Skip to main content

TP53 Mutations in Acute Myeloid Leukemia

  • Chapter
  • First Online:
Targeted Therapy of Acute Myeloid Leukemia

Part of the book series: Current Cancer Research ((CUCR))

  • 2051 Accesses

Abstract

Mutations of the TP53 gene show a low frequency in overall acute myeloid leukemia (AML). However, they were found at frequencies of 60–80 % in complex karyotype AML, and are strongly associated with therapy-related AML. TP53 mutations are considered to represent a separate functional category independent from the typical class I and class II mutations. The mutations are heterogeneous and are distributed across the TP53 gene with clustering of the mutations in exons 5–8. TP53 mutations confer an adverse prognostic impact in patients with AML. High-throughput sequencing facilities are now available for rapid screening for TP53 mutations at diagnosis of AML aiming to identify patients who may have a benefit from early allogeneic hematopoietic stem cell transplantation or other alternative therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anensen N, Hjelle SM, Van Belle W, Haaland I, Silden E, Bourdon JC, Hovland R, Tasken K, Knappskog S, Lonning PE, Bruserud O, Gjertsen BT (2012) Correlation analysis of p53 protein isoforms with NPM1/FLT3 mutations and therapy response in acute myeloid leukemia. Oncogene 3:1533–1545

    Article  Google Scholar 

  • Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, Kantarjian H, Raza A, Levine RL, Neuberg D, Ebert BL (2011) Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med 364:2496–2506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fenaux P, Jonveaux P, Quiquandon I, Lai JL, Pignon JM, Loucheux-Lefebvre MH, Bauters F, Berger R, Kerckaert JP (1991) P53 gene mutations in acute myeloid leukemia with 17p monosomy. Blood 78:1652–1657

    CAS  PubMed  Google Scholar 

  • Haferlach C, Dicker F, Herholz H, Schnittger S, Kern W, Haferlach T (2008) Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype. Leukemia 22:1539–1541

    Article  CAS  PubMed  Google Scholar 

  • Hof J, Krentz S, van Schewick C, Körner G, Shalapour S, Rhein P, Karawajew L, Ludwig WD, Seeger K, Henze G, von Stackelberg A, Hagemeier C, Eckert C, Kirschner-Schwabe R (2011) Mutations and deletions of the TP53 gene predict nonresponse to treatment and poor outcome in first relapse of childhood acute lymphoblastic leukemia. J Clin Oncol 29:3185–3193

    Article  PubMed  Google Scholar 

  • Ishikawa Y, Kiyoi H, Tsujimura A, Miyawaki S, Miyazaki Y, Kuriyama K, Tomonaga M, Naoe T (2009) Comprehensive analysis of cooperative gene mutations between class I and class II in de novo acute myeloid leukemia. Eur J Haematol 83:90–98

    Article  CAS  PubMed  Google Scholar 

  • Jaedersten M, Saft L, Smith A, Kulasekararaj A, Pomplun S, Gohring G, Hedlund A, Hast R, Schlegelberger B, Porwit A, Hellstrom-Lindberg E, Mufti GJ (2011) TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol 29:1971–1979

    Article  Google Scholar 

  • Jänicke RU, Sohn D, Schulze-Osthoff K (2008) The dark side of a tumor suppressor: anti-apoptotic p53. Cell Death Differ 15:959–976

    Article  PubMed  Google Scholar 

  • Leonard DG, Travis LB, Addya K, Dores GM, Holowaty EJ, Bergfeldt K, Malkin D, Kohler BA, Lynch CF, Wiklund T, Stovall M, Hall P, Pukkala E, Slater DJ, Felix CA (2002) p53 mutations in leukemia and myelodysplastic syndrome after ovarian cancer. Clin Cancer Res 8:973–985

    CAS  PubMed  Google Scholar 

  • Lepelley P, Preudhomme C, Vanrumbeke M, Quesnel B, Cosson A, Fenaux P (1994) Detection of p53 mutations in hematological malignancies: comparison between immunocytochemistry and DNA analysis. Leukemia 8:1342–1349

    CAS  PubMed  Google Scholar 

  • Link DC, Schuettpelz LG, Shen D, Wang J, Walter MJ, Kulkarni S, Payton JE, Ivanovich J, Goodfellow PJ, Le Beau M, Koboldt DC, Dooling DJ, Fulton RS, Bender RH, Fulton LL, Delehaunty KD, Fronick CC, Appelbaum EL, Schmidt H, Abbott R, O’Laughlin M, Chen K, McLellan MD, Varghese N, Nagarajan R, Heath S, Graubert TA, Ding L, Ley TJ, Zambetti GP, Wilson RK, Mardis E R (2011) Identification of a novel TP53 cancer susceptibility mutation through whole-genome sequencing of a patient with therapy-related AML. JAMA 305:1568–1576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oren M, Rotter V (2010) Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol 2:a001107

    Article  Google Scholar 

  • Parkin B, Erba H, Ouillette P, Roulston D, Purkayastha A, Karp J, Talpaz M, Kujawski L, Shakhan S, Li C, Shedden K, Malek SN (2010) Acquired genomic copy number aberrations and survival in adult acute myelogenous leukemia. Blood 116:4958–4967

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pedersen-Bjergaard J, Andersen MK, Andersen MT, Christiansen DH (2008) Genetics of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 22:240–248

    Article  CAS  PubMed  Google Scholar 

  • Renneville A, Roumier C, Biggio V, Nibourel O, Boissel N, Fenaux P, Preudhomme C (2008) Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia 22:915–931

    Article  CAS  PubMed  Google Scholar 

  • Rücker FG, Schlenk RF, Bullinger L, Kayser S, Teleanu V, Kett H, Habdank M, Kugler CM, Holzmann K, Gaidzik VI, Paschka P, Held G, von Lilienfeld-Toal M, Luebbert M, Fröhling S, Zenz T, Krauter J, Schlegelberger B, Ganser A, Lichter P, Döhner K, Döhner H (2012) TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood 119:2114–2121

    Article  PubMed  Google Scholar 

  • Schoch C, Haferlach T, Bursch S, Gerstner D, Schnittger S, Dugas M, Kern W, Loffler H, Hiddemann W (2002) Loss of genetic material is more common than gain in acute myeloid leukemia with complex aberrant karyotype: a detailed analysis of 125 cases using conventional chromosome analysis and fluorescence in situ hybridization including 24-color FISH. Genes Chromosomes Cancer 35:20–29

    Article  PubMed  Google Scholar 

  • Schoch C, Kern W, Kohlmann A, Hiddemann W, Schnittger S, Haferlach T (2005) Acute myeloid leukemia with a complex aberrant karyotype is a distinct biological entity characterized by genomic imbalances and a specific gene expression profile. Genes Chromosomes Cancer 43: 227–238

    Article  CAS  PubMed  Google Scholar 

  • Seifert H, Mohr B, Thiede C, Oelschlagel U, Schäkel U, Illmer T, Soucek S, Ehninger G, Schaich M (2009) The prognostic impact of 17p (p53) deletion in 2272 adults with acute myeloid leukemia. Leukemia 23:656–663

    Article  CAS  PubMed  Google Scholar 

  • Side LE, Curtiss NP, Teel K, Kratz C, Wang PW, Larson RA, Le Beau MM, Shannon KM (2004) RAS, FLT3, and TP53 mutations in therapy-related myeloid malignancies with abnormalities of chromosomes 5 and 7. Genes Chromosomes Cancer 39:217–223

    Article  CAS  PubMed  Google Scholar 

  • Stirewalt DL, Kopecky KJ, Meshinchi S, Appelbaum FR, Slovak ML, Willman CL, Radich JP (2001) FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood 97:3589–3595

    Article  CAS  PubMed  Google Scholar 

  • Van Dyke T (2007) p53 and tumor suppression. N Engl J Med 356:79–81

    Article  CAS  PubMed  Google Scholar 

  • Wattel E, Preudhomme C, Hecquet B, Vanrumbeke M, Quesnel B, Dervite I, Morel P, Fenaux P (1994) p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood 84:3148–3157

    CAS  PubMed  Google Scholar 

  • Xu-Monette ZY, Medeiros LJ, Li Y, Orlowski RZ, Andreeff M, Bueso-Ramos CE, GreinerTC, McDonnell TJ, Young KH (2012) Dysfunction of the TP53 tumor suppressor gene in lymphoid malignancies. Blood 119:3668–3683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zenz T, Eichhorst B, Busch R, Denzel T, Häbe S, Winkler D, Bühler A, Edelmann J, Bergmann M, Hopfinger G, Hensel M, Hallek M, Döhner H, Stilgenbauer S (2010) TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol 28:4473–4479

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Haferlach MD .

Editor information

Editors and Affiliations

Conclusions

Conclusions

TP53 mutations seem to represent a separate functional category in AML which have no equivalent to the typical class I or II mutations (Pedersen-Bjergaard et al. 2008; Renneville et al. 2008). The high frequency of TP53 mutations in complex karyotype AML (Haferlach et al. 2008; Rücker et al. 2012) contributes to explain the frequent phenomenon of chemoresistance in this cytogenetic subgroup. Whereas the traditional molecular work-up for detection of the heterogeneous TP53 mutations was highly laborious, investigation of TP53 mutations is considerably facilitated by high-throughput sequencing (Bejar et al. 2011; Jaedersten et al. 2011). A rapid screening for TP53 mutations eventually combined with investigation of the TP53 allele status by FISH and/or array-CGH at diagnosis of the AML can identify high-risk patients who may have a benefit from alternative treatment strategies (e.g., an early allogeneic HSCT or novel strategies targeting the TP53 pathway in clinical studies).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag New York

About this chapter

Cite this chapter

Bacher, U., Haferlach, C., Grossmann, V., Schnittger, S., Haferlach, T. (2015). TP53 Mutations in Acute Myeloid Leukemia. In: Andreeff, M. (eds) Targeted Therapy of Acute Myeloid Leukemia. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1393-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1393-0_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1392-3

  • Online ISBN: 978-1-4939-1393-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics