Skip to main content

Inhibition of Glycolysis as a Therapeutic Strategy in Acute Myeloid Leukemias

  • Chapter
  • First Online:
Targeted Therapy of Acute Myeloid Leukemia

Part of the book series: Current Cancer Research ((CUCR))

Abstract

The metabolic pathways in cancer cells are reprogrammed such that they utilize nutrients quite differently than their normal, nonmalignant counterparts. It has been known for some time that the cancer phenotype results in alterations to glucose metabolism and, more recently, modifications to both glutamine and fatty acid metabolism have been noted. So prevalent is this altered metabolism in malignancy that many now consider it a hallmark of the cancer phenotype. As such, the metabolic discrepancies between cancer cells and normal cells provide a therapeutic window for the potential development of targeted anticancer agents. A number of pharmacological agents that either directly target the enzymes driving tumor glycolysis or the upstream mediators of the glycolytic pathway are currently under investigation with the hope of combining them with existing clinical protocols. Akin to the cytokines and chemokines produced by cancer cells, the intermediates and byproducts of altered tumor glycolysis, upon secretion from cancer cells, are also capable of modulating the phenotypes of normal cells located in the tumor microenvironment. Thus, glycolytic inhibitors may also rescue the effects that tumor derived metabolites have on surrounding cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bauer DE, Hatzivassiliou G, Zhao F et al (2005) Oncogene 24:6314–6322

    Google Scholar 

  • Bayley JP, Devilee P (2012) The Warburg effect in 2012. Curr Opin Onco 24:62–67

    Google Scholar 

  • Bonnett S, Archer SL, Allalunis-Turner J et al (2007) Cancer Cell 11:37–51

    Google Scholar 

  • Bonucelli G, Tsirigos A, Whitaker-Menezes D et al (2010) Cell Cycle 9:3506–3513

    Google Scholar 

  • Burger JA, Tsukada N, Burger M et al (2000) Blood 96:2655–2663

    Google Scholar 

  • Cairns RA, Harris IS, Mak TW (2011) Nat Rev Cancer 11:85–95

    Google Scholar 

  • Chang B, Chen Y, Zhao Y et al (2007) Science 318:444–447

    Google Scholar 

  • Chou WC, Hou HA, Chen CY et al (2010) Blood 115:2749–2754

    Google Scholar 

  • Clem B, Teland S, Clem A et al (2008) Mol Cancer Ther 7:110–120

    Google Scholar 

  • Costa LT, Da Silva D, Guimaraes CR, Zancan P et al (2007) Biochem J 408:123–130

    Google Scholar 

  • Dang CV (2012) Cell 149:22–35

    Google Scholar 

  • Dang L, White DW, Gross S et al (2009) Nature 462:739–744

    Google Scholar 

  • DeBerardinis RJ, Mancuso A, Daikhin E (2007) PNAS 104:19345–19350

    Google Scholar 

  • Deprez J, Vertommen D, Alessi DR et al (1997) J Biol Chem 272:17269–17275

    Google Scholar 

  • Dietl K, Renner K, Dettmer K (2010) J Immunol 184:1200–1209

    Google Scholar 

  • Fantin VR, St-Pierre J, Leder P (2006) Cancer Cell 9:425–434

    Google Scholar 

  • Figueroa ME, Abdel-Wahab O, Lu C et al (2010) Cancer Cell 18:553–567

    Google Scholar 

  • Fischer K, Hoffman P, Voelkl S et al (2007) Blood 109:3812–3819

    Google Scholar 

  • Floridi A, Paggi MG, Marcante ML et al (1981) J Natl Cancer Inst 66:497–499

    Google Scholar 

  • Gottfried E, Kunz-Schughart LA, Ebner S et al (2006) Blood 107:2013–2021

    Google Scholar 

  • Gottlob K, Majewski N, Kennedy S et al (2001) Genes Dev 15:1406–1418

    Google Scholar 

  • Gross S, Cairns RA, Minden MD et al (2010) J Exp Med 207:339–344

    Google Scholar 

  • Herman SE, Gordon AL, Wagner AJ et al (2010) Blood 116:2078–2088

    Google Scholar 

  • Iwamoto S, Mihara K, Downing JR et al (2007) J Clin Invest 117:1049–1057

    Google Scholar 

  • Jones RG, Thompson CB (2009) Genes Dev 23:537–548

    Google Scholar 

  • Kioyi H, Naoe T, Nakano, Y et al (1999) Blood 93:3074–3080

    Google Scholar 

  • Kohn AD, Summers SA, Birnbaum MJ et al (1996) J Biol Chem 271:31372–31378

    Google Scholar 

  • Koivunen P, Lee S, Duncan CG (2012) Nature 483:484–488

    Google Scholar 

  • Koukourakis MI, Giatromanolaki A, Harris AL et al (2006) Cancer Res 66:632–637

    Google Scholar 

  • Krawczyk CM, Holowka T, Sun J et al (2009) Blood 115:4742–4749

    Google Scholar 

  • Le A, Cooper CR, Gouw AM et al (2010) PNAS 107:2037–2042

    Google Scholar 

  • Maher JC, Krishan A, Lampidis TJ (2004) Cancer Chemother Pharmacol 53:1745–1751

    Google Scholar 

  • Manerba M, Vettraino, M, Fiume L et al (2012) Chem Med Chem 7:311–317

    Google Scholar 

  • Mardis ER, Ding L, Dooling DJ et al (2010) N Engl J Med 361:1058–1066

    Google Scholar 

  • Murray CM, Bundick ID, Cook, RI et al (2005) Nat Chem Biol 1:371–376

    Google Scholar 

  • Nishio M, Endo T, Tsukada et al (2005) Blood 106:1012–1020

    Google Scholar 

  • Rathmell JC, Farkash EA, Gao W, Thompson CB (2001) J Immunol 167:6869–6876

    Google Scholar 

  • Reitman ZJ, Jon G, Karoly Ed et al (2011) PNAS 108:3270–3275

    Google Scholar 

  • Scatena R, Bottoni P, Pontoglio A et al (2008) Expert Opin Invertis Drugs 17:1533–1545

    Google Scholar 

  • Shim, H, Dolde, C, Lweis BC et al (1997) PNAS 94:6658–6663

    Google Scholar 

  • Simioni C, Neri LM, Tabellini G et al (2012) Leukemia Epub ahead of publication 1–7

    Google Scholar 

  • Sonveaux P, Vegran F, Schroeder T et al (2008) J Clin Invest 118:3930–3942

    Google Scholar 

  • Tejada M, Gaal D, Hullan L et al (2006) Anticancer Red 26:3477–3483

    Google Scholar 

  • Tennant DA, Duran R, Boulahbel H et al (2009) Carcinogenesis 30:1269–1280

    Google Scholar 

  • Vivanco I, Sawyers CL (2002) Nat Rev Cancer 2:489–501

    Google Scholar 

  • Walenta S, Wetterling M, Lehrke M et al (2000) Can Res 60:916–921

    Google Scholar 

  • Walenta S, Schroeder T, Mueller-Klieser W (2004) Curr Med Chem 11:2195–2204

    Google Scholar 

  • Warburg O (1956) Science 123:309–314

    Google Scholar 

  • Warburg O, Wind F, Negelin E (1927) J Gen Physiol 8:519–530

    Google Scholar 

  • Weisber E, Manley P, Mestan J et al (2006) Br J Cancer 94:1765–1769

    Google Scholar 

  • Wise DR, DeBerardinis RJ, Mancuso A et al (2008) PNAS 105:18782–18787

    Google Scholar 

  • Xu RH, Pelicano H, Zhang H, Giles FJ et al (2005) Leukemia 19:2153–2158

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob C. Laister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag New York

About this chapter

Cite this chapter

Laister, R., Minden, M., Mak, T. (2015). Inhibition of Glycolysis as a Therapeutic Strategy in Acute Myeloid Leukemias. In: Andreeff, M. (eds) Targeted Therapy of Acute Myeloid Leukemia. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1393-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1393-0_38

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1392-3

  • Online ISBN: 978-1-4939-1393-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics