Skip to main content

NR4A Orphan Receptors as Drug Targets

  • Chapter
  • First Online:
  • 2091 Accesses

Part of the book series: Current Cancer Research ((CUCR))

Abstract

The orphan receptor NR4Al (Nur77, TR3, NGFI-B) is overexpressed in many different cancer cell lines and tumors, and, in leukemia cells, NR4Al is also more highly expressed than in B- or T-cell. In contrast, we observed the opposite pattern of NR4A2 (Nurrl) expression in these same cells. NR4Al is primarily oncogenic in cancer cell lines and is a target for inhibitors or inactivators and treatment of Jurkat cells with an NR4Al inactivator-induced apoptosis and inhibited cell growth. The in vitro characterization of NR4Al as pro-oncogenic in leukemia cells is in contrast to the tumor suppressor-like activity of NR4Al in transgenic mouse models, and these differences are currently being investigated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arkenbout EK, de Waard V, van Bragt M, van Achterberg TA, Grimbergen JM, Pichon B, Pannekoek H, de Vries CJ (2002) Protective function of transcription factor TR3 orphan receptor in atherogenesis: decreased lesion formation in carotid artery ligation model in TR3 transgenic mice. Circulation 106(12):1530–1535

    CAS  PubMed  Google Scholar 

  • Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, Mangelsdorf DJ (2006) Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 126(4):789–799

    CAS  PubMed  Google Scholar 

  • Bourguet W, Germain P, Gronemeyer H (2000) Nuclear receptor ligand-binding domains: three-dimensional structures, molecular interactions and pharmacological implications. Trends Pharmacol Sci 21(10):381–388

    CAS  PubMed  Google Scholar 

  • Bras A, Albar JP, Leonardo E, de Buitrago GG, Martinez AC (2000) Ceramide-induced cell death is independent of the Fas/Fas ligand pathway and is prevented by Nur77 overexpression in A20 B cells. Cell Death Differ 7(3):262–271

    CAS  PubMed  Google Scholar 

  • Burris TP, Guo W, McCabe ER (1996) The gene responsible for adrenal hypoplasia congenita, DAX-1, encodes a nuclear hormone receptor that defines a new class within the superfamily. Recent Prog Horm Res 51:241-259; discussion 259–260

    Google Scholar 

  • Cao X, Liu W, Lin F, Li H, Kolluri SK, Lin B, Han YH, Dawson MI, Zhang XK (2004) Retinoid X receptor regulates Nur77/TR3-dependent apoptosis [corrected] by modulating its nuclear export and mitochondrial targeting. Mol Cell Biol 24(22):9705–9725

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chao LC, Wroblewski K, Zhang Z, Pei L, Vergnes L, Ilkayeva OR, Ding SY, Reue K, Watt MJ, Newgard CB, Pilch PF, Hevener AL, Tontonoz P (2009) Insulin resistance and altered systemic glucose metabolism in mice lacking Nur77. Diabetes 58(12):2788–2796

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen YL, Jian MH, Lin CC, Kang JC, Chen SP, Lin PC, Hung PJ, Chen JR, Chang WL, Lin SZ, Harn HJ (2008) The induction of orphan nuclear receptor Nur77 expression by n-butylenephthalide as pharmaceuticals on hepatocellular carcinoma cell therapy. Mol Pharmacol 74(4):1046–1058

    CAS  PubMed  Google Scholar 

  • Cheng LE, Chan FK, Cado D, Winoto A (1997) Functional redundancy of the Nur77 and Nor-1 orphan steroid receptors in T-cell apoptosis. EMBO J 16(8):1865–1875

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chinnaiyan P, Varambally S, Tomlins SA, Ray S, Huang S, Chinnaiyan AM, Harari PM (2006) Enhancing the antitumor activity of ErbB blockade with histone deacetylase (HDAC) inhibition. Int J Cancer 118(4):1041–1050

    CAS  PubMed  Google Scholar 

  • Chintharlapalli S, Burghardt R, Papineni S, Ramaiah S, Yoon K, Safe S (2005a) Activation of Nur77 by selected 1,1-Bis(3’-indolyl)-1-(p-substituted phenyl)methanes induces apoptosis through nuclear pathways. J Biol Chem 280(26):24903–24914

    CAS  PubMed  Google Scholar 

  • Chintharlapalli S, Papineni S, Baek SJ, Liu S, Safe S (2005b) 1,1-Bis(3’-indolyl)-1-(p-substitutedphenyl)methanes are peroxisome proliferator-activated receptor gamma agonists but decrease HCT-116 colon cancer cell survival through receptor-independent activation of early growth response-1 and nonsteroidal anti-inflammatory drug-activated gene-1. Mol Pharmacol 68(6):1782–1792

    CAS  PubMed  Google Scholar 

  • Chintharlapalli S, Smith R, 3rd, Samudio I, Zhang W, Safe S (2004) 1,1-Bis(3’-indolyl)-1-(p-substitutedphenyl)methanes induce peroxisome proliferator-activated receptor gamma-mediated growth inhibition, transactivation, and differentiation markers in colon cancer cells. Cancer Res 64(17):5994–6001

    CAS  PubMed  Google Scholar 

  • Chintharlapalli S, Papineni S, Safe S (2006) 1,1-Bis(3’-indolyl)-1-(p-substituted phenyl)methanes inhibit colon cancer cell and tumor growth through PPARgamma-dependent and PPARgamma-independent pathways. Mol Cancer Ther 5(5):1362–1370

    CAS  PubMed  Google Scholar 

  • Chintharlapalli S, Papineni S, Safe S (2007) 1,1-bis(3’-indolyl)-1-(p-substitutedphenyl)methanes inhibit growth, induce apoptosis, and decrease the androgen receptor in LNCaP prostate cancer cells through peroxisome proliferator-activated receptor gamma-independent pathways. Mol Pharmacol 71(2):558–569

    CAS  PubMed  Google Scholar 

  • Cho SD, Yoon K, Chintharlapalli S, Abdelrahim M, Lei P, Hamilton S, Khan S, Ramaiah SK, Safe S (2007) Nur77 agonists induce proapoptotic genes and responses in colon cancer cells through nuclear receptor-dependent and nuclear receptor-independent pathways. Cancer Res 67(2):674–683

    CAS  PubMed  Google Scholar 

  • Cho SD, Lei P, Abdelrahim M, Yoon K, Liu S, Guo J, Papineni S, Chintharlapalli S, Safe S (2008) 1,1-bis(3’-indolyl)-1-(p-methoxyphenyl)methane activates Nur77-independent proapoptotic responses in colon cancer cells. Mol Carcinog 47(4):252–263

    CAS  PubMed  Google Scholar 

  • Cho SD, Lee SO, Chintharlapalli S, Abdelrahim M, Khan S, Yoon K, Kamat AM, Safe S (2010) Activation of nerve growth factor-induced B alpha by methylene-substituted diindolylmethanes in bladder cancer cells induces apoptosis and inhibits tumor growth. Mol Pharmacol 77(3):396–404

    CAS  PubMed  Google Scholar 

  • Contractor R, Samudio IJ, Estrov Z, Harris D, McCubrey JA, Safe SH, Andreeff M, ­Konopleva M (2005) A novel ring-substituted diindolylmethane,1,1-bis[3’-(5-methoxyindolyl)]-1-(p-t-butylphenyl) methane, inhibits extracellular signal-regulated kinase activation and induces apoptosis in acute myelogenous leukemia. Cancer Res 65(7):2890–2898

    CAS  PubMed  Google Scholar 

  • Dawson MI, Hobbs PD, Peterson VJ, Leid M, Lange CW, Feng KC, Chen G, Gu J, Li H, Kolluri SK, Zhang X, Zhang Y, Fontana JA (2001) Apoptosis induction in cancer cells by a novel ­analogue of 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalenecarboxylic acid lacking retinoid receptor transcriptional activation activity. Cancer Res 61(12):4723–4730

    CAS  PubMed  Google Scholar 

  • DeYoung RA, Baker JC, Cado D, Winoto A (2003) The orphan steroid receptor Nur77 family member Nor-1 is essential for early mouse embryogenesis. J Biol Chem 278(47):47104–47109

    CAS  PubMed  Google Scholar 

  • Dubois C, Hengerer B, Mattes H (2006) Identification of a potent agonist of the orphan nuclear receptor Nurr1. ChemMedChem 1(9):955–958

    CAS  PubMed  Google Scholar 

  • Eells JB, Misler JA, Nikodem VM (2006) Early postnatal isolation reduces dopamine levels, elevates dopamine turnover and specifically disrupts prepulse inhibition in Nurr1-null heterozygous mice. Neuroscience 140(4):1117–1126

    CAS  PubMed  Google Scholar 

  • Fassett MS, Jiang W, D’Alise AM, Mathis D, Benoist C (2012) Nuclear receptor Nr4a1 modulates both regulatory T-cell (Treg) differentiation and clonal deletion. Proc Natl Acad Sci U S A 109(10):3891–3896

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ferlini C, Cicchillitti L, Raspaglio G, Bartollino S, Cimitan S, Bertucci C, Mozzetti S, Gallo D, Persico M, Fattorusso C, Campiani G, Scambia G (2009) Paclitaxel directly binds to Bcl-2 and functionally mimics activity of Nur77. Cancer Res 69(17):6906–6914

    CAS  PubMed  Google Scholar 

  • Gennari A, Bleumink R, Viviani B, Galli CL, Marinovich M, Pieters R, Corsini E (2002) Identification by DNA macroarray of nur77 as a gene induced by di-n-butyltin dichloride: its role in organotin-induced apoptosis. Toxicol Appl Pharmacol 181(1):27–31

    CAS  PubMed  Google Scholar 

  • Gronemeyer H, Gustafsson JA, Laudet V (2004) Principles for modulation of the nuclear receptor superfamily. Nat Rev Drug Discov 3(11):950–964

    CAS  PubMed  Google Scholar 

  • Guo J, Chintharlapalli S, Lee SO, Cho SD, Lei P, Papineni S, Safe S (2010) Peroxisome proliferator-activated receptor gamma-dependent activity of indole ring-substituted 1,1-bis(3’-indolyl)-1-(p-biphenyl)methanes in cancer cells. Cancer Chemother Pharmacol 66(1):141–150

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gurrieri C, Capodieci P, Bernardi R, Scaglioni PP, Nafa K, Rush LJ, Verbel DA, Cordon-Cardo C, Pandolfi PP (2004) Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst 96(4):269–279

    CAS  PubMed  Google Scholar 

  • Hintermann S, Chiesi M, von Krosigk U, Mathe D, Felber R, Hengerer B (2007) Identification of a series of highly potent activators of the Nurr1 signaling pathway. Bioorg Med Chem Lett 17(1):193–196

    CAS  PubMed  Google Scholar 

  • Holmes WF, Soprano DR, Soprano KJ (2003a) Comparison of the mechanism of induction of apoptosis in ovarian carcinoma cells by the conformationally restricted synthetic retinoids CD437 and 4-HPR. J Cell Biochem 89(2):262–278

    CAS  PubMed  Google Scholar 

  • Holmes WF, Soprano DR, Soprano KJ (2003b) Early events in the induction of apoptosis in ovarian carcinoma cells by CD437: activation of the p38 MAP kinase signal pathway. Oncogene 22(41):6377–6386

    CAS  PubMed  Google Scholar 

  • Holmes WF, Soprano DR, Soprano KJ (2004) Synthetic retinoids as inducers of apoptosis in ovarian carcinoma cell lines. J Cell Physiol 199(3):317–329

    CAS  PubMed  Google Scholar 

  • Hong J, Samudio I, Liu S, Abdelrahim M, Safe S (2004) Peroxisome proliferator-activated receptor gamma-dependent activation of p21 in Panc-28 pancreatic cancer cells involves Sp1 and Sp4 proteins. Endocrinology 145(12):5774–5785

    CAS  PubMed  Google Scholar 

  • Hong J, Samudio I, Chintharlapalli S, Safe S (2008) 1,1-bis(3’-indolyl)-1-(p-substituted phenyl)methanes decrease mitochondrial membrane potential and induce apoptosis in endometrial and other cancer cell lines. Mol Carcinog 47(7):492–507

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ichite N, Chougule MB, Jackson T, Fulzele SV, Safe S, Singh M (2009) Enhancement of docetaxel anticancer activity by a novel diindolylmethane compound in human non-small cell lung cancer. Clin Cancer Res 15(2):543–552

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jeong JH, Park JS, Moon B, Kim MC, Kim JK, Lee S, Suh H, Kim ND, Kim JM, Park YC, Yoo YH (2003) Orphan nuclear receptor Nur77 translocates to mitochondria in the early phase of apoptosis induced by synthetic chenodeoxycholic acid derivatives in human stomach cancer cell line SNU-1. Ann N Y Acad Sci 1010:171–177

    CAS  PubMed  Google Scholar 

  • Kadkhodaei B, Ito T, Joodmardi E, Mattsson B, Rouillard C, Carta M, Muramatsu S, Sumi-Ichinose C, Nomura T, Metzger D, Chambon P, Lindqvist E, Larsson NG, Olson L, Bjorklund A, Ichinose H, Perlmann T (2009) Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons. J Neurosci 29(50):15923–15932

    CAS  PubMed  Google Scholar 

  • Kagaya S, Ohkura N, Tsukada T, Miyagawa M, Sugita Y, Tsujimoto G, Matsumoto K, Saito H, Hashida R (2005) Prostaglandin A2 acts as a transactivator for NOR1 (NR4A3) within the nuclear receptor superfamily. Biol Pharm Bull 28(9):1603–1607

    CAS  PubMed  Google Scholar 

  • Kassouf W, Chintharlapalli S, Abdelrahim M, Nelkin G, Safe S, Kamat AM (2006) Inhibition of bladder tumor growth by 1,1-bis(3’-indolyl)-1-(p-substitutedphenyl)methanes: a new class of peroxisome proliferator-activated receptor gamma agonists. Cancer Res 66(1):412–418

    CAS  PubMed  Google Scholar 

  • Ke N, Claassen G, Yu DH, Albers A, Fan W, Tan P, Grifman M, Hu X, Defife K, Nguy V, Meyhack B, Brachat A, Wong-Staal F, Li QX (2004) Nuclear hormone receptor NR4A2 is involved in cell transformation and apoptosis. Cancer Res 64(22):8208–8212

    CAS  PubMed  Google Scholar 

  • Kolluri SK, Bruey-Sedano N, Cao X, Lin B, Lin F, Han YH, Dawson MI, Zhang XK (2003) Mitogenic effect of orphan receptor TR3 and its regulation by MEKK1 in lung cancer cells. Mol Cell Biol 23(23):8651–8667

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kolluri SK, Zhu X, Zhou X, Lin B, Chen Y, Sun K, Tian X, Town J, Cao X, Lin F, Zhai D, Kitada S, Luciano F, O’Donnell E, Cao Y, He F, Lin J, Reed JC, Satterthwait AC, Zhang XK (2008) A short Nur77-derived peptide converts Bcl-2 from a protector to a killer. Cancer Cell 14(4):285–298

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee SL, Wesselschmidt RL, Linette GP, Kanagawa O, Russell JH, Milbrandt J (1995) Unimpaired thymic and peripheral T cell death in mice lacking the nuclear receptor NGFI-B (Nur77). Science 269(5223):532–535

    CAS  PubMed  Google Scholar 

  • Lee JM, Lee KH, Weidner M, Osborne BA, Hayward SD (2002) Epstein-Barr virus EBNA2 blocks Nur77- mediated apoptosis. Proc Natl Acad Sci U S A 99(18):11878–11883

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee JM, Lee KH, Farrell CJ, Ling PD, Kempkes B, Park JH, Hayward SD (2004) EBNA2 is required for protection of latently Epstein-Barr virus-infected B cells against specific apoptotic stimuli. J Virol 78(22):12694–12697

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee KW, Ma L, Yan X, Liu B, Zhang XK, Cohen P (2005) Rapid apoptosis induction by IGFBP-3 involves an insulin-like growth factor-independent nucleomitochondrial translocation of RXRalpha/Nur77. J Biol Chem 280(17):16942–16948

    CAS  PubMed  Google Scholar 

  • Lee SO, Chintharlapalli S, Liu S, Papineni S, Cho SD, Yoon K, Safe S (2009) p21 expression is induced by activation of nuclear nerve growth factor-induced Balpha (Nur77) in pancreatic cancer cells. Mol Cancer Res 7(7):1169–1178

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee SO, Abdelrahim M, Yoon K, Chintharlapalli S, Papineni S, Kim K, Wang H, Safe S (2010) Inactivation of the orphan nuclear receptor TR3/Nur77 inhibits pancreatic cancer cell and tumor growth. Cancer Res 70(17):6824–6836

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee SO, Li X, Khan S, Safe S (2011) Targeting NR4A1 (TR3) in cancer cells and tumors. Expert Opin Ther Targets 15(2):195–206

    PubMed  Google Scholar 

  • Lee SO, Andey T, Jin UH, Kim K, Sachdeva M, Safe S (2012) The nuclear receptor TR3 regulates mTORC1 signaling in lung cancer cells expressing wild-type p53. Oncogene 31(27):3265–3276

    Google Scholar 

  • Lei P, Abdelrahim M, Safe S (2006) 1,1-Bis(3’-indolyl)-1-(p-substituted phenyl)methanes inhibit ovarian cancer cell growth through peroxisome proliferator-activated receptor-dependent and independent pathways. Mol Cancer Ther 5(9):2324–2336

    CAS  PubMed  Google Scholar 

  • Lei P, Abdelrahim M, Cho SD, Liu S, Chintharlapalli S, Safe S (2008a) 1,1-Bis(3’-indolyl)-1-(p-substituted phenyl)methanes inhibit colon cancer cell and tumor growth through activation of c-jun N-terminal kinase. Carcinogenesis 29(6):1139–1147

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lei P, Abdelrahim M, Cho SD, Liu X, Safe S (2008b) Structure-dependent activation of endoplasmic reticulum stress-mediated apoptosis in pancreatic cancer by 1,1-bis(3’-indoly)-1-(p-substituted phenyl)methanes. Mol Cancer Ther 7(10):3363–3372

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li Y, Lin B, Agadir A, Liu R, Dawson MI, Reed JC, Fontana JA, Bost F, Hobbs PD, Zheng Y, Chen GQ, Shroot B, Mercola D, Zhang XK (1998) Molecular determinants of AHPN (CD437)-induced growth arrest and apoptosis in human lung cancer cell lines. Mol Cell Biol 18(8):4719–4731

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Kolluri SK, Gu J, Dawson MI, Cao X, Hobbs PD, Lin B, Chen G, Lu J, Lin F, Xie Z, Fontana JA, Reed JC, Zhang X (2000) Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3. Science 289(5482):1159–1164

    CAS  PubMed  Google Scholar 

  • Li QX, Ke N, Sundaram R, Wong-Staal F (2006) NR4A1, 2, 3–an orphan nuclear hormone receptor family involved in cell apoptosis and carcinogenesis. Histol Histopathol 21(5):533–540

    CAS  PubMed  Google Scholar 

  • Li X, Lee SO, Safe S (2012) Structure-dependent activation of NR4A2 (Nurr1) by 1,1-bis(3’-indolyl)-1-(aromatic)methane analogs in pancreatic cancer cells. Biochem Pharmacol 83(10):1445–1455

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X, Dawson MI, Reed JC, Zhang XK (2004) Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 116(4):527–540

    CAS  PubMed  Google Scholar 

  • Liu S, Wu Q, Ye XF, Cai JH, Huang ZW, Su WJ (2002) Induction of apoptosis by TPA and VP-16 is through translocation of TR3. World J Gastroenterol 8(3):446–450

    CAS  PubMed  Google Scholar 

  • Liu J, Zhou W, Li SS, Sun Z, Lin B, Lang YY, He JY, Cao X, Yan T, Wang L, Lu J, Han YH, Cao Y, Zhang XK, Zeng JZ (2008) Modulation of orphan nuclear receptor Nur77-mediated apoptotic pathway by acetylshikonin and analogues. Cancer Res 68(21):8871–8880

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu HB, Voso MT, Gumiero D, Duong J, McKendrick JJ, Dear AE (2009) The anti-leukemic effect of a novel histone deacetylase inhibitor MCT-1 and 5-aza-cytidine involves augmentation of Nur77 and inhibition of MMP-9 expression. Int J Oncol 34(2):573–579

    CAS  PubMed  Google Scholar 

  • Liu JJ, Zeng HN, Zhang LR, Zhan YY, Chen Y, Wang Y, Wang J, Xiang SH, Liu WJ, Wang WJ, Chen HZ, Shen YM, Su WJ, Huang PQ, Zhang HK, Wu Q (2010) A unique pharmacophore for activation of the nuclear orphan receptor Nur77 in vivo and in vitro. Cancer Res 70(9):3628–3637

    CAS  PubMed  Google Scholar 

  • Liu HB, Mayes PA, Perlmutter P, McKendrick JJ, Dear AE (2011) The anti-leukemic effect and molecular mechanisms of novel hydroxamate and benzamide histone deacetylase inhibitors with 5-aza-cytidine. Int J Oncol 38(5):1421–1425

    CAS  PubMed  Google Scholar 

  • Maira M, Martens C, Philips A, Drouin J (1999) Heterodimerization between members of the Nur subfamily of orphan nuclear receptors as a novel mechanism for gene activation. Mol Cell Biol 19(11):7549–7557

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maruyama K, Tsukada T, Ohkura N, Bandoh S, Hosono T, Yamaguchi K (1998) The NGFI-B subfamily of the nuclear receptor superfamily (review). Int J Oncol 12(6):1237–1243

    CAS  PubMed  Google Scholar 

  • Maxwell MA, Muscat GE (2006) The NR4A subgroup: immediate early response genes with pleiotropic physiological roles. Nucl Recept Signal 4:e002

    PubMed Central  PubMed  Google Scholar 

  • McKenna NJ, Cooney AJ, DeMayo FJ, Downes M, Glass CK, Lanz RB, Lazar MA, Mangelsdorf DJ, Moore DD, Qin J, Steffen DL, Tsai MJ, Tsai SY, Yu R, Margolis RN, Evans RM, O’Malley BW (2009) Minireview: Evolution of NURSA, the Nuclear Receptor Signaling Atlas. Mol Endocrinol 23(6):740–746

    PubMed Central  CAS  PubMed  Google Scholar 

  • Milbrandt J (1988) Nerve growth factor induces a gene homologous to the glucocorticoid receptor gene. Neuron 1(3):183–188

    CAS  PubMed  Google Scholar 

  • Mullican SE, Zhang S, Konopleva M, Ruvolo V, Andreeff M, Milbrandt J, Conneely OM (2007) Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukemia. Nat Med 13(6):730–735

    CAS  PubMed  Google Scholar 

  • Nagel S, Meyer C, Quentmeier H, Kaufmann M, Drexler HG, MacLeod RA (2008) MEF2C is activated by multiple mechanisms in a subset of T-acute lymphoblastic leukemia cell lines. Leukemia 22(3):600–607

    CAS  PubMed  Google Scholar 

  • Nsegbe E, Wallen-Mackenzie A, Dauger S, Roux JC, Shvarev Y, Lagercrantz H, Perlmann T, Herlenius E (2004) Congenital hypoventilation and impaired hypoxic response in Nurr1 mutant mice. J Physiol 556(Pt 1):43–59

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ordentlich P, Yan Y, Zhou S, Heyman RA (2003) Identification of the antineoplastic agent 6-­mercaptopurine as an activator of the orphan nuclear hormone receptor Nurr1. J Biol Chem 278(27):24791–24799

    CAS  PubMed  Google Scholar 

  • Paulsen RF, Granas K, Johnsen H, Rolseth V, Sterri S (1995) Three related brain nuclear receptors, NGFI-B, Nurr1, and NOR-1, as transcriptional activators. J Mol Neurosci 6(4):249–255

    CAS  PubMed  Google Scholar 

  • Pearen MA, Muscat GE (2010) Minireview: Nuclear hormone receptor 4A signaling: implications for metabolic disease. Mol Endocrinol 24(10):1891–1903

    CAS  PubMed  Google Scholar 

  • Perlmann T, Jansson L (1995) A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1. Genes Dev 9(7):769–782

    CAS  PubMed  Google Scholar 

  • Philips A, Lesage S, Gingras R, Maira MH, Gauthier Y, Hugo P, Drouin J (1997) Novel dimeric Nur77 signaling mechanism in endocrine and lymphoid cells. Mol Cell Biol 17(10):5946–5951

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pires NM, Pols TW, de Vries MR, van Tiel CM, Bonta PI, Vos M, Arkenbout EK, Pannekoek H, Jukema JW, Quax PH, de Vries CJ (2007) Activation of nuclear receptor Nur77 by 6-­mercaptopurine protects against neointima formation. Circulation 115(4):493–500

    CAS  PubMed  Google Scholar 

  • Ponnio T, Conneely OM (2004) nor-1 regulates hippocampal axon guidance, pyramidal cell survival, and seizure susceptibility. Mol Cell Biol 24(20):9070–9078

    PubMed Central  PubMed  Google Scholar 

  • Ponnio T, Burton Q, Pereira FA, Wu DK, Conneely OM (2002) The nuclear receptor Nor-1 is essential for proliferation of the semicircular canals of the mouse inner ear. Mol Cell Biol 22(3):935–945

    PubMed Central  CAS  PubMed  Google Scholar 

  • Qin C, Morrow D, Stewart J, Spencer K, Porter W, Smith R, 3rd, Phillips T, Abdelrahim M, Samudio I, Safe S (2004) A new class of peroxisome proliferator-activated receptor gamma (PPARgamma) agonists that inhibit growth of breast cancer cells: 1,1-Bis(3’-indolyl)-1-(p-substituted phenyl)methanes. Mol Cancer Ther 3(3):247–260

    CAS  PubMed  Google Scholar 

  • Ramirez-Herrick AM, Mullican SE, Sheehan AM, Conneely OM (2011) Reduced NR4A gene dosage leads to mixed myelodysplastic/myeloproliferative neoplasms in mice. Blood 117(9):2681–2690

    PubMed Central  CAS  PubMed  Google Scholar 

  • Safe S, Kim K, Li X, Lee SO (2011) NR4A orphan receptors and cancer. Nucl Recept Signal 9:e002

    Google Scholar 

  • Salomoni P, Pandolfi PP (2002) The role of PML in tumor suppression. Cell 108(2):165–170

    CAS  PubMed  Google Scholar 

  • Sekiya T, Kashiwagi I, Inoue N, Morita R, Hori S, Waldmann H, Rudensky AY, Ichinose H, Metzger D, Chambon P, Yoshimura A (2011) The nuclear orphan receptor Nr4a2 induces Foxp3 and regulates differentiation of CD4+ T cells. Nat Commun 2:269

    PubMed Central  PubMed  Google Scholar 

  • Seol W, Choi HS, Moore DD (1996) An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors. Science 272(5266):1336–1339

    CAS  PubMed  Google Scholar 

  • Shi Y (2007) Orphan nuclear receptors in drug discovery. Drug Discov Today 12(11-12):440–445

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shin HJ, Lee BH, Yeo MG, Oh SH, Park JD, Park KK, Chung JH, Moon CK, Lee MO (2004) Induction of orphan nuclear receptor Nur77 gene expression and its role in cadmium-induced apoptosis in lung. Carcinogenesis 25(8):1467–1475

    CAS  PubMed  Google Scholar 

  • To SK, Zeng JZ, Wong AS (2012) Nur77: a potential therapeutic target in cancer. Expert Opin Ther Targets 16(6):573–585

    CAS  PubMed  Google Scholar 

  • Vallat L, Magdelenat H, Merle-Beral H, Masdehors P, Potocki de Montalk G, Davi F, Kruhoffer M, Sabatier L, Orntoft TF, Delic J (2003) The resistance of B-CLL cells to DNA damage-induced apoptosis defined by DNA microarrays. Blood 101(11):4598–4606

    CAS  PubMed  Google Scholar 

  • Wang Z, Benoit G, Liu J, Prasad S, Aarnisalo P, Liu X, Xu H, Walker NP, Perlmann T (2003) Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 423(6939):555–560

    CAS  PubMed  Google Scholar 

  • Wansa KD, Muscat GE (2005) TRAP220 is modulated by the antineoplastic agent 6-Mercaptopurine, and mediates the activation of the NR4A subgroup of nuclear receptors. J Mol Endocrinol 34(3):835–848

    CAS  PubMed  Google Scholar 

  • Wansa KD, Harris JM, Muscat GE (2002) The activation function-1 domain of Nur77/NR4A1 mediates trans-activation, cell specificity, and coactivator recruitment. J Biol Chem 277(36):33001–33011

    CAS  PubMed  Google Scholar 

  • Wansa KD, Harris JM, Yan G, Ordentlich P, Muscat GE (2003) The AF-1 domain of the orphan nuclear receptor NOR-1 mediates trans-activation, coactivator recruitment, and activation by the purine anti-metabolite 6-mercaptopurine. J Biol Chem 278(27):24776–24790

    CAS  PubMed  Google Scholar 

  • Wilson TE, Fahrner TJ, Johnston M, Milbrandt J (1991) Identification of the DNA binding site for NGFI-B by genetic selection in yeast. Science 252(5010):1296–1300

    CAS  PubMed  Google Scholar 

  • Wilson TE, Day ML, Pexton T, Padgett KA, Johnston M, Milbrandt J (1992) In vivo mutational analysis of the NGFI-A zinc fingers. J Biol Chem 267(6):3718–3724

    CAS  PubMed  Google Scholar 

  • Wilson AJ, Arango D, Mariadason JM, Heerdt BG, Augenlicht LH (2003) TR3/Nur77 in colon cancer cell apoptosis. Cancer Res 63(17):5401–5407

    CAS  PubMed  Google Scholar 

  • Woronicz JD, Calnan B, Ngo V, Winoto A (1994) Requirement for the orphan steroid receptor Nur77 in apoptosis of T-cell hybridomas. Nature 367(6460):277–281

    CAS  PubMed  Google Scholar 

  • Woronicz JD, Lina A, Calnan BJ, Szychowski S, Cheng L, Winoto A (1995) Regulation of the Nur77 orphan steroid receptor in activation-induced apoptosis. Mol Cell Biol 15(11):6364–6376

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu Q, Liu S, Ye XF, Huang ZW, Su WJ (2002a) Dual roles of Nur77 in selective regulation of apoptosis and cell cycle by TPA and ATRA in gastric cancer cells. Carcinogenesis 23(10):1583–1592

    CAS  PubMed  Google Scholar 

  • Wu WS, Xu ZX, Ran R, Meng F, Chang KS (2002b) Promyelocytic leukemia protein PML inhibits Nur77-mediated transcription through specific functional interactions. Oncogene 21(24):3925–3933

    CAS  PubMed  Google Scholar 

  • Wu H, Lin Y, Li W, Sun Z, Gao W, Zhang H, Xie L, Jiang F, Qin B, Yan T, Chen L, Zhao Y, Cao X, Wu Y, Lin B, Zhou H, Wong AS, Zhang XK, Zeng JZ (2011) Regulation of Nur77 expression by beta-catenin and its mitogenic effect in colon cancer cells. FASEB J 25(1):192–205

    PubMed Central  PubMed  Google Scholar 

  • Yoon K, Lee SO, Cho SD, Kim K, Khan S, Safe S (2011) Activation of nuclear TR3 (NR4A1) by a diindolylmethane analog induces apoptosis and proapoptotic genes in pancreatic cancer cells and tumors. Carcinogenesis 32(6):836–842

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zetterstrom RH, Solomin L, Mitsiadis T, Olson L, Perlmann T (1996) Retinoid X receptor heterodimerization and developmental expression distinguish the orphan nuclear receptors NGFI-B, Nurr1, and Nor1. Mol Endocrinol 10(12):1656–1666

    CAS  PubMed  Google Scholar 

  • Zhan Y, Du X, Chen H, Liu J, Zhao B, Huang D, Li G, Xu Q, Zhang M, Weimer BC, Chen D, Cheng Z, Zhang L, Li Q, Li S, Zheng Z, Song S, Huang Y, Ye Z, Su W, Lin SC, Shen Y, Wu Q (2008) Cytosporone B is an agonist for nuclear orphan receptor Nur77. Nat Chem Biol 4 (9):548–556

    CAS  PubMed  Google Scholar 

  • Zhang XK (2007) Targeting Nur77 translocation. Expert Opin Ther Targets 11(1):69–79

    CAS  PubMed  Google Scholar 

  • Zhao BX, Chen HZ, Lei NZ, Li GD, Zhao WX, Zhan YY, Liu B, Lin SC, Wu Q (2006) p53 mediates the negative regulation of MDM2 by orphan receptor TR3. EMBO J 25(24):5703–5715

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao Y, Howatt DA, Gizard F, Nomiyama T, Findeisen HM, Heywood EB, Jones KL, Conneely OM, Daugherty A, Bruemmer D (2010) Deficiency of the NR4A orphan nuclear receptor NOR1 decreases monocyte adhesion and atherosclerosis. Circ Res 107(4):501–511

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The support of Texas AgriLife and the National Institutes of Health (CA124998) is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Safe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag New York

About this chapter

Cite this chapter

Safe, S., Lee, SO., Meng, C., Zhou, B. (2015). NR4A Orphan Receptors as Drug Targets. In: Andreeff, M. (eds) Targeted Therapy of Acute Myeloid Leukemia. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1393-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1393-0_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1392-3

  • Online ISBN: 978-1-4939-1393-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics