cytotoxins. Methods Enzymol 502:273–290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD, Jr, van Rooijen N, Weissman IL (2009) CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138:286–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marchion DC, Bicaku E, Daud AI, Sullivan DM, Munster PN (2005) Valproic acid alters chromatin structure by regulation of chromatin modulation proteins. Cancer Res 65:3815–3822

    Article  CAS  PubMed  Google Scholar 

  • Menzel C, Schirrmann T, Konthur Z, Jostock T, Dubel S (2008) Human antibody RNase fusion protein targeting CD30+ lymphomas. Blood 111:3830–3837

    Article  CAS  PubMed  Google Scholar 

  • Merino D, Lalaoui N, Morizot A, Schneider P, Solary E, Micheau O (2006) Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2. Mol Cell Biol 26:7046–7055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pagel JM, Kenoyer AL, Back T, Hamlin DK, Wilbur DS, Fisher DR, Park SI, Frayo S, Axtman A, Orgun N, Orozco J, Shenoi J, Lin Y, Gopal AK, Green DJ, Appelbaum FR, Press OW (2011) Anti-CD45 pretargeted radioimmunotherapy using bismuth-213: high rates of complete remission and long-term survival in a mouse myeloid leukemia xenograft model. Blood 118:703–711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pastan I, Onda M, Weldon J, Fitzgerald D, Kreitman R (2011) Immunotoxins with decreased immunogenicity and improved activity. Leuk Lymphoma 52 Suppl 2:87–90

    Article  CAS  PubMed  Google Scholar 

  • Pordzik S, Petrovici K, Schmid C, Kroell T, Schweiger C, Kohne CH, Schmetzer H (2011) Expression and prognostic value of FAS receptor/FAS ligand and TrailR1/TrailR2 in acute myeloid leukemia. Hematology 16:341–350

    Article  PubMed  Google Scholar 

  • Power BE, Hudson PJ (2000) Synthesis of high avidity antibody fragments (scFv multimers) for cancer imaging. J Immunol Methods 242:193–204

    Article  CAS  PubMed  Google Scholar 

  • Robinson LJ, Borysenko CW, Blair HC (2007) Tumor necrosis factor family receptors regulating bone turnover: new observations in osteoblastic and osteoclastic cell lines. Ann NYAcad Sci 1116:432–443

    Article  CAS  Google Scholar 

  • Saito Y, Kitamura H, Hijikata A, Tomizawa-Murasawa M, Tanaka S, Takagi S, Uchida N, Suzuki N, Sone A, Najima Y, Ozawa H, Wake A, Taniguchi S, Shultz LD, Ohara O, Ishikawa F (2010) Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells. Sci Transl Med 2:17ra9

    Article  PubMed Central  PubMed  Google Scholar 

  • Schirrmann T, Krauss J, Arndt MA, Rybak SM, Dubel S (2009) Targeted therapeutic RNases (ImmunoRNases). Expert Opin Biol Ther 9:79–95

    Article  CAS  PubMed  Google Scholar 

  • Schwemmlein M, Peipp M, Barbin K, Saul D, Stockmeyer B, Repp R, Birkmann J, Oduncu F, Emmerich B, Fey GH (2006) A CD33-specific single-chain immunotoxin mediates potent apoptosis of cultured human myeloid leukaemia cells. Br J Haematol 133:141–151

    Article  CAS  PubMed  Google Scholar 

  • Silla LM, Chen J, Zhong RK, Whiteside TL, Ball ED (1995) Potentiation of lysis of leukaemia cells by a bispecific antibody to CD33 and CD16 (Fc gamma RIII) expressed by human natural killer (NK) cells. Br J Haematol 89:712–718

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Erickson HK (2009) Antibody-cytotoxic agent conjugates: preparation and characterization. Methods Mol Biol 525:445–467, xiv

    Article  CAS  PubMed  Google Scholar 

  • Stein C, Kellner C, Kugler M, Reiff N, Mentz K, Schwenkert M, Stockmeyer B, Mackensen A, Fey GH (2010) Novel conjugates of single-chain Fv antibody fragments specific for stem cell antigen CD123 mediate potent death of acute myeloid leukaemia cells. Br J Haematol 148:879–889

    Article  CAS  PubMed  Google Scholar 

  • Stieglmaier J, Bremer E, Kellner C, Liebig TM, ten Cate B, Peipp M, Schulze-Koops H, Pfeiffer M, Buhring HJ, Greil J, Oduncu F, Emmerich B, Fey GH, Helfrich W (2008) Selective induction of apoptosis in leukemic B-lymphoid cells by a CD19-specific TRAIL fusion protein. Cancer Immunol Immunother 57:233–246

    Article  PubMed  Google Scholar 

  • Stumpp MT, Amstutz P (2007) DARPins: a true alternative to antibodies. Curr Opin Drug Discov Devel 10:153–159

    CAS  PubMed  Google Scholar 

  • Sutherland MK, Yu C, Lewis TS, Miyamoto JB, Morris-Tilden CA, Jonas M, Sutherland J, Nesterova A, Gerber HP, Sievers EL, Grewal IS, Law CL (2009) Anti-leukemic activity of lintuzumab (SGN-33) in preclinical models of acute myeloid leukemia. MAbs 1:481–490

    Article  PubMed Central  PubMed  Google Scholar 

  • Takeda K, Hayakawa Y, Smyth MJ, Kayagaki N, Yamaguchi N, Kakuta S, Iwakura Y, Yagita H, Okumura K (2001) Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med 7:94–100

    Article  CAS  PubMed  Google Scholar 

  • ten Cate B, Samplonius DF, Bijma T, de Leij LF, Helfrich W, Bremer E (2007) The histone deacetylase inhibitor valproic acid potently augments gemtuzumab ozogamicin-induced apoptosis in acute myeloid leukemic cells. Leukemia 21:248–252

    Article  CAS  PubMed  Google Scholar 

  • ten Cate B, Bremer E, de Bruyn M, Bijma T, Samplonius D, Schwemmlein M, Huls G, Fey G, Helfrich W (2009) A novel AML-selective TRAIL fusion protein that is superior to Gemtuzumab Ozogamicin in terms of in vitro selectivity, activity and stability. Leukemia 23:1389–1397

    Article  CAS  PubMed  Google Scholar 

  • Thepen T, Huhn M, Melmer G, Tur MK, Barth S (2009) Fcgamma receptor 1 (CD64), a target beyond cancer. Curr Pharm Des 15:2712–2718

    Article  CAS  PubMed  Google Scholar 

  • Wajant H, Gerspach J, Pfizenmaier K (2005) Tumor therapeutics by design: targeting and activation of death receptors. Cytokine Growth Factor Rev 16:55–76

    Article  CAS  PubMed  Google Scholar 

  • Weng A, Thakur M, Beceren-Braun F, Bachran D, Bachran C, Riese SB, Jenett-Siems K, Gilabert-Oriol R, Melzig MF, Fuchs H (2012) The toxin component of targeted antitumor toxins determines their efficacy increase by saponins. Mol Oncol 6:323–332

    Article  CAS  PubMed  Google Scholar 

  • Williams DP, Parker K, Bacha P, Bishai W, Borowski M, Genbauffe F, Strom TB, Murphy JR (1987) Diphtheria toxin receptor binding domain substitution with interleukin-2: genetic construction and properties of a diphtheria toxin-related interleukin-2 fusion protein. Protein Eng 1:493–498

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wijnand Helfrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag New York

About this chapter

Cite this chapter

Bremer, E., Helfrich, W. (2015). AML-Selective Apoptosis Induction by Rationally Designed Death Ligand Fusion Proteins. In: Andreeff, M. (eds) Targeted Therapy of Acute Myeloid Leukemia. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1393-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1393-0_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1392-3

  • Online ISBN: 978-1-4939-1393-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics