Skip to main content

NK-Cell Immunotherapy for AML

  • Chapter
  • First Online:
Targeted Therapy of Acute Myeloid Leukemia

Part of the book series: Current Cancer Research ((CUCR))

  • 1972 Accesses

Abstract

Natural killer (NK) cells are large granular lymphocytes of the innate immune system first described four decades ago for their ability to recognize and kill target cells a priori—without prior experience of the target—and in a manner that is antigen unrestricted. Because of recent advances in understanding the mechanisms of NK-cell target recognition and the diversity within the NK-cell repertoire, we now recognize that NK cells play an important role in cancer immunosurveillance. Acute myeloid leukemias are among the most well characterized of NK-cell-sensitive malignancies, and differences in NK-cell genotype, phenotype, and function correlate with disease progression and predict therapeutic responses. The ability to generate clinical-grade therapeutic products of sufficient purity, number, and function has only recently allowed NK-cell immunotherapy to be pursued in clinical trials as monotherapy, in combination with monoclonal antibodies or immunomodulating drugs, and within the setting of hematopoietic stem cell transplantation.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4939-1393-0_44

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alici E, Sutlu T, Bjorkstrand B, Gilljam M, Stellan B, Nahi H, Quezada HC, Gahrton G, Ljunggren HG, Dilber MS (2008) Autologous antitumor activity by NK cells expanded from myeloma patients using GMP-compliant components. Blood 111(6):3155–3162. doi:blood-2007-09-110312 [pii]10.1182/blood-2007-09-110312

    Article  CAS  PubMed  Google Scholar 

  • Barkholt L, Alici E, Conrad R, Sutlu T, Gilljam M, Stellan B, Christensson B, Guven H, Bjorkstrom NK, Soderdahl G, Cederlund K, Kimby E, Aschan J, Ringden O, Ljunggren HG, Dilber MS (2009) Safety analysis of ex vivo-expanded NK and NK-like T-cells administered to cancer patients: a phase I clinical study. Immunotherapy 1(5):753–764. doi:10.2217/imt.09.47

    Article  CAS  PubMed  Google Scholar 

  • Benjamin JE, Gill S, Negrin RS (2010) Biology and clinical effects of natural killer cells in allogeneic transplantation. Curr Opin Oncol 22(2):130–137. doi:10.1097/CCO.0b013e328335a559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berg M, Lundqvist A, McCoy P, Jr., Samsel L, Fan Y, Tawab A, Childs R (2009) Clinical-grade ex vivo-expanded human natural killer cells up-regulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells. Cytotherapy 11 (3):341–355. doi:909785497 [pii]10.1080/14653240902807034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boissel L, Tuncer HH, Betancur M, Wolfberg A, Klingemann H (2008) Umbilical cord mesenchymal stem cells increase expansion of cord blood natural killer cells. Biol Blood Marrow Transplant 14(9):1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Brehm C, Huenecke S, Quaiser A, Esser R, Bremm M, Kloess S, Soerensen J, Kreyenberg H, Seidl C, Becker PS, Muhl H, Klingebiel T, Bader P, Passweg JR, Schwabe D, and Koehl U (2011) IL-2 stimulated but not unstimulated nk cells induce selective disappearance of peripheral blood cells: Concomitant results to a phase i/ii study. PLoS One 6: e27351

    Google Scholar 

  • Browne KA, Blink E, Sutton VR, Froelich CJ, Jans DA, Trapani JA (1999) Cytosolic delivery of granzyme B by bacterial toxins: evidence that endosomal disruption, in addition to transmembrane pore formation, is an important function of perforin. Mol Cell Biol 19(12):8604–8615

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brunstein CG, Wagner JE, Weisdorf DJ, Cooley S, Noreen H, Barker JN, DeFor T, Verneris MR, Blazar BR, Miller JS (2009) Negative effect of KIR alloreactivity in recipients of umbilical cord blood transplant depends on transplantation conditioning intensity. Blood 113(22):5628–5634. doi:10.1182/blood-2008-12-197467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buggins AG, Hirst WJ, Pagliuca A, Mufti GJ (1998) Variable expression of CD3-zeta and associated protein tyrosine kinases in lymphocytes from patients with myeloid malignancies. Br J Haematol 100(4):784–792

    Article  CAS  PubMed  Google Scholar 

  • Buyse M, Squifflet P, Lange BJ, Alonzo TA, Larson RA, Kolitz JE, George SL, Bloomfield CD, Castaigne S, Chevret S, Blaise D, Maraninchi D, Lucchesi KJ, Burzykowski T (2011) Individual patient data meta-analysis of randomized trials evaluating IL–2 monotherapy as remission maintenance therapy in acute myeloid leukemia. Blood 117(26):7007–7013. doi:10.1182/blood-2011-02-337725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carlens S, Gilljam M, Chambers BJ, Aschan J, Guven H, Ljunggren HG, Christensson B, Dilber MS (2001) A new method for in vitro expansion of cytotoxic human CD3-CD56 + natural killer cells. Hum Immunol 62(10):1092–1098

    Article  CAS  PubMed  Google Scholar 

  • Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 99(3):754–758

    Article  CAS  PubMed  Google Scholar 

  • Chen DF, Prasad VK, Broadwater G, Reinsmoen NL, DeOliveira A, Clark A, Sullivan KM, Chute JP, Horwitz ME, Gasparetto C, Long GD, Yang Y, Chao NJ, Rizzieri DA (2012) Differential impact of inhibitory and activating Killer Ig-Like Receptors (KIR) on high-risk patients with myeloid and lymphoid malignancies undergoing reduced intensity transplantation from haploidentical related donors. Bone Marrow Transplant 47(6):817–823. doi:10.1038/bmt.2011.181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chklovskaia E, Nowbakht P, Nissen C, Gratwohl A, Bargetzi M, Wodnar-Filipowicz A (2004) Reconstitution of dendritic and natural killer-cell subsets after allogeneic stem cell transplantation: effects of endogenous flt3 ligand. Blood 103(10):3860–3868. doi:10.1182/blood-2003-04-1200

    Article  CAS  PubMed  Google Scholar 

  • Cho D, Campana D (2009) Expansion and activation of natural killer cells for cancer immunotherapy. Korean J Lab Med 29(2):89–96. doi:200904089 [pii]10.3343/kjlm.2009.29.2.89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clausen J, Petzer AL, Vergeiner B, Enk M, Stauder R, Gastl G, Gunsilius E (2001) Optimal timing for the collection and in vitro expansion of cytotoxic CD56(+) lymphocytes from patients undergoing autologous peripheral blood stem cell transplantation. J Hematother Stem Cell Res 10(4):513–521. doi:10.1089/15258160152509127

    Article  CAS  PubMed  Google Scholar 

  • Clausen J, Vergeiner B, Enk M, Petzer AL, Gastl G, Gunsilius E (2003) Functional significance of the activation-associated receptors CD25 and CD69 on human NK-cells and NK-like T-cells. Immunobiology 207(2):85–93

    Article  CAS  PubMed  Google Scholar 

  • Clausen J, Enk M, Vergeiner B, Eisendle K, Petzer AL, Gastl G, Gunsilius E (2004) Suppression of natural killer cells in the presence of CD34 + blood progenitor cells and peripheral blood lymphocytes. Biol Blood Marrow Transplant 10(10):691–697. doi:10.1016/j.bbmt.2004.06.009S1083879104003064 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Clausen J, Wolf D, Petzer AL, Gunsilius E, Schumacher P, Kircher B, Gastl G, Nachbaur D (2007) Impact of natural killer cell dose and donor killer-cell immunoglobulin-like receptor (KIR) genotype on outcome following human leucocyte antigen-identical haematopoietic stem cell transplantation. Clin Exp Immunol 148(3):520–528. doi:10.1111/j.1365-2249.2007.03360.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clemenceau B, Gallot G, Vivien R, Gaschet J, Campone M, Vie H (2006) Long-term preservation of antibody-dependent cellular cytotoxicity (ADCC) of natural killer cells amplified in vitro from the peripheral blood of breast cancer patients after chemotherapy. J Immunother 29(1):53–60. doi:00002371-200601000-00006 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22 (11):633–640

    Article  CAS  PubMed  Google Scholar 

  • Costello RT, Sivori S, Marcenaro E, Lafage-Pochitaloff M, Mozziconacci MJ, Reviron D, Gastaut JA, Pende D, Olive D, Moretta A (2002) Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 99 (10):3661–3667

    Article  CAS  PubMed  Google Scholar 

  • de Rham C, Ferrari-Lacraz S, Jendly S, Schneiter G, Dayer JM, Villard J (2007) The proinflammatory cytokines IL-2, IL-15 and IL-21 modulate the repertoire of mature human natural killer cell receptors. Arthritis Res Ther 9(6):R125. doi:ar2336 [pii]10.1186/ar2336

    Article  PubMed Central  PubMed  Google Scholar 

  • Decot V, Voillard L, Latger-Cannard V, Aissi-Rothe L, Perrier P, Stoltz JF, Bensoussan D (2010) Natural-killer cell amplification for adoptive leukemia relapse immunotherapy: comparison of three cytokines, IL-2, IL-15, or IL-7 and impact on NKG2D, KIR2DL1, and KIR2DL2 expression. Exp Hematol 38(5):351–362. doi:S0301-472X(10)00051-2 [pii]10.1016/j.exphem.2010.02.006

    Article  CAS  PubMed  Google Scholar 

  • Denman CJ, Senyukov VV, Somanchi SS, Phatarpekar PV, Kopp LM, Johnson JL, Singh H, Hurton L, Maiti SN, Huls MH, Champlin RE, Cooper LJ, Lee DA (2012) Membrane-Bound IL-21 Promotes Sustained Ex Vivo Proliferation of Human Natural Killer Cells. PLoS One 7(1):e30264. doi:10.1371/journal.pone.0030264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dunbar EM, Buzzeo MP, Levine JB, Schold JD, Meier-Kriesche HU, Reddy V (2008) The relationship between circulating natural killer cells after reduced intensity conditioning hematopoietic stem cell transplantation and relapse-free survival and graft-versus-host disease. Haematologica 93(12):1852–1858. doi:10.3324/haematol.13033

    Article  PubMed  Google Scholar 

  • Farag SS, Caligiuri MA (2006) Human natural killer cell development and biology. Blood Rev 20(3):123–137. doi:S0268-960X(05)00055-X [pii]10.1016/j.blre.2005.10.001

    Article  CAS  PubMed  Google Scholar 

  • Fujisaki H, Kakuda H, Shimasaki N, Imai C, Ma J, Lockey T, Eldridge P, Leung WH, Campana D (2009) Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res 69(9):4010–4017. doi:0008-5472.CAN-08-3712 [pii]10.1158/0008-5472.CAN-08-3712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gagne K, Brizard G, Gueglio B, Milpied N, Herry P, Bonneville F, Cheneau ML, Schleinitz N, Cesbron A, Follea G, Harrousseau JL, Bignon JD (2002) Relevance of KIR gene polymorphisms in bone marrow transplantation outcome. Hum Immunol 63(4):271–280

    Article  CAS  PubMed  Google Scholar 

  • Giebel S, Locatelli F, Lamparelli T, Velardi A, Davies S, Frumento G, Maccario R, Bonetti F, Wojnar J, Martinetti M, Frassoni F, Giorgiani G, Bacigalupo A, Holowiecki J (2003) Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood 102(3):814–819

    Article  CAS  PubMed  Google Scholar 

  • Gill S, Olson JA, Negrin RS (2009) Natural killer cells in allogeneic transplantation: effect on engraftment, graft- versus-tumor, and graft-versus-host responses. Biol Blood Marrow Transplant 15(7):765–776. doi:10.1016/j.bbmt.2009.01.019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gong W, Xiao W, Hu M, Weng X, Qian L, Pan X, Ji M (2010) Ex vivo expansion of natural killer cells with high cytotoxicity by K562 cells modified to co-express major histocompatibility complex class I chain-related protein A, 4–1BB ligand, and interleukin–15. Tissue Antigens. doi:TAN1535 [pii]10.1111/j.1399-0039.2010.01535.x

    Google Scholar 

  • Karre K, Ljunggren HG, Piontek G, Kiessling R (1986) Selective rejection of H –2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319 (6055):675–678. doi:10.1038/319675a0

    Article  CAS  PubMed  Google Scholar 

  • Kayagaki N, Yamaguchi N, Nakayama M, Takeda K, Akiba H, Tsutsui H, Okamura H, Nakanishi K, Okumura K, Yagita H (1999) Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells. J Immunol 163(4):1906–1913

    CAS  PubMed  Google Scholar 

  • Kim DH, Sohn SK, Lee NY, Baek JH, Kim JG, Won DI, Suh JS, Lee KB, Shin IH (2005) Transplantation with higher dose of natural killer cells associated with better outcomes in terms of non-relapse mortality and infectious events after allogeneic peripheral blood stem cell transplantation from HLA-matched sibling donors. Eur J Haematol 75(4):299–308. doi:EJH514 [pii]10.1111/j.1600-0609.2005.00514.x

    Article  PubMed  Google Scholar 

  • Klingemann HG, Martinson J (2004) Ex vivo expansion of natural killer cells for clinical applications. Cytotherapy 6(1):15–22

    Article  PubMed  Google Scholar 

  • Koehl U, Sorensen J, Esser R, Zimmermann S, Gruttner HP, Tonn T, Seidl C, Seifried E, Klingebiel T, Schwabe D (2004) IL-2 activated NK cell immunotherapy of three children after haploidentical stem cell transplantation. Blood Cells Mol Dis 33(3):261–266. doi:S1079-9796(04)00171-8 [pii]10.1016/j.bcmd.2004.08.013

    Article  CAS  PubMed  Google Scholar 

  • Koehl U, Esser R, Zimmermann S, Tonn T, Kotchetkov R, Bartling T, Sorensen J, Gruttner HP, Bader P, Seifried E, Martin H, Lang P, Passweg JR, Klingebiel T, Schwabe D (2005) Ex vivo expansion of highly purified NK cells for immunotherapy after haploidentical stem cell transplantation in children. Klinische Padiatrie 217(6):345–350

    Article  CAS  PubMed  Google Scholar 

  • Koene HR, Kleijer M, Algra J, Roos D, von dem Borne AE, de Haas M (1997) Fc gammaRIIIa –158 V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa –48 L/R/H phenotype. Blood 90 (3):1109–1114

    CAS  PubMed  Google Scholar 

  • Leung W, Iyengar R, Turner V, Lang P, Bader P, Conn P, Niethammer D, Handgretinger R (2004) Determinants of antileukemia effects of allogeneic NK cells. J Immunol 172 (1):644–650

    Article  CAS  PubMed  Google Scholar 

  • Ljunggren HG, Karre K (1990) In search of the ’missing self’: MHC molecules and NK cell recognition. Immunol Today 11(7):237–244

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Kondo Y, Takamatsu H, Ohata K, Yamazaki H, Takami A, Akatsuka Y, Nakao S (2008) CD16 + CD56- NK cells in the peripheral blood of cord blood transplant recipients: a unique subset of NK cells possibly associated with graft-versus-leukemia effect. Eur J Haematol 81(1):18–25. doi:EJH1073 [pii]10.1111/j.1600-0609.2008.01073.x

    Article  PubMed  Google Scholar 

  • Matthes-Martin S, Lion T, Haas OA, Frommlet F, Daxberger H, Konig M, Printz D, Scharner D, Eichstill C, Peters C, Lawitschka A, Gadner H, Fritsch G (2003) Lineage-specific chimaerism after stem cell transplantation in children following reduced intensity conditioning: potential predictive value of NK cell chimaerism for late graft rejection. Leukemia 17(10):1934–1942. doi:10.1038/sj.leu.2403087

    Article  CAS  PubMed  Google Scholar 

  • McQueen KL, Dorighi KM, Guethlein LA, Wong R, Sanjanwala B, Parham P (2007) Donor-recipient combinations of group A and B KIR haplotypes and HLA class I ligand affect the outcome of HLA-matched, sibling donor hematopoietic cell transplantation. Hum Immunol 68(5):309–323. doi:10.1016/j.humimm.2007.01.019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ, Orchard PJ, Blazar BR, Wagner JE, Slungaard A, Weisdorf DJ, Okazaki IJ, McGlave PB (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105(8):3051–3057

    Article  CAS  PubMed  Google Scholar 

  • Miller JS, Cooley S, Parham P, Farag SS, Verneris MR, McQueen KL, Guethlein LA, Trachtenberg EA, Haagenson M, Horowitz MM, Klein JP, Weisdorf DJ (2007) Missing KIR ligands are associated with less relapse and increased graft-versus-host disease (GVHD) following unrelated donor allogeneic HCT. Blood 109(11):5058–5061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, Moretta L (2001) Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19:197–223. doi:19/1/197[pii]10.1146/annurev.immunol.19.1.197

    Article  CAS  PubMed  Google Scholar 

  • Nguyen S, Béziat V, Norol F, Uzunov M, Trebeden-Negre H, Azar N, Boudifa A, Bories D, Debré P, Vernant J-P, Vieillard V, Dhédin N (2011) Infusion of allogeneic natural killer cells in a patient with acute myeloid leukemia in relapse after haploidentical hematopoietic stem cell transplantation. Transfusion 51:1769–1778

    Google Scholar 

  • North J, Bakhsh I, Marden C, Pittman H, Addison E, Navarrete C, Anderson R, Lowdell MW (2007) Tumor-primed human natural killer cells lyse NK-resistant tumor targets: evidence of a two-stage process in resting NK cell activation. J Immunol 178(1):85–94. doi:178/1/85 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Nowbakht P, Ionescu MC, Rohner A, Kalberer CP, Rossy E, Mori L, Cosman D, De Libero G, Wodnar-Filipowicz A (2005) Ligands for natural killer cell-activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myeloid leukemias. Blood 105(9):3615–3622

    Article  CAS  PubMed  Google Scholar 

  • Parkhurst MR, Riley JP, Dudley ME, Rosenberg SA (2011) Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin Cancer Res 17(19):6287–6297. doi:10.1158/1078-0432.CCR-11-1347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Passweg JR, Tichelli A, Meyer-Monard S, Heim D, Stern M, Kuhne T, Favre G, Gratwohl A (2004) Purified donor NK-lymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation. Leukemia 18(11):1835–1838. doi:10.1038/sj.leu.2403524

    Article  CAS  PubMed  Google Scholar 

  • Passweg JR, Stern M, Koehl U, Uharek L, Tichelli A (2005) Use of natural killer cells in hematopoetic stem cell transplantation. Bone Marrow Transplant 35(7):637–643. doi:10.1038/sj.bmt.1704810

    Article  CAS  PubMed  Google Scholar 

  • Pegram HJ, Andrews DM, Smyth MJ, Darcy PK, Kershaw MH (2011) Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol 89(2):216–224. doi:10.1038/icb.2010.78

    Article  PubMed  Google Scholar 

  • Pende D, Spaggiari GM, Marcenaro S, Martini S, Rivera P, Capobianco A, Falco M, Lanino E, Pierri I, Zambello R, Bacigalupo A, Mingari MC, Moretta A, Moretta L (2005) Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the Poliovirus receptor (CD155) and Nectin–2 (CD112). Blood 105(5):2066–2073

    Article  CAS  PubMed  Google Scholar 

  • Persky DO, Dornan D, Goldman BH, Braziel RM, Fisher RI, Leblanc M, Maloney DG, Press OW, Miller TP, Rimsza LM (2012) Fc gamma receptor 3a genotype predicts overall survival in follicular lymphoma patients treated on SWOG trials with combined monoclonal antibody plus chemotherapy but not chemotherapy alone. Haematologica 97 (6):937–942. doi:10.3324/haematol.2011.050419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perussia B, Ramoni C, Anegon I, Cuturi MC, Faust J, Trinchieri G (1987) Preferential proliferation of natural killer cells among peripheral blood mononuclear cells cocultured with B lymphoblastoid cell lines. Nat Immun Cell Growth Regul 6(4):171–188

    CAS  PubMed  Google Scholar 

  • Raulet DH, Guerra N (2009) Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat Rev Immunol 9(8):568–580. doi:10.1038/nri2604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reim F, Dombrowski Y, Ritter C, Buttmann M, Hausler S, Ossadnik M, Krockenberger M, Beier D, Beier CP, Dietl J, Becker JC, Honig A, Wischhusen J (2009) Immunoselection of breast and ovarian cancer cells with trastuzumab and natural killer cells: selective escape of CD44high/CD24low/HER2low breast cancer stem cells. Cancer Res 69 (20):8058–8066. doi:0008-5472.CAN-09-0834 [pii]10.1158/0008-5472.CAN-09-0834

    Article  CAS  PubMed  Google Scholar 

  • Rizzieri DA, Storms R, Chen DF, Long G, Yang Y, Nikcevich DA, Gasparetto C, Horwitz M, Chute J, Sullivan K, Hennig T, Misra D, Apple C, Baker M, Morris A, Green PG, Hasselblad V, Chao NJ (2010) Natural killer cell-enriched donor lymphocyte infusions from A 3–6/6 HLA matched family member following nonmyeloablative allogeneic stem cell transplantation. Biol Blood Marrow Transplant 16(8):1107–1114. doi:10.1016/j.bbmt.2010.02.018

    Article  PubMed Central  PubMed  Google Scholar 

  • Rosenberg SA, Lotze MT, Yang JC, Topalian SL, Chang AE, Schwartzentruber DJ, Aebersold P, Leitman S, Linehan WM, Seipp CA, et al. (1993) Prospective randomized trial of high-dose interleukin –2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst 85(8):622–632

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA, Yannelli JR, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, Seipp CA, Einhorn JH, White DE (1994) Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst 86(15):1159–1166

    Article  CAS  PubMed  Google Scholar 

  • Rubnitz JE, Inaba H, Ribeiro RC, Pounds S, Rooney B, Bell T, Pui CH, Leung W (2010) NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol 28(6):955–999. doi:JCO.2009.24.4590 [pii]10.1200/JCO.2009.24.4590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ruggeri L, Capanni M, Casucci M, Volpi I, Tosti A, Perruccio K, Urbani E, Negrin RS, Martelli MF, Velardi A (1999) Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 94(1):333–339

    CAS  PubMed  Google Scholar 

  • Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, Martelli MF, Velardi A (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295(5562):2097–2100

    Article  CAS  PubMed  Google Scholar 

  • Ruggeri L, Mancusi A, Capanni M, Urbani E, Carotti A, Aloisi T, Stern M, Pende D, Perruccio K, Burchielli E, Topini F, Bianchi E, Aversa F, Martelli MF, Velardi A (2007) Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood 110 (1):433–440. doi:10.1182/blood-2006-07-038687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santourlidis S, Trompeter HI, Weinhold S, Eisermann B, Meyer KL, Wernet P, Uhrberg M (2002) Crucial role of DNA methylation in determination of clonally distributed killer cell Ig-like receptor expression patterns in NK cells. J Immunol 169(8):4253–4261

    Article  CAS  PubMed  Google Scholar 

  • Satwani P, van de Ven C, Ayello J, Cairo D, Simpson LL, Baxi L, Cairo MS (2011) Interleukin (IL)-15 in combination with IL-2, fms-like tyrosine kinase-3 ligand and anti-CD3 significantly enhances umbilical cord blood natural killer (NK) cell and NK-cell subset expansion and NK function. Cytotherapy. doi:10.3109/14653249.2011.563292

    Google Scholar 

  • Savani BN, Mielke S, Adams S, Uribe M, Rezvani K, Yong AS, Zeilah J, Kurlander R, Srinivasan R, Childs R, Hensel N, Barrett AJ (2007) Rapid natural killer cell recovery determines outcome after T-cell-depleted HLA-identical stem cell transplantation in patients with myeloid leukemias but not with acute lymphoblastic leukemia. Leukemia 21 (10):2145–2152. doi:2404892 [pii]10.1038/sj.leu.2404892

    Article  CAS  PubMed  Google Scholar 

  • Shilling HG, McQueen KL, Cheng NW, Shizuru JA, Negrin RS, Parham P (2003) Reconstitution of NK cell receptor repertoire following HLA-matched hematopoietic cell transplantation. Blood 101(9):3730–3740. doi:10.1182/blood -2002-08-2568

    Article  CAS  PubMed  Google Scholar 

  • Siegler U, Kalberer CP, Nowbakht P, Sendelov S, Meyer-Monard S, Wodnar-Filipowicz A (2005) Activated natural killer cells from patients with acute myeloid leukemia are cytotoxic against autologous leukemic blasts in NOD/SCID mice. Leukemia 19 (12):2215–2222

    Article  CAS  PubMed  Google Scholar 

  • Siegler U, Meyer-Monard S, Jorger S, Stern M, Tichelli A, Gratwohl A, Wodnar-Filipowicz A, Kalberer CP (2010) Good manufacturing practice-compliant cell sorting and large-scale expansion of single KIR-positive alloreactive human natural killer cells for multiple infusions to leukemia patients. Cytotherapy 12(6):750–763. doi:10.3109/14653241003786155

    Article  CAS  PubMed  Google Scholar 

  • Smyth MJ, Cretney E, Takeda K, Wiltrout RH, Sedger LM, Kayagaki N, Yagita H, Okumura K (2001) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon gamma-dependent natural killer cell protection from tumor metastasis. J Exp Med 193(6):661–670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smyth MJ, Hayakawa Y, Takeda K, Yagita H (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2 (11):850–861. doi:10.1038/nrc928

    Article  CAS  PubMed  Google Scholar 

  • Somanchi SS, Senyukov VV, Denman CJ, Lee DA (2011) Expansion, purification, and functional assessment of human peripheral blood NK cells. J Vis Exp (48). doi:2540 [pii]10.3791/2540

    Google Scholar 

  • Sondermann P, Huber R, Oosthuizen V, Jacob U (2000) The 3.2-A crystal structure of the human IgG1 Fc fragment-Fc gammaRIII complex. Nature 406(6793):267–273. doi:10.1038/35018508

    Article  CAS  PubMed  Google Scholar 

  • Spanholtz J, Tordoir M, Eissens D, Preijers F, van der Meer A, Joosten I, Schaap N, de Witte TM, Dolstra H (2010) High log-scale expansion of functional human natural killer cells from umbilical cord blood CD34-positive cells for adoptive cancer immunotherapy. PLoS One 5(2):e9221. doi:10.1371/journal.pone.0009221

    Article  PubMed Central  PubMed  Google Scholar 

  • Storek J, Geddes M, Khan F, Huard B, Helg C, Chalandon Y, Passweg J, Roosnek E (2008) Reconstitution of the immune system after hematopoietic stem cell transplantation in humans. Semin Immunopathol 30(4):425–437. doi:10.1007/s00281-008-0132-5

    Article  PubMed  Google Scholar 

  • Stringaris K, Adams S, Uribe M, Eniafe R, Wu CO, Savani BN, Barrett AJ (2010) Donor KIR Genes 2DL5A, 2DS1 and 3DS1 are associated with a reduced rate of leukemia relapse after HLA-identical sibling stem cell transplantation for acute myeloid leukemia but not other hematologic malignancies. Biol Blood Marrow Transplant 16(9):1257–1264. doi:10.1016/j.bbmt.2010.03.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sutlu T, Stellan B, Gilljam M, Quezada HC, Nahi H, Gahrton G, Alici E (2010) Clinical-grade, large-scale, feeder-free expansion of highly active human natural killer cells for adoptive immunotherapy using an automated bioreactor. Cytotherapy 12(8):1044–1055. doi:10.3109/14653249.2010.504770

    Article  CAS  PubMed  Google Scholar 

  • Symons HJ, Leffell MS, Rossiter ND, Zahurak M, Jones RJ, Fuchs EJ (2010) Improved survival with inhibitory killer immunoglobulin receptor (KIR) gene mismatches and KIR haplotype B donors after nonmyeloablative, HLA-haploidentical bone marrow transplantation. Biol Blood Marrow Transplant 16(4):533–542. doi:10.1016/j.bbmt.2009.11.022

    Article  PubMed Central  PubMed  Google Scholar 

  • Tajima F, Kawatani T, Endo A, Kawasaki H (1996) Natural killer cell activity and cytokine production as prognostic factors in adult acute leukemia. Leukemia 10(3):478–482

    CAS  PubMed  Google Scholar 

  • Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Yamaguchi N, Yagita H, Okumura K (2001) Involvement of tumor necrosis factor-related apoptosis-inducing ligand in NK cell-mediated and IFN-gamma-dependent suppression of subcutaneous tumor growth. Cell Immunol 214 (2):194–200. doi:10.1006/cimm.2001.1896

    Article  CAS  PubMed  Google Scholar 

  • Terme M, Ullrich E, Delahaye NF, Chaput N, Zitvogel L (2008) Natural killer cell–directed therapies: moving from unexpected results to successful strategies. Nature Immunol 9 (5):486–494. doi:10.1038/ni1580

    Article  CAS  Google Scholar 

  • Tomala J, Chmelova H, Mrkvan T, Rihova B, Kovar M (2009) In vivo expansion of activated naive CD8 + T-cells and NK cells driven by complexes of IL-2 and anti-IL-2 monoclonal antibody as novel approach of cancer immunotherapy. J Immunol 183(8):4904–4912. doi:183/8/4904 [pii]10.4049/jimmunol.0900284

    Article  CAS  PubMed  Google Scholar 

  • Torelli GF, Guarini A, Palmieri G, Breccia M, Vitale A, Santoni A, Foa R (2002) Expansion of cytotoxic effectors with lytic activity against autologous blasts from acute myeloid leukaemia patients in complete haematological remission. Br J Haematol 116(2):299–307

    Article  CAS  PubMed  Google Scholar 

  • Torelli GF, Guarini A, Maggio R, Alfieri C, Vitale A, Foa R (2005) Expansion of natural killer cells with lytic activity against autologous blasts from adult and pediatric acute lymphoid leukemia patients in complete hematologic remission. Haematologica 90(6):785–792

    PubMed  Google Scholar 

  • Torkar M, Norgate Z, Colonna M, Trowsdale J, Wilson MJ (1998) Isotypic variation of novel immunoglobulin-like transcript/killer cell inhibitory receptor loci in the leukocyte receptor complex. Eur J Immunol 28(12):3959–3967. doi:10.1002/(SICI)1521-4141(199812)28:12 & #60;3959::AID-IMMU3959 & #62;3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  • Trinchieri G (1989) Biology of natural killer cells. Adv Immunol 47:187–376

    Article  CAS  PubMed  Google Scholar 

  • Uhrberg M, Valiante NM, Shum BP, Shilling HG, Lienert-Weidenbach K, Corliss B, Tyan D, Lanier LL, Parham P (1997) Human diversity in killer cell inhibitory receptor genes. Immunity 7(6):753–763

    Article  CAS  PubMed  Google Scholar 

  • Veeramani S, Wang SY, Dahle C, Blackwell S, Jacobus L, Knutson T, Button A, Link BK, Weiner GJ (2011) Rituximab infusion induces NK activation in lymphoma patients with the high-affinity CD16 polymorphism. Blood 118(12):3347–3349. doi:10.1182/blood-2011-05-351411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verneris MR, Miller JS (2009) The phenotypic and functional characteristics of umbilical cord blood and peripheral blood natural killer cells. Br J Haematol 147(2):185–191. doi:10.1111/j.1365-2141.2009.07768.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weng WK, Levy R (2003) Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 21(21):3940–3947. doi:10.1200/JCO.2003.05.013

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Xu Y (2010) IL-15R alpha-IgG1-Fc enhances IL-2 and IL-15 anti-tumor action through NK and CD8 + T cells proliferation and activation. J Mol Cell Biol 2(4):217–222. doi:mjq012 [pii]10.1093/jmcb/mjq012

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Edberg JC, Redecha PB, Bansal V, Guyre PM, Coleman K, Salmon JE, Kimberly RP (1997) A novel polymorphism of FcgammaRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest 100(5):1059–1070. doi:10.1172/JCI119616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B (1998) Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 188(12):2375–2380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang H, Cui Y, Voong N, Sabatino M, Stroncek DF, Morisot S, Civin CI, Wayne AS, Levine BL, Mackall CL (2011) Activating signals dominate inhibitory signals in CD137 L/IL-15 activated natural killer cells. J Immunother 34(2):187–195. doi:10.1097/CJI.0b013e31820d2a21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean Anthony Lee .

Editor information

Editors and Affiliations

Conclusion

Conclusion

Adoptive transfer of NK cells is experiencing a renaissance in basic science and applied clinical trials as a potential immunotherapeutic for AML. With new methods now available to generate large numbers of NK for higher cell doses and repeated infusions, there are myriad opportunities for adoptive immunotherapy to be combined with chemotherapy, antibodies, or allogeneic HSCT.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag New York

About this chapter

Cite this chapter

Lee, D., Cooper, L., Shpall, E. (2015). NK-Cell Immunotherapy for AML. In: Andreeff, M. (eds) Targeted Therapy of Acute Myeloid Leukemia. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1393-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1393-0_40

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1392-3

  • Online ISBN: 978-1-4939-1393-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics