Skip to main content

New Heterogeneity of the Leukemic Stem Cells

  • Chapter
  • First Online:

Part of the book series: Current Cancer Research ((CUCR))

Abstract

The cancer stem cell (CSC) hypothesis proposes that cancer is propagated by a subpopulation of cells with stem cell properties, namely the ability to proliferate while balancing self-renewal with differentiation, to maintain the cancer. The presence of CSCs provides an explanation for the biological heterogeneity of cells within a cancer. In this chapter, we will focus mostly on acute myeloid leukemia, which was the first described model of CSCs. We will summarize recent data demonstrating a novel complexity of the leukemic stem cells compartment and discuss the potential implications this might have on targeting these cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anderson K, Lutz C, van Delft FW et al (2011) Genetic variegation of clonal architecture and propagating cells in leukemia. Nature 469:356–361

    Article  CAS  PubMed  Google Scholar 

  • Barabe F, Kennedy JA, Hope KJ, Dick JE (2007) Modeling the initiation and progression of human acute leukemia in mice. Science 316:600–604

    Article  CAS  PubMed  Google Scholar 

  • Blair A, Hogge DE, Ailles LE et al (1997) Lack of expression of thy-1 (cd90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 89:3104–3112

    CAS  PubMed  Google Scholar 

  • Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  CAS  PubMed  Google Scholar 

  • Bumm T, Muller C, Al-Ali HK et al (2003) Emergence of clonal cytogenetic abnormalities in Ph- cells in some CML patients in cytogenetic remission to imatinib but restoration of polyclonal hematopoiesis in the majority. Blood 101:1941–1949

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Kumar AR, Hudson WA et al (2008) Malignant transformation initiated by mll-af9: gene dosage and critical target cells. Cancer Cell 13:432–440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chou CW, Tang JL, Lin LL et al (2006) Nucleophosmin mutations in de novo acute myeloid leukemia: the age-dependent incidences and the stability during disease evolution. Cancer Res 66:3310–3316

    Article  CAS  PubMed  Google Scholar 

  • Corces-Zimmerman MR, Majeti R (2014) Pre-leukemic evolution of hematopoietic stem cells: the importance of early mutations in leukemogenesis. Leukemia Jul 9. doi: 10.1038/leu.2014.211

    Article  CAS  PubMed  Google Scholar 

  • Costello RT, Mallet F, Gaugler B et al (2000) Human acute myeloid leukemia CD34+/CD38- progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell trans- formation capacities. Cancer Res 60:4403–4411

    CAS  PubMed  Google Scholar 

  • Cozzio A, Passegue E, Ayton PM et al (2003) Similar MLL-associated leukaemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 17:3029–3035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eppert K, Takenaka K, Lechman ER et al (2011) Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 17:1086–1093

    Article  CAS  PubMed  Google Scholar 

  • Gale KB, Ford AM, Repp AM et al (1997) Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci U S A 94(25):13950–13954

    Article  CAS  PubMed  Google Scholar 

  • Gibbs KD, Jager A, Crespo O et al (2012) Decoupling of tumor-initiating activity from stable immunophenotype in hoxa9-meis1-driven AML. Cell Stem Cell 10:210–217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goardon N, Marchi E, Atzberger A et al (2011) Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 19:138–152

    Article  CAS  PubMed  Google Scholar 

  • Greaves M (2009) Darwin and evolutionary tales in leukemia. Hematology Am Soc Hematol Educ Program 2009:3–12

    Google Scholar 

  • Grimwade D, Hills RK, Moorman AV et al (2010) Refinement of cytogenetic classification in acute myeloid leukemia: Determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 116:354–365

    Article  CAS  PubMed  Google Scholar 

  • Haferlach C, Mecucci C, Schnittger S et al (2009) AML with mutated NPM1 carrying a normal or aberrant karyotype show overlapping biologic, pathologic, immunophenotypic, and prognostic features. Blood 114:3024–3032

    Article  CAS  PubMed  Google Scholar 

  • Hong D, Gupta R, Ancliff P et al (2008) Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 319(5861):336–339

    Article  CAS  PubMed  Google Scholar 

  • Hosen N, Park CY, Tatsumi N et al (2007) CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci U S A 104:11008–11013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huntly B, Shigematsu H, Deguchi K et al (2004) MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6:587–596

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal S, Jamieson CH, Pang WW et al (2009) CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138:271–285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jamieson CH. Ailles LE, Dylla SJ et al (2004) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351:657–667

    Article  CAS  PubMed  Google Scholar 

  • Jan M, Chao MP, Cha AC et al (2011) Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker. Proc Natl Acad Sci U S A 108:5009–5014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jelinek J, Oki Y, Gharibyan V et al (2005) JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia. Blood 106:3370–3373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jin L, Lee EM, Ramshaw HS et al (2009) Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell 5:31–42

    Article  CAS  PubMed  Google Scholar 

  • Kelly PN, Dakic A, Adams JM et al (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317:337

    Article  CAS  PubMed  Google Scholar 

  • Konrad M, Metzler M, Panzer S et al (2003) Late relapses evolve from slow-responding subclones in t(12, 21)-positive acute lymphoblastic leukemia: evidence for the persistence of a preleukemic clone. Blood 101(9):3635–3640

    Article  CAS  PubMed  Google Scholar 

  • Krivtsov AV, Twomey D, Feng Z et al (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL‚ÄìAF9. Nature 442:818–822

    Article  CAS  PubMed  Google Scholar 

  • Lapidot T, Sirard C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648

    Article  CAS  PubMed  Google Scholar 

  • Majeti R, Chao MP, Alizadeh AA et al (2009a) CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138:286–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Majeti R, Becker MW, Tian Q et al (2009b) Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. Proc Natl Acad Sci U S A 106:3396–3401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martelli MP, Pettirossi V, Thiede C et al (2010) CD34+ cells from AML with mutated NPM1 harbor cytoplasmic mutated nucleophosmin and generate leukemia in immunocompromised mice. Blood 116:3907–3922

    Article  CAS  PubMed  Google Scholar 

  • Mullighan RC, Phillips LA et al (2008) Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 322(5906):1377–1380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Notta F, Mullighan CG, Wang JC et al (2011) Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature 46(7330):362–367

    Article  Google Scholar 

  • Nurrul Abdullah L, Kai-Hua Chow E (2013) Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med 2:3

    Article  Google Scholar 

  • Pearce DJ, Taussig DC, Zibara K et al (2006) AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. Blood 107:1166–1173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quintana E, Shackleton M, Sabel MS et al (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ricci-Vitiani L, Lombardi DG, Pilozzi E et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Kitamura H, Hijikata A et al (2010) Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells. Sci Transl Med 2(17):17ra9

    Article  PubMed Central  PubMed  Google Scholar 

  • Sanchez PV, Perry RL, Sarry JE et al (2009) A robust xenotransplantation model for acute myeloid leukemia. Leukemia 23:2109–2117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sarry JE, Murphy K, Perry R et al (2011) Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rgammac-deficient mice. J Clin Invest 121:384–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schatton T. Murphy GF, Frank NY et al (2008) Identification of cells initiating human melanomas. Nature 451:345–349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schnittger S, Schoch C, Kern W et al (2005) Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 106:3733–3739

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  CAS  PubMed  Google Scholar 

  • Smith ML, Hills RK, Grimwade D (2011) Independent prognostic variables in acute myeloid leukaemia. Blood Rev 25:39–51

    Article  CAS  PubMed  Google Scholar 

  • Somervaille TCP, Cleary ML (2006) Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell 10:257–268

    Article  CAS  PubMed  Google Scholar 

  • Taussig DC, Miraki-Moud F, Anjos-Afonso F et al (2008) Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood 112:568–575

    Article  CAS  PubMed  Google Scholar 

  • Taussig DC, Vargaftig J, Miraki-Moud F et al (2010) Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(-) fraction. Blood 115:1976–1984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van Rhenen A, van Dongen GA, Kelder A et al (2007) The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood 110:2659–2666

    Article  CAS  PubMed  Google Scholar 

  • Vargaftig J, Taussig DC, Griessinger E et al (2011) Frequency of leukemic initiating cells does not depend on the xenotransplantation model used. Leukemia 4:858–860

    Google Scholar 

  • Wei J, Wunderlich M, Fox C et al (2008) Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell 13:483–495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang JJ, Bhojwani D, Yang W et al (2008) Genome-wide copy number profiling reveals molecular evolution from diagnosis to relapse in childhood acute lymphoblastic leukemia. Blood 112:4178–4183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou S, Schuetz D, Bunting KD et al (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side- population phenotype. Nat Med 7:1028–1034

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Bonnet Ph.D. .

Editor information

Editors and Affiliations

Conclusions

Conclusions

The CSC field has evolved rapidly over the past 2 decades, however it is becoming clear that the CSC or LSC is not a single entity, and more work is required to identify the LSC (or indeed LSCs) in a given patient. It is likely that a functional definition of the LSC will be required, in addition to a combination of surface markers and a characteristic gene expression program, in order to encompass the diversity of LSCs both within and between patients. This heterogeneity poses challenges in developing an effective LSC-directed therapeutic approach.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag New York

About this chapter

Cite this chapter

Bonnet, D. (2015). New Heterogeneity of the Leukemic Stem Cells. In: Andreeff, M. (eds) Targeted Therapy of Acute Myeloid Leukemia. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1393-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1393-0_28

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1392-3

  • Online ISBN: 978-1-4939-1393-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics