Skip to main content

Allogeneic and Autologous T cell Strategies to Enhance Targeting of Acute Myeloid Leukemias

  • Chapter
  • First Online:
Targeted Therapy of Acute Myeloid Leukemia

Abstract

Acute myelogenous leukemia (AML) is a realistic target for T-cell immunotherapy because clinically powerful T-cell-mediated graft-versus leukemia (GVL) effects are well characterized following allogeneic stem cell transplantation (SCT). T-cell therapies in combination with SCT include donor lymphocyte infusions with or without added cytokines, infusions of selected T-cells deprived of graft-versus-host disease (GVHD) activity, and T-cells expressing a suicide gene permitting GVL but preventing GVHD by T-cell elimination. The identification of a series of minor histocompatibility antigens (mHAG) restricted to the myeloid lineage has made it possible to generate leukemia-reactive T-cells by expanding donor lymphocytes specific for a mHAG present in the recipient but absent in the donor. Key to the development of treatments that extend targeted T-cell strategies beyond SCT has been the identification of a range of leukemia-associated antigens (LAA). LAA can be used, either as inserts of the parent gene of a tumor antigen or as peptide mixes, to arm antigen-presenting cells (APCs). Dendritic cell APCs are used to induce LAA-specific T-cells either in vivo using the APCs as vaccines or in vitro generating LAA-specific T-cells in culture. Initial clinical results with mHAG-specific T-cells in transplanted patients show promising disease control but have identified off-target effects of some T-cell infusions, and reveal a tendency for tumor escape. Future developments for T-cell therapy for AML include the association of T-cell infusions with agents that can upregulate LAA, and the genetic modification of CTL to overcome tumor resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams SP, Sahota SS, Mijovic A et al (2002) Frequent expression of HAGE in presentation chronic myeloid leukaemias. Leukemia 16:2238–2242

    CAS  PubMed  Google Scholar 

  • Amrolia PJ, Mucioli-Casadei G, Huls H et al (2005) Add-back of allodepleted donor T cells to improve immune reconstitution after haplo-identical stem cell transplantation. Cytotherapy 7:116–125

    CAS  PubMed  Google Scholar 

  • Amrolia PJ, Muccioli-Casadei G, Huls H et al (2006) Adoptive immunotherapy with allodepleted donor T-cells improves immune reconstitution after haploidentical stem cell transplantation. Blood 108:1797–1808

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anguille S, Lion E, Smits E, Berneman ZN, Van Tendeloo VFI (2011) Dendritic cell vaccine therapy for acute myeloid leukemia: questions and answers. Hum Vaccin 7:579–584

    CAS  PubMed  Google Scholar 

  • Barrett AJ, Rezvani K (2007) Translational mini-review series on vaccines: peptide vaccines for myeloid leukaemias. Clin Exp Immunol 148:189–198

    PubMed Central  CAS  PubMed  Google Scholar 

  • Berger C, Blau CA, Huang ML et al (2004) Pharmacologically regulated Fas-mediated death of adoptively transferred T cells in a nonhuman primate model. Blood 103:1261–1269

    CAS  PubMed  Google Scholar 

  • Berger C, Flowers ME, Warren EH, Riddell SR (2006) Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood 107:2294–2302

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bethge WA, Hegenbart U, Stuart MJ et al (2004) Adoptive immunotherapy with donor lymphocyte infusions after allogeneic hematopoietic cell transplantation following nonmyeloablative conditioning. Blood 103:790–795

    CAS  PubMed  Google Scholar 

  • Bleakley M, Otterud BE, Richardt JL et al (2010) Leukemia-associated minor histocompatibility antigen discovery using T-cell clones isolated by in vitro stimulation of naive CD8+ T cells. Blood 115:4923–4933

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bonini C, Ferrari G, Verzeletti S et al (1997) HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft versus leukemia. Science 276:1719–1724

    CAS  PubMed  Google Scholar 

  • Bonini C, Grez M, Traversari C et al (2003) Safety of retroviral gene marking with a truncated NGF receptor. Nat Med 9:367–369

    CAS  PubMed  Google Scholar 

  • Bornhauser M, Thiede C, Platzbecker U et al (2011) Prophylactic transfer of BCR-ABL-, PR1-, and WT1-reactive donor T cells after T cell-depleted allogeneic hematopoietic cell transplantation in patients with chronic myeloid leukemia. Blood 117:7174–7184

    PubMed  Google Scholar 

  • Chaise C, Buchan SL, Rice J et al (2008) DNA vaccination induces WT1-specific T-cell responses with potential clinical relevance. Blood 112:2956–2964

    CAS  PubMed  Google Scholar 

  • Cho BK, Rao VP, Ge Q, Eisen HN, Chen J (2000) Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells. J Exp Med 192:549–556

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ciceri F, Bonini C, Marktel S et al (2007) Antitumor effects of HSV-TK-engineered donor lymphocytes after allogeneic stem-cell transplantation. Blood 109:4698–4707

    CAS  PubMed  Google Scholar 

  • Clarke SR, Rudensky AY (2000) Survival and homeostatic proliferation of naive peripheral CD4+ T cells in the absence of self peptide:MHC complexes. J Immunol 165:2458–2464

    CAS  PubMed  Google Scholar 

  • Cruz CR, Gerdemann U, Leen AM et al (2011) Improving T-cell therapy for relapsed EBV-negative Hodgkin lymphoma by targeting upregulated MAGE-A. Clin Cancer Res 17:7058–7066

    PubMed Central  CAS  PubMed  Google Scholar 

  • Di Stasi A., Tey, Dotti G et al (2011) Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 365:1673–1683

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dudley ME, Wunderlich JR, Robbins PF et al (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854

    PubMed Central  CAS  PubMed  Google Scholar 

  • Falkenburg JH, Wafelman AR, Joosten P et al (1999) Complete remission of accelerated phase chronic myeloid leukemia by treatment with leukemia-reactive cytotoxic T lymphocytes. Blood 94:1201–1208

    CAS  PubMed  Google Scholar 

  • Falkenburg JH, van de Corp, Marijt EW, Willemze R (2003) Minor histocompatibility antigens in human stem cell transplantation. Exp Hematol 31:743–751

    CAS  PubMed  Google Scholar 

  • Fujiki F, Oka Y, Kawakatsu M et al (2010) A clear correlation between WT1-specific Th response and clinical response in WT1 CTL epitope vaccination. Anticancer Res 30:2247–2254

    CAS  PubMed  Google Scholar 

  • Gale RP, Opelz G (2012) Commentary: does immune suppression increase risk of developing acute myeloid leukemia? Leukemia 26:422–423

    CAS  PubMed  Google Scholar 

  • Gannage M, Abel M, Michallet AS et al (2005) Ex vivo characterization of multiepitopic tumor-specific CD8 T cells in patients with chronic myeloid leukemia: implications for vaccine development and adoptive cellular immunotherapy. J Immunol 174:8210–8

    CAS  PubMed  Google Scholar 

  • Ge X, Brown J, Sykes M, Boussiotis VA (2008) CD134-allodepletion allows selective elimination of alloreactive human T cells without loss of virus-specific and leukemia-specific effectors. Biol Blood Marrow Transplant 14:518–530

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gerdemann U, Katari U, Christin AS et al (2011) Cytotoxic T lymphocytes simultaneously targeting multiple tumor-associated antigens to treat EBV negative lymphoma. Mol Ther 19:2258–2268

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ghorashian S, Nicholson E, Stauss HJ (2011) T cell gene-engineering to enhance GVT and suppress GVHD. Best Pract Res Clin Haematol 24:421–433

    CAS  PubMed  Google Scholar 

  • Goodyear O, Agathanggelou A, Novitzky-Basso I et al (2010) Induction of a CD8+ T-cell response to the MAGE cancer testis antigen by combined treatment with azacitidine and sodium valproate in patients with acute myeloid leukemia and myelodysplasia. Blood 116:1908–1918

    CAS  PubMed  Google Scholar 

  • Graf C, Heidel F, Tenzer S et al (2007) A neoepitope generated by an FLT3 internal tandem duplication (FLT3-ITD) is recognized by leukemia-reactive autologous CD8+ T cells. Blood 109:2985–2988

    CAS  PubMed  Google Scholar 

  • Greiner J, Ringhoffer M, Taniguchi M et al (2004) mRNA expression of leukemia-associated antigens in patients with acute myeloid leukemia for the development of specific immunotherapies. Int J Cancer 108:704–711

    CAS  PubMed  Google Scholar 

  • Greiner J, Li L, Ringhoffer M et al (2005) Identification and characterization of epitopes of the receptor for hyaluronic acid-mediated motility (RHAMM/CD168) recognized by CD8+ T cells of HLA-A2-positive patients with acute myeloid leukemia. Blood 106:938–945

    CAS  PubMed  Google Scholar 

  • Greiner J, Schmitt A, Giannopoulos K et al (2010) High-dose RHAMM-R3 peptide vaccination for patients with acute myeloid leukemia, myelodysplastic syndrome and multiple myeloma. Haematologica 95:1191–1197

    PubMed Central  CAS  PubMed  Google Scholar 

  • Griffioen M, van Egmond EH, Kester MG et al (2009) Retroviral transfer of human CD20 as a suicide gene for adoptive T-cell therapy. Haematologica 94:1316–1320

    PubMed Central  CAS  PubMed  Google Scholar 

  • Griffioen M, Honders MW, van der Meijden ED et al (2012) Identification of 4 novel HLA-B*40:01 restricted minor histocompatibility antigens and their potential as targets for graft-versus-leukemia reactivity. Haematologica 97: 1196–1204

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hartwig UF, Nonn M, Khan S et al (2008) Depletion of alloreactive donor T lymphocytes by CD95-mediated activation-induced cell death retains antileukemic, antiviral, and immunoregulatory T cell immunity. Biol Blood Marrow Transplant 14:99–109

    CAS  PubMed  Google Scholar 

  • Houtenbos I, Westers TM, Ossenkoppele GJ, van de Loosdrecht AA (2006) Leukemia-derived dendritic cells: towards clinical vaccination protocols in acute myeloid leukemia. Haematologica 91:348–355

    PubMed  Google Scholar 

  • Keilholz U, Letsch A, Busse A et al (2009) A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood 113:6541–6548

    CAS  PubMed  Google Scholar 

  • Kolb H-J, Schattenberg A, Goldman JM et al (1995) Graft-versus-leukemia effect of donor lymphocyte infusions in marrow grafted patients. Blood 86:2041–2050

    CAS  PubMed  Google Scholar 

  • Kremser A, Dressig J, Grabrucker C et al (2010) Dendritic cells (DCs) can be successfully generated from leukemic blasts in individual patients with AML or MDS: an evaluation of different methods. J Immunother 33:185–199

    PubMed  Google Scholar 

  • Krupica T, Jr., Fry TJ, Mackall CL (2006) Autoimmunity during lymphopenia: a two-hit model. Clin Immunol 120:121–128

    CAS  PubMed  Google Scholar 

  • Levine BL, Ueda Y, Craighead N, Huang ML, June CH (1995) CD28 ligands CD80 (B7-1) and CD86 (B7-2) induce long-term autocrine growth of CD4+ T cells and induce similar patterns of cytokine secretion in vitro. Int Immunol 6:891–904

    Google Scholar 

  • Levine JE, Braun T, Penza SL et al (2002) Prospective trial of chemotherapy and donor leukocyte infusions for relapse of advanced myeloid malignancies after allogeneic stem-cell transplantation. J Clin Oncol 20:405–412

    CAS  PubMed  Google Scholar 

  • Levine JE, Barrett AJ, Zhang MJ et al (2008) Donor leukocyte infusions to treat hematologic malignancy relapse following allo-SCT in a pediatric population. Bone Marrow Transplant 42:201–205

    CAS  PubMed  Google Scholar 

  • Martinez A, Olarte I, Mergold MA et al (2007) mRNA expression of MAGE-A3 gene in leukemia cells. Leuk Res 31:33–37

    CAS  PubMed  Google Scholar 

  • Maslak PG, Dao T, Krug LM et al (2010) Vaccination with synthetic analog peptides derived from WT1 oncoprotein induces T-cell responses in patients with complete remission from acute myeloid leukemia. Blood 116:171–179

    PubMed Central  CAS  PubMed  Google Scholar 

  • McIver ZA, Melenhorst JJ, Grim A et al (2011) Immune reconstitution in recipients of photodepleted HLA-identical sibling donor stem cell transplantations: T cell subset frequencies predict outcome. Biol Blood Marrow Transplant 17:1846–1854

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meij P, Jedema I, van der Hoorn MA et al (2012) Generation and administration of HA-1-specific T-cell lines for the treatment of patients with relapsed leukemia after allogeneic stem cell transplantation: a pilot study. Haematologica 97:1205–1208

    PubMed Central  CAS  PubMed  Google Scholar 

  • Melenhorst JJ, Scheinberg P, Chattopadhyay PK et al (2009) High avidity myeloid leukemia-associated antigen-specific CD8+ T cells preferentially reside in the bone marrow. Blood 113:2238–2244

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meloni G, Foa R, Vignetti M et al (1994) Interleukin-2 may induce prolonged remissions in advanced acute myelogenous leukemia. Blood 84:2158–2163

    CAS  PubMed  Google Scholar 

  • Mielke S, Nunes R, Rezvani K et al (2008) A clinical-scale selective allodepletion approach for the treatment of HLA-mismatched and matched donor-recipient pairs using expanded T lymphocytes as antigen-presenting cells and a TH9402-based photodepletion technique. Blood 111:4392–4402

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mielke S, McIver ZA, Shenoy A et al (2011) Selectively T cell-depleted allografts from HLA-matched sibling donors followed by low-dose posttransplantation immunosuppression to improve transplantation outcome in patients with hematologic malignancies. Biol Blood Marrow Transplant 17:1855–1861

    PubMed Central  CAS  PubMed  Google Scholar 

  • Molldrem J, Dermime S, Parker K et al (1996) Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for a peptide derived from Proteinase 3 preferentially lyse human myeloid leukemia cells. Blood 88:2450–2457

    CAS  PubMed  Google Scholar 

  • Molldrem JJ, Lee PP, Wang C et al (2000) Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med 6:1018–1023

    CAS  PubMed  Google Scholar 

  • Nagai K, Ochi T, Fujiwara H et al (2012) Aurora kinase A-specific T-cell receptor gene transfer redirects T lymphocytes to display effective antileukemia reactivity. Blood 119:368–376

    CAS  PubMed  Google Scholar 

  • Nicholson E, Ghorashian S, Stauss H (2012) Improving TCR Gene Therapy for Treatment of Haematological Malignancies. Adv Hematol. Epub ahead of print

    Google Scholar 

  • Ochi T, Fujiwara H, Suemori K et al (2009) Aurora-A kinase: a novel target of cellular immunotherapy for leukemia. Blood 113:66–74

    CAS  PubMed  Google Scholar 

  • Ohminami H, Yasukawa M, Fujita S (2000) HLA class I-restricted lysis of leukemia cells by a CD8(+) cytotoxic T-lymphocyte clone specific for WT1 peptide. Blood 95:286–293

    CAS  PubMed  Google Scholar 

  • Oka Y, Tsuboi A, Taguchi T et al (2004) Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci U S A 101:13885–13890

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perruccio K, Topini F, Tosti A et al (2008) Photodynamic purging of alloreactive T cells for adoptive immunotherapy after haploidentical stem cell transplantation. Blood Cells Mol Dis 40:76–83

    CAS  PubMed  Google Scholar 

  • Perruccio K, Topini F, Tosti A et al (2011) Optimizing a photoallodepletion protocol for adoptive immunotherapy after haploidentical SCT. Bone Marrow Transplant. Epub ahead of print

    Google Scholar 

  • Pinilla-Ibarz J, Cathcart K, Korontsvit T et al (2000) Vaccination of patients with chronic myelogenous leukemia with bcr-abl oncogene breakpoint fusion peptides generates specific immune responses. Blood 95:1781–1787

    CAS  PubMed  Google Scholar 

  • Porter DL, Orloff GJ, Antin JH (1994) Donor mononuclear cell infusions as therapy for B-cell lymphoproliferative disorder following allogeneic bone marrow transplant. Transplant Sci 4:12–14

    CAS  PubMed  Google Scholar 

  • Porter DL, Collins RH, Jr., Shpilberg O et al (1999) Long-term follow-up of patients who achieved complete remission after donor leukocyte infusions. Biol Blood Marrow Transplant 5:253–261

    CAS  PubMed  Google Scholar 

  • Porter DL, Collins RH, Hardy C et al (2000) Treatment of relapsed leukemia after unrelated donor marrow transplantation with unrelated donor leukocyte infusions [In Process Citation]. Blood 95:1214–1221

    CAS  PubMed  Google Scholar 

  • Porter DL, Levine BL, Bunin N et al (2006) A phase 1 trial of donor lymphocyte infusions expanded and activated ex vivo via CD3/CD28 costimulation. Blood 107:1325–1331

    CAS  PubMed  Google Scholar 

  • Qazilbash MH, Saliba RM, Hosing C et al (2007) Autologous stem cell transplantation is safe and feasible in elderly patients with multiple myeloma. Bone Marrow Transplant 39:279–283

    CAS  PubMed  Google Scholar 

  • Quintarelli C, Dotti G, De AB et al (2008) Cytotoxic T lymphocytes directed to the preferentially expressed antigen of melanoma (PRAME) target chronic myeloid leukemia. Blood 112:1876–1885

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quintarelli C, Dotti G, Hasan ST et al (2011) High-avidity cytotoxic T lymphocytes specific for a new PRAME-derived peptide can target leukemic and leukemic-precursor cells. Blood 117:3353–3362

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rezvani K (2008) PR1 vaccination in myeloid malignancies. Expert Rev Vaccines 7:867–875

    CAS  PubMed  Google Scholar 

  • Rezvani K (2011) Peptide vaccine therapy for leukemia. Int J Hematol 93:274–280

    CAS  PubMed  Google Scholar 

  • Rezvani K, Barrett AJ (2008) Characterizing and optimizing immune responses to leukaemia antigens after allogeneic stem cell transplantation. Best Pract Res Clin Haematol 21:437–453

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rezvani K, Grube M, Brenchley JM et al (2003) Functional leukemia-associated antigen-specific memory CD8+ T cells exist in healthy individuals and in patients with chronic myelogenous leukemia before and after stem cell transplantation. Blood 102:2892–2900

    CAS  PubMed  Google Scholar 

  • Rezvani K, Yong AS, Mielke S et al (2008) Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood 111:236–242

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rezvani K, Yong AS, Tawab A et al (2009) Ex vivo characterization of polyclonal memory CD8+ T-cell responses to PRAME-specific peptides in patients with acute lymphoblastic leukemia and acute and chronic myeloid leukemia. Blood 113:2245–2255

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rezvani K, Yong AS, Mielke S et al (2011) Repeated PR1 and WT1 peptide vaccination in Montanide-adjuvant fails to induce sustained high-avidity, epitope-specific CD8+ T cells in myeloid malignancies. Haematologica 96:432–440

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rice J, Ottensmeier CH, Stevenson FK (2008) DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 8:108–120

    CAS  PubMed  Google Scholar 

  • Riddell SR, Greenberg PD (2000) T-cell therapy of cytomegalovirus and human immunodeficiency virus infection. J Antimicrob Chemother 45(T3):35–43

    CAS  PubMed  Google Scholar 

  • Rooney CM, Smith CA, Ng CY et al (1998) Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92:1549–1555

    CAS  PubMed  Google Scholar 

  • Rosenblatt J, Avigan D (2006) Can leukemia-derived dendritic cells generate antileukemia immunity? Expert Rev Vaccines 5:467–472

    CAS  PubMed  Google Scholar 

  • Royer PJ, Bougras G, Ebstein F et al (2008) Efficient monocyte-derived dendritic cell generation in patients with acute myeloid leukemia after chemotherapy treatment: application to active immunotherapy. Exp Hematol 36:329–339

    CAS  PubMed  Google Scholar 

  • Scheibenbogen C, Letsch A, Thiel E et al (2002) CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood 100:2132–2137

    CAS  PubMed  Google Scholar 

  • Schlegel P, Teltschik HM, Pfeiffer M et al (2011) Long-term IL-2 therapy after transplantation of T cell depleted stem cells from alternative donors in children. Best Pract Res Clin Haematol 24:443–452

    CAS  PubMed  Google Scholar 

  • Schluns KS, Lefrancois L (2003) Cytokine control of memory T-cell development and survival. Nat Rev Immunol 3:269–279

    CAS  PubMed  Google Scholar 

  • Schmid C, Labopin M, Nagler A et al (2007) Donor lymphocyte infusion in the treatment of first hematological relapse after allogeneic stem-cell transplantation in adults with acute myeloid leukemia: a retrospective risk factors analysis and comparison with other strategies by the EBMT Acute Leukemia Working Party. J Clin Oncol 25:4938–4945

    CAS  PubMed  Google Scholar 

  • Schmitt M, Li L, Giannopoulos K et al (2006) Chronic myeloid leukemia cells express tumor-associated antigens eliciting specific CD8+ T-cell responses and are lacking costimulatory molecules. Exp Hematol 34:1709–1719

    CAS  PubMed  Google Scholar 

  • Schmitt M, Schmitt A, Rojewski MT et al (2008) RHAMM-R3 peptide vaccination in patients with acute myeloid leukemia, myelodysplastic syndrome, and multiple myeloma elicits immunologic and clinical responses. Blood 111:1357–1365

    CAS  PubMed  Google Scholar 

  • Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570

    CAS  PubMed  Google Scholar 

  • Slavin S, Naparstek E, Nagler A et al (1996) Allogeneic cell therapy with donor peripheral blood cells and recombinant human Interleukin-2 to treat leukemia relapse after allogeneic bone marrow transplantation. Blood 87:2195–2204

    CAS  PubMed  Google Scholar 

  • Sloand EM, Melenhorst JJ, Tucker ZC et al (2011) T-cell immune responses to Wilms tumor 1 protein in myelodysplasia responsive to immunosuppressive therapy. Blood 117:2691–2699

    PubMed Central  CAS  PubMed  Google Scholar 

  • Soiffer RJ, Murray C, Gonin R, Ritz J (1994) Effect of low-dose interleukin-2 on disease relapse after T-cell-depleted allogeneic bone marrow transplantation. Blood 84:964–971

    CAS  PubMed  Google Scholar 

  • Solomon SR, Mielke S, Savani BN et al (2005) Selective depletion of alloreactive donor lymphocytes: a novel method to reduce the severity of graft-versus-host disease in older patients undergoing matched sibling donor stem cell transplantation. Blood 106:1123–1129

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stauss HJ, Cesco-Gaspere M, Thomas S et al (2007) Monoclonal T-cell receptors: new reagents for cancer therapy. Mol Ther 15:1744–1750

    CAS  PubMed  Google Scholar 

  • Straathof KC, Pule MA, Yotnda P et al (2005) An inducible caspase 9 safety switch for T-cell therapy. Blood 105:4247–4254

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stuehler C, Mielke S, Chatterjee M et al (2009) Selective depletion of alloreactive T cells by targeted therapy of heat shock protein 90: a novel strategy for control of graft-versus-host disease. Blood 114:2829–2836

    CAS  PubMed  Google Scholar 

  • Stumpf AN, van der Meijden ED, van Bergen CA et al (2009) Identification of 4 new HLA-DR-restricted minor histocompatibility antigens as hematopoietic targets in antitumor immunity. Blood 114:3684–3692

    CAS  PubMed  Google Scholar 

  • Takami A, Okumura H, Yamazaki H et al (2005) Prospective trial of high-dose chemotherapy followed by infusions of peripheral blood stem cells and dose-escalated donor lymphocytes for relapsed leukemia after allogeneic stem cell transplantation. Int J Hematol 82:449–455

    CAS  PubMed  Google Scholar 

  • Tang W, Zhou Q, Jin Z et al (2011) Novel Therapy with Interferon-a in Combination with Donor Lymphocyte Infusion for High Risk Acute Leukemia Patients Who Relapsed After Allogeneic Hematopoietic Stem Cell Transplantation [abstract]. Blood 118:658

    Google Scholar 

  • Tey SK, Dotti G, Rooney CM, Heslop HE, Brenner MK (2007) Inducible caspase 9 suicide gene to improve the safety of allodepleted T cells after haploidentical stem cell transplantation. Biol Blood Marrow Transplant 13:913–924

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thomis DC, Marktel S, Bonini C et al (2001) A Fas-based suicide switch in human T cells for the treatment of graft-versus-host disease. Blood 97:1249–1257

    CAS  PubMed  Google Scholar 

  • Traversari C, Marktel S, Magnani Z et al (2007) The potential immunogenicity of the TK suicide gene does not prevent full clinical benefit associated with the use of TK-transduced donor lymphocytes in HSCT for hematologic malignancies Blood 109:4708–4715

    CAS  PubMed  Google Scholar 

  • Van T, V, Van D, V, Van DA et al (2010) Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc Natl Acad Sci U S A 107:13824–13829

    Google Scholar 

  • Van DA, Van D, V, Nijs G et al (2009) Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a phase I dose-escalation clinical trial. Cytotherapy 11:653–668

    Google Scholar 

  • Walter EA, Greenberg PD, Gilbert MJ et al (1995) Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333:1038–1044

    CAS  PubMed  Google Scholar 

  • Warren EH, Fujii N, Akatsuka Y et al (2010) Therapy of relapsed leukemia after allogeneic hematopoietic cell transplantation with T cells specific for minor histocompatibility antigens. Blood 115:3869–3878

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weber G, Karbach J, Kuci S et al (2009) WT1 peptide-specific T cells generated from peripheral blood of healthy donors: possible implications for adoptive immunotherapy after allogeneic stem cell transplantation. Leukemia 23:1634–1642

    CAS  PubMed  Google Scholar 

  • Weber G, Gerdemann U, Caruana I, Savoldo B, Hensel NF, Rabin KR, Shpall EJ, Melenhorst JJ, Leen AM, Barrett AJ, Bollard CM (2013a) Generation of multi-leukemia antigen-specific T cells to enhance the graft-versus-leukemia effect after allogeneic stem cell transplant. Leukemia 27(7):1538–1547

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weber G, Caruana I, Reuce RH, Barrett AJ, Gerdemann U, Leen AM, Rabin KR, Bollard CM (2013b) Generation of tumor antigen-specific T cell lines from pediatric patients with acute lymphoblastic leukemia-implications for immunotherapy. Clinical Cancer Research 19(18):5079–5091

    Google Scholar 

  • Williams KM, Hakim FT, Gress RE (2007) T cell immune reconstitution following lymphodepletion. Semin Immunol 19:318–330

    Google Scholar 

  • Wrzesinski C, Paulos CM, Kaiser A et al (2010) Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells. J Immunother 33:1–7

    PubMed Central  PubMed  Google Scholar 

  • Xue SA, Gao L, Thomas S et al (2010) Development of a Wilms’ tumor antigen-specific T-cell receptor for clinical trials: engineered patient’s T cells can eliminate autologous leukemia blasts in NOD/SCID mice. Haematologica 95:126–134

    PubMed Central  PubMed  Google Scholar 

  • Yong AS, Rezvani K, Savani BN et al (2007) High PR3 or ELA2 expression by CD34+ cells in advanced-phase chronic myeloid leukemia is associated with improved outcome following allogeneic stem cell transplantation and may improve PR1 peptide-driven graft-versus-leukemia effects. Blood 110:770–775

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yong AS, Stephens N, Weber G et al (2011) Improved outcome following allogeneic stem cell transplantation in chronic myeloid leukemia is associated with higher expression of BMI-1 and immune responses to BMI-1 protein. Leukemia 25:629–637

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zeng Y, Feng H, Graner MW, Katsanis E (2003) Tumor-derived, chaperone-rich cell lysate activates dendritic cells and elicits potent antitumor immunity. Blood 101:4485–4491

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine M. Bollard M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag New York

About this chapter

Cite this chapter

Weber, G., Bollard, C., Barrett, A. (2015). Allogeneic and Autologous T cell Strategies to Enhance Targeting of Acute Myeloid Leukemias. In: Andreeff, M. (eds) Targeted Therapy of Acute Myeloid Leukemia. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1393-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1393-0_41

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1392-3

  • Online ISBN: 978-1-4939-1393-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics