Skip to main content

AML: Deacetylases

  • Chapter
  • First Online:
Book cover Targeted Therapy of Acute Myeloid Leukemia

Part of the book series: Current Cancer Research ((CUCR))

  • 1993 Accesses

Abstract

Human malignancies, including acute myeloid leukemia (AML), are driven by genetic lesions that result in loss of function of tumor suppressor genes and/or activation of oncogenes. In addition to changes in the genome, we now understand that aberrations to the epigenome, either through mutation of genes encoding epigenetic regulators, or inappropriate recruitment of epigenetic enzymes to genetic loci by oncogenic fusion proteins commonly found in AML, can lead to neoplastic transformation. Alterations in the function, expression, or localization of histone acetyltransferases (HATS) and histone deacetylases (HDACs) have been shown to be important for the development of AML. Compounds that target these epigenetic regulators have now been developed and therefore offer a new therapeutic option for patients with AML driven by alterations to the epigenome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ai X., Parthun MR (2004) The nuclear Hat1p/Hat2p complex: a molecular link between type B histone acetyltransferases and chromatin assembly. Mol Cell 14:195–205

    CAS  PubMed  Google Scholar 

  • Amann JM, Nip J, Strom DK, Lutterbach B, Harada H, Lenny N, Downing JR, Meyers S, Hiebert SW (2001) ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Mol Cell Biol 21:6470–6483

    PubMed Central  CAS  PubMed  Google Scholar 

  • Avvakumov N, Cote J (2007). The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene 26:5395–5407

    CAS  PubMed  Google Scholar 

  • Ayton PM, Cleary ML (2003) Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 17:2298–2307

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bali P, Pranpat M, Bradner J, Balasis M, Fiskus W, Guo F, Rocha K, Kumaraswamy S, Boyapalle S, Atadja P et al (2005) Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 280:26729–26734

    CAS  PubMed  Google Scholar 

  • Barbetti V, Gozzini A, Rovida E, Morandi A, Spinelli E, Fossati G, Mascagni P, Lubbert M, Dello Sbarba P, Santini V (2008). Selective anti-leukaemic activity of low-dose histone deacetylase inhibitor ITF2357 on AML1/ETO-positive cells. Oncogene 27:1767–1778

    CAS  PubMed  Google Scholar 

  • Barry ER, Corry GN, Rasmussen TP (2010) Targeting DOT1L action and interactions in leukemia: the role of DOT1L in transformation and development. Expert Opin Ther Targets 14:405–418

    CAS  PubMed  Google Scholar 

  • Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6:107–116

    CAS  PubMed  Google Scholar 

  • Bertrand P (2010) Inside HDAC with HDAC inhibitors. Eur J Med Chem 45:2095–2116

    CAS  PubMed  Google Scholar 

  • Bolden J.E, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784

    CAS  PubMed  Google Scholar 

  • Bradbury C.A, Khanim FL, Hayden R, Bunce CM, White DA, Drayson MT, Craddock C, Turner BM (2005) Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia 19:1751–1759

    CAS  PubMed  Google Scholar 

  • Bug G, Ritter M, Wassmann B, Schoch C, Heinzel T, Schwarz K, Romanski A, Kramer OH, Kampfmann M, Hoelzer D et al (2005) Clinical trial of valproic acid and all-trans retinoic acid in patients with poor-risk acute myeloid leukemia. Cancer 104:2717–2725

    CAS  PubMed  Google Scholar 

  • Byrd JC, Marcucci G, Parthun MR, Xiao JJ, Klisovic RB, Moran M, Lin TS, Liu S, Sklenar AR, Davis ME et al (2005) A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood 105:959–967

    CAS  PubMed  Google Scholar 

  • Campos EI, Reinberg D (2009) Histones: annotating chromatin. Annu Rev Genet 43:559–599

    CAS  PubMed  Google Scholar 

  • Campos EI, Fillingham J, Li G, Zheng H, Voigt P, Kuo WH, Seepany H, Gao Z, Day LA, Greenblatt JF et al (2010) The program for processing newly synthesized histones H3.1 and H4. Nat Struct Mol Biol 17:1343–1351

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298:1039–1043

    CAS  PubMed  Google Scholar 

  • Catley L, Weisberg E, Kiziltepe T, Tai YT, Hideshima T, Neri P, Tassone P, Atadja P, Chauhan D, Munshi NC et al (2006) Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood 108:3441–3449

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304

    CAS  PubMed  Google Scholar 

  • Chan EM, Chan RJ, Comer EM, Goulet RJ, 3rd, Crean CD, Brown ZD, Fruehwald AM, Yang Z, Boswell HS, Nakshatri H et al (2007) MOZ and MOZ-CBP cooperate with NF-kappaB to activate transcription from NF-kappaB-dependent promoters. Exp Hematol 35:1782–1792

    CAS  PubMed  Google Scholar 

  • Chen W, Li Q, Hudson WA, Kumar A, Kirchhof N, Kersey JH (2006) A murine Mll-AF4 knock-in model results in lymphoid and myeloid deregulation and hematologic malignancy. Blood 108:669–677

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen CS, Wang YC, Yang HC, Huang PH, Kulp SK, Yang CC, Lu YS, Matsuyama S, Chen CY (2007) Histone deacetylase inhibitors sensitize prostate cancer cells to agents that produce DNA double-strand breaks by targeting Ku70 acetylation. Cancer Res 67:5318–5327

    CAS  PubMed  Google Scholar 

  • Cheung N, Chan LC, Thompson A, Cleary ML, So CW (2007) Protein arginine-methyltransferase-dependent oncogenesis. Nat Cell Biol 9:1208–1215

    CAS  PubMed  Google Scholar 

  • Chi P, Allis CD, Wang GG (2010) Covalent histone modifications–miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 10:457–469

    PubMed Central  CAS  PubMed  Google Scholar 

  • Choi JK, Howe LJ (2009). Histone acetylation: truth of consequences? Biochem Cell Biol 87:139–150

    CAS  PubMed  Google Scholar 

  • Choi JH, Kwon HJ, Yoon BI, Kim JH, Han SU, Joo HJ, Kim DY (2001) Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn J Cancer Res 92:1300–1304

    CAS  PubMed  Google Scholar 

  • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840

    CAS  PubMed  Google Scholar 

  • Copeland RA, Solomon ME, Richon VM (2009) Protein methyltransferases as a target class for drug discovery. Nat Rev Drug Discov 8:724–732

    CAS  PubMed  Google Scholar 

  • Corsetti MT, Salvi F, Perticone S, Baraldi A, De Paoli L, Gatto S, Pietrasanta D, Pini M, Primon V, Zallio F et al (2011) Hematologic improvement and response in elderly AML/RAEB patients treated with valproic acid and low-dose Ara-C. Leuk Res 35:991–997

    CAS  PubMed  Google Scholar 

  • Cosgrove MS, Boeke JD, Wolberger C (2004) Regulated nucleosome mobility and the histone code. Nat Struct Mol Biol 11:1037–1043

    CAS  PubMed  Google Scholar 

  • Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ, Song J, Johnston LD, Scott MP, Smith JJ, Xiao Y et al (2011) Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20:53–65

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150:12–27

    CAS  PubMed  Google Scholar 

  • Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, Robson SC, Chung CW, Hopf C, Savitski MM et al (2011) Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478:529–533

    PubMed Central  CAS  PubMed  Google Scholar 

  • Deguchi K, Ayton PM, Carapeti M, Kutok JL, Snyder CS, Williams IR, Cross NC, Glass CK, Cleary ML, Gilliland DG (2003) MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell 3:259–271

    CAS  PubMed  Google Scholar 

  • Deribe YL, Wild P, Chandrashaker A, Curak J, Schmidt MH, Kalaidzidis Y, Milutinovic N, Kratchmarova I, Buerkle L, Fetchko MJ et al (2009) Regulation of epidermal growth factor receptor trafficking by lysine deacetylase HDAC6. Sci Signal 2:ra84

    PubMed  Google Scholar 

  • Dickinson M, Johnstone RW, Prince HM (2010) Histone deacetylase inhibitors: potential targets responsible for their anti-cancer effect. Invest New Drugs 28(1)3–20

    PubMed Central  CAS  Google Scholar 

  • Dobson CL, Warren AJ, Pannell R, Forster A, Lavenir I, Corral J, Smith AJ, Rabbitts TH (1999) The mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis. EMBO J 18:3564–3574

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dokmanovic M, Marks PA (2005) Prospects: histone deacetylase inhibitors. J Cell Biochem 96:293–304

    CAS  PubMed  Google Scholar 

  • Durst KL, Lutterbach B, Kummalue T, Friedman AD, Hiebert SW (2003) The inv(16) fusion protein associates with corepressors via a smooth muscle myosin heavy-chain domain. Mol Cell Biol 23:607–619

    PubMed Central  CAS  PubMed  Google Scholar 

  • Erickson P, Gao J, Chang KS, Look T, Whisenant E, Raimondi S, Lasher R, Trujillo J, Rowley J, Drabkin H (1992) Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood 80:1825–1831

    CAS  PubMed  Google Scholar 

  • Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV, Waghorn K, Zoi K, Ross FM, Reiter A et al (2010) Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 42:722–726

    CAS  PubMed  Google Scholar 

  • Fathi AT, Grant S, Karp JE (2010) Exploiting cellular pathways to develop new treatment strategies for AML. Cancer Treat Rev 36:142–150

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92

    CAS  PubMed  Google Scholar 

  • Fotheringham S, Epping MT, Stimson L, Khan O, Wood V, Pezzella F, Bernards R, La Thangue NB (2009) Genome-wide loss-of-function screen reveals an important role for the proteasome in HDAC inhibitor-induced apoptosis. Cancer Cell 15:57–66

    CAS  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400

    CAS  PubMed  Google Scholar 

  • Frank R, Zhang J, Uchida H, Meyers S, Hiebert SW, Nimer SD (1995) The AML1/ETO fusion protein blocks transactivation of the GM-CSF promoter by AML1B. Oncogene 11:2667–2674

    CAS  PubMed  Google Scholar 

  • Fullgrabe J, Kavanagh E, Joseph B (2011) Histone onco-modifications. Oncogene 30:3391–3403

    CAS  PubMed  Google Scholar 

  • Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, Yang H, Rosner G, Verstovsek S, Rytting M, Wierda WG, Ravandi F, Koller C et al (2006) Phase 1/2 study of the combination of 5-aza-2′-deoxycytidine with valproic acid in patients with leukemia. Blood 108:3271–3279

    PubMed Central  CAS  PubMed  Google Scholar 

  • Garcia-Manero G, Yang H, Bueso-Ramos C, Ferrajoli A, Cortes J, Wierda WG, Faderl S, Koller C, Morris G, Rosner G et al (2008) Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood 111:1060–1066

    CAS  PubMed  Google Scholar 

  • Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG, Lazar MA (1998) Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol 18:7185–7191

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gojo I, Jiemjit A, Trepel JB, Sparreboom A, Figg WD, Rollins S, Tidwell ML, Greer J, Chung EJ, Lee MJ et al (2007) Phase 1 and pharmacologic study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. Blood 109:2781–2790

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG et al (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20:6969–6978

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goyama S, Mulloy JC (2011) Molecular pathogenesis of core binding factor leukemia: current knowledge and future prospects. Int J Hematol 94:126–133

    CAS  PubMed  Google Scholar 

  • Gregoretti IV, Lee YM, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338:17–31

    CAS  PubMed  Google Scholar 

  • Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthardt M, Ferrara FF, Zamir I et al (1998) Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 391:815–818

    CAS  PubMed  Google Scholar 

  • Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606

    CAS  PubMed  Google Scholar 

  • Halkidou K, Gaughan L, Cook S, Leung HY, Neal DE, Robson CN (2004) Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 59:177–189

    CAS  PubMed  Google Scholar 

  • He LZ, Tolentino T, Grayson P, Zhong S, Warrell RP, Jr, Rifkind RA, Marks PA, Richon VM, Pandolfi PP (2001) Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia. J Clin Invest 108:1321–1330

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hildmann C, Riester D, Schwienhorst A. (2007) Histone deacetylases—an important class of cellular regulators with a variety of functions. Appl Microbiol Biotechnol 75:487–497

    CAS  PubMed  Google Scholar 

  • Hodawadekar SC, Marmorstein R (2007) Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Oncogene 26:5528–5540

    CAS  PubMed  Google Scholar 

  • Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417:455–458

    CAS  PubMed  Google Scholar 

  • Hug BA, Lazar MA (2004) ETO interacting proteins. Oncogene 23:4270–4274

    CAS  PubMed  Google Scholar 

  • Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N, Rowan R, Amaral S, Curley D, Williams IR et al (2004) MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6:587–596

    CAS  PubMed  Google Scholar 

  • Insinga A, Minucci S, Pelicci PG (2005a) Mechanisms of selective anticancer action of histone deacetylase inhibitors. Cell Cycle 4:741–743

    CAS  PubMed  Google Scholar 

  • Insinga A, Monestiroli S, Ronzoni S, Gelmetti V, Marchesi F, Viale A, Altucci L, Nervi C, Minucci S, Pelicci PG (2005b) Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 11:71–76

    CAS  PubMed  Google Scholar 

  • Insinga A, Pelicci PG, Inucci S (2005c) Leukemia-associated fusion proteins. Multiple mechanisms of action to drive cell transformation. Cell Cycle 4:67–69

    CAS  PubMed  Google Scholar 

  • Iyer NG, Ozdag H, Caldas C (2004) p300/CBP and cancer. Oncogene 23:4225–4231

    CAS  PubMed  Google Scholar 

  • Izzo A, Schneider R (2010) Chatting histone modifications in mammals. Brief Funct Genom 9:429–443

    Google Scholar 

  • Jankowska AM, Szpurka H (2012) Mutational determinants of epigenetic instablity in myeloid malignancies. Semin Oncol 39:80–96

    CAS  PubMed  Google Scholar 

  • Katsumoto T, Aikawa Y, Iwama A, Ueda S, Ichikawa H, Ochiya T, Kitabayashi I (2006) MOZ is essential for maintenance of hematopoietic stem cells. Genes Dev 20:1321–1330

    PubMed Central  CAS  PubMed  Google Scholar 

  • Katsumoto T, Yoshida N, Kitabayashi I (2008) Roles of the histone acetyltransferase monocytic leukemia zinc finger protein in normal and malignant hematopoiesis. Cancer Sci 99:1523–1527

    CAS  PubMed  Google Scholar 

  • Kitabayashi I, Aikawa Y, Nguyen LA, Yokoyama A, Ohki M (2001) Activation of AML1-mediated transcription by MOZ and inhibition by the MOZ-CBP fusion protein. EMBO J 20:7184–7196

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kong CT, Sham MH, So CW, Cheah KS, Chen SJ, Chan LC (2006) The Mll-Een knockin fusion gene enhances proliferation of myeloid progenitors derived from mouse embryonic stem cells and causes myeloid leukaemia in chimeric mice. Leukemia 20:1829–1839

    CAS  PubMed  Google Scholar 

  • Kouzarides T (2007). Chromatin modifications and their function. Cell 128:693–705

    CAS  PubMed  Google Scholar 

  • Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV, Yoshida M, Toft DO, Pratt WB, Yao TP (2005) HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 18:601–607

    CAS  PubMed  Google Scholar 

  • Kramer OH, Zhu P, Ostendorff HP, Golebiewski M, Tiefenbach J, Peters MA, Brill B, Groner B, Bach I, Heinzel T et al (2003) The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J 22:3411–3420

    PubMed Central  PubMed  Google Scholar 

  • Kuendgen A, Knipp S, Fox F, Strupp C, Hildebrandt B, Steidl C, Germing U, Haas R, Gattermann N (2005) Results of a phase 2 study of valproic acid alone or in combination with all-trans retinoic acid in 75 patients with myelodysplastic syndrome and relapsed or refractory acute myeloid leukemia. Ann Hematol 84(1):61–66

    CAS  PubMed  Google Scholar 

  • Kuendgen A, Schmid M, Schlenk R, Knipp S, Hildebrandt B, Steidl C, Germing U, Haas R, Dohner H, Gattermann N (2006) The histone deacetylase (HDAC) inhibitor valproic acid as monotherapy or in combination with all-trans retinoic acid in patients with acute myeloid leukemia. Cancer 106:112–119

    CAS  PubMed  Google Scholar 

  • Kunert N, Brehm A (2009) Novel Mi-2 related ATP-dependent chromatin remodelers. Epigenetics 4:209–211

    CAS  PubMed  Google Scholar 

  • Kung AL, Rebel VI, Bronson RT, Ch’ng LE, Sieff CA, Livingston DM, Yao TP (2000) Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev 14:272–277

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lawless MW, Norris S, O’Byrne KJ, Gray SG (2009) Targeting histone deacetylases for the treatment of disease. J Cell Mol Med 13:826–852

    CAS  PubMed  Google Scholar 

  • Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8:284–295

    CAS  PubMed  Google Scholar 

  • Leiva M, Moretti S, Soilihi H, Pallavicini I, Peres L, Mercurio C, Dal Zuffo R, Minucci S, de The H (2012) Valproic acid induces differentiation and transient tumor regression, but spares leukemia-initiating activity in mouse models of APL. Leukemia 26:1630–1637

    CAS  PubMed  Google Scholar 

  • Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719

    CAS  PubMed  Google Scholar 

  • Lin RJ, Nagy L, Inoue S, Shao W, Miller WH, Jr, Evans RM (1998) Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391:811–814

    CAS  PubMed  Google Scholar 

  • Lin RJ, Egan DA, Evans RM (1999) Molecular genetics of acute promyelocytic leukemia. Trends Genet 15:179–184

    CAS  PubMed  Google Scholar 

  • Linggi BE, Brandt SJ, Sun ZW, Hiebert SW (2005) Translating the histone code into leukemia. J Cell Biochem 96:938–950

    CAS  PubMed  Google Scholar 

  • Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD, Berger SL (1999) p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 19:1202–1209

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu H, Chen B, Xiong H, Huang QH, Zhang QH, Wang ZG, Li BL, Chen Z, Chen SJ (2004) Functional contribution of EEN to leukemogenic transformation by MLL-EEN fusion protein. Oncogene 23:3385–3394

    CAS  PubMed  Google Scholar 

  • Liu S, Klisovic RB, Vukosavljevic T, Yu J, Paschka P, Huynh L, Pang J, Neviani P, Liu Z, Blum W et al (2007) Targeting AML1/ETO-histone deacetylase repressor complex: a novel mechanism for valproic acid-mediated gene expression and cellular differentiation in AML1/ETO-positive acute myeloid leukemia cells. J Pharmacol Exp Ther 321:953–960

    CAS  PubMed  Google Scholar 

  • Liu H, Cheng EH, Hsieh JJ (2009) MLL fusions: pathways to leukemia. Cancer Biol Ther 8:1204–1211

    PubMed Central  CAS  PubMed  Google Scholar 

  • Look AT (1997) Oncogenic transcription factors in the human acute leukemias. Science 278:1059–1064

    CAS  PubMed  Google Scholar 

  • Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107:137–148

    CAS  PubMed  Google Scholar 

  • Marquard L, Poulsen CB, Gjerdrum LM, de Nully Brown P, Christensen IJ, Jensen PB, Sehested M, Johansen P, Ralfkiaer E (2009) Histone deacetylase 1, 2, 6 and acetylated histone H4 in B- and T-cell lymphomas. Histopathology 54:688–698

    PubMed  Google Scholar 

  • Martino DJ, Prescott SL (2010) Silent mysteries: epigenetic paradigms could hold the key to conquering the epidemic of allergy and immune disease. Allergy 65:7–15

    CAS  PubMed  Google Scholar 

  • Masetti R, Serravalle S, Biagi C, Pession A (2011) The role of HDACs inhibitors in childhood and adolescence acute leukemias. J Biomed Biotechnol 2011:148046

    PubMed Central  PubMed  Google Scholar 

  • Meda F, Folci M, Baccarelli A, Selmi C (2011) The epigenetics of autoimmunity. Cell Mol Immunol 8:226–236

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mehnert JM, Kelly WK (2007) Histone deacetylase inhibitors: biology and mechanism of action. Cancer J 13:23–29

    CAS  PubMed  Google Scholar 

  • Meyer C, Kowarz E, Hofmann J, Renneville A, Zuna J, Trka J, Ben Abdelali R, Macintyre E, De Braekeleer E, De Braekeleer M et al (2009) New insights to the MLL recombinome of acute leukemias. Leukemia 23:1490–1499

    CAS  PubMed  Google Scholar 

  • Milne TA, Hughes CM, Lloyd R, Yang Z, Rozenblatt-Rosen O, Dou Y, Schnepp RW, Krankel C, Livolsi VA, Gibbs D et al (2005a) Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc Natl Acad Sci U S A 102:749–754

    PubMed Central  CAS  PubMed  Google Scholar 

  • Milne TA, Martin ME, Brock HW, Slany RK, Hess JL (2005b) Leukemogenic MLL fusion proteins bind across a broad region of the Hox a9 locus, promoting transcription and multiple histone modifications. Cancer Res 65:11367–11374

    CAS  PubMed  Google Scholar 

  • Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6:38–51

    CAS  PubMed  Google Scholar 

  • Moreno DA, Scrideli CA, Cortez MA, de Paula Queiroz R, Valera ET, da Silva Silveira V, Yunes JA, Brandalise SR, Tone LG (2010) Differential expression of HDAC3, HDAC7 and HDAC9 is associated with prognosis and survival in childhood acute lymphoblastic leukaemia. Br J Haematol 150:665–673

    CAS  PubMed  Google Scholar 

  • Muller AM, Duque J, Shizuru JA, Lubbert M (2008) Complementing mutations in core binding factor leukemias: from mouse models to clinical applications. Oncogene 27:5759–5773

    CAS  PubMed  Google Scholar 

  • Nagy, Z., and Tora, L. (2007). Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 26, 5341–5357

    CAS  PubMed  Google Scholar 

  • Nebbioso A, Clarke N, Voltz E, Germain E, Ambrosino C, Bontempo P, Alvarez R, Schiavone EM, Ferrara F, Bresciani F et al (2005) Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat Med 11:77–84

    CAS  PubMed  Google Scholar 

  • Neff T, Sinha AU, Kluk MJ, Zhu N, Khattab MH, Stein L, Xie H, Orkin SH, Armstrong SA (2012) Polycomb repressive complex 2 is required for MLL-AF9 leukemia. Proc Natl Acad Sci U S A 109:5028–5033

    PubMed Central  CAS  PubMed  Google Scholar 

  • Neugebauer RC, Sippl W, Jung M (2008) Inhibitors of NAD+ dependent histone deacetylases (sirtuins). Curr Pharm Des 14:562–573

    CAS  PubMed  Google Scholar 

  • Nguyen AT, Zhang Y (2011) The diverse functions of Dot1 and H3K79 methylation. Genes Dev 25:1345–1358

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nikoloski G, Langemeijer SM, Kuiper RP, Knops R, Massop M, Tonnissen ER, van der Heijden A, Scheele TN, Vandenberghe P, de Witte T et al (2010) Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 42:665–667

    CAS  PubMed  Google Scholar 

  • Nishioka C, Ikezoe T, Yang J, Koeffler HP, Yokoyama A (2008a) Inhibition of MEK/ERK signaling synergistically potentiates histone deacetylase inhibitor-induced growth arrest, apoptosis and acetylation of histone H3 on p21waf1 promoter in acute myelogenous leukemia cell. Leukemia 22:1449–1452

    CAS  PubMed  Google Scholar 

  • Nishioka C, Ikezoe T, Yang J, Takeuchi S, Koeffler HP, Yokoyama A (2008b) MS-275, a novel histone deacetylase inhibitor with selectivity against HDAC1, induces degradation of FLT3 via inhibition of chaperone function of heat shock protein 90 in AML cells. Leuk Res 32:1382–1392

    CAS  PubMed  Google Scholar 

  • Odenike OM, Alkan S, Sher D, Godwin JE, Huo D, Brandt SJ, Green M, Xie J, Zhang Y, Vesole DH et al (2008). Histone deacetylase inhibitor romidepsin has differential activity in core binding factor acute myeloid leukemia. Clin Cancer Res 14:7095–7101

    CAS  PubMed  Google Scholar 

  • Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84:321–330

    CAS  PubMed  Google Scholar 

  • Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM, Su L, Xu G, Zhang Y (2005) hDOT1L links histone methylation to leukemogenesis. Cell 121:167–178

    CAS  PubMed  Google Scholar 

  • Ono R, Nosaka T, Hayashi Y (2005) Roles of a trithorax group gene, MLL, in hematopoiesis. Int J Hematol 81:288–293

    CAS  PubMed  Google Scholar 

  • Orkin SH, Hochedlinger K (2011) Chromatin connections to pluripotency and cellular reprogramming. Cell 145:835–850

    CAS  PubMed  Google Scholar 

  • Ornstein MC, Sekeres MA (2012) Combination strategies in myelodysplastic syndromes. Int J Hematol 95:26–33

    PubMed  Google Scholar 

  • Ozdag H, Teschendorff AE, Ahmed AA, Hyland SJ, Blenkiron C, Bobrow L, Veerakumarasivam A, Burtt G, Subkhankulova T, Arends MJ et al (2006). Differential expression of selected histone modifier genes in human solid cancers. BMC Genom 7:90

    Google Scholar 

  • Pal S, Sif S (2007) Interplay between chromatin remodelers and protein arginine methyltransferases. J Cell Physiol 213:306–315

    CAS  PubMed  Google Scholar 

  • Parthun MR (2007) Hat1: the emerging cellular roles of a type B histone acetyltransferase. Oncogene 26:5319–5328

    CAS  PubMed  Google Scholar 

  • Parthun MR (2012) Histone acetyltransferase 1: more than just an enzyme? Biochim Biophys Acta 1819:256–263

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pelletier N, Champagne N, Stifani S, Yang XJ (2002) MOZ and MORF histone acetyltransferases interact with the Runt-domain transcription factor Runx2. Oncogene 21:2729–2740

    CAS  PubMed  Google Scholar 

  • Perez-Campo FM, Borrow J, Kouskoff V, Lacaud G (2009) The histone acetyl transferase activity of monocytic leukemia zinc finger is critical for the proliferation of hematopoietic precursors. Blood 113:4866–4874

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peterlin BM, Price DH (2006) Controlling the elongation phase of transcription with P-TEFb. Mol Cell 23:297–305

    CAS  PubMed  Google Scholar 

  • Plass C, Oakes C, Blum W, Marcucci G (2008) Epigenetics in acute myeloid leukemia. Semin Oncol 35:378–387

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quintas-Cardama A, Santos FP, Garcia-Manero G (2011) Histone deacetylase inhibitors for the treatment of myelodysplastic syndrome and acute myeloid leukemia. Leukemia 25:226–235

    CAS  PubMed  Google Scholar 

  • Raffoux E, Cras A, Recher C, Boelle PY, de Labarthe A, Turlure P, Marolleau JP, Reman O, Gardin C, Victor M et al (2010) Phase 2 clinical trial of 5-azacitidine, valproic acid, and all-trans retinoic acid in patients with high-risk acute myeloid leukemia or myelodysplastic syndrome. Oncotarget 1:34–42

    PubMed Central  PubMed  Google Scholar 

  • Rajendran R, Garva R, Krstic-Demonacos M, Demonacos C (2011) Sirtuins: molecular traffic lights in the crossroad of oxidative stress, chromatin remodeling, and transcription. J Biomed Biotechnol 2011:368276

    Google Scholar 

  • Rao R, Fiskus W, Yang Y, Lee P, Joshi R, Fernandez P, Mandawat A, Atadja P, Bradner JE, Bhalla K (2008) HDAC6 inhibition enhances 17-AAG-mediated abrogation of hsp90 chaperone function in human leukemia cells. Blood 112:1886–1893

    CAS  PubMed  Google Scholar 

  • Reader JC, Meekins JS, Gojo I, Ning Y (2007) A novel NUP98-PHF23 fusion resulting from a cryptic translocation t(11;17)(p15;p13) in acute myeloid leukemia. Leukemia 21:842–844

    CAS  PubMed  Google Scholar 

  • Rebel VI, Kung AL, Tanner EA, Yang H, Bronson RT, Livingston DM (2002) Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal. Proc Natl Acad Sci U S A 99:14789–14794

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reikvam H, Ersvaer E, Bruserud O (2009). Heat shock protein 90 - a potential target in the treatment of human acute myelogenous leukemia. Curr Cancer Drug Targets 9:761–776

    CAS  PubMed  Google Scholar 

  • Rhoades KL, Hetherington CJ, Rowley JD, Hiebert SW, Nucifora G, Tenen DG, Zhang DE (1996) Synergistic up-regulation of the myeloid-specific promoter for the macrophage colony-stimulating factor receptor by AML1 and the t(8;21) fusion protein may contribute to leukemogenesis. Proc Natl Acad Sci U S A 93:11895–11900

    PubMed Central  CAS  PubMed  Google Scholar 

  • Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610

    CAS  PubMed  Google Scholar 

  • Ropero S, Esteller M (2007) The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 1:19–25

    CAS  PubMed  Google Scholar 

  • Rosato RR, Almenara JA, Grant S (2003) The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res 63:3637–3645

    CAS  PubMed  Google Scholar 

  • Rowley JD, Reshmi S, Sobulo O, Musvee T, Anastasi J, Raimondi S, Schneider NR, Barredo JC, Cantu ES, Schlegelberger B et al (1997) All patients with the T(11;16)(q23;p13.3) that involves MLL and CBP have treatment-related hematologic disorders. Blood 90:535–541

    CAS  PubMed  Google Scholar 

  • Saeed S, Logie C, Stunnenberg HG, Martens JH (2011) Genome-wide functions of PML-RARalpha in acute promyelocytic leukaemia. Br J Cancer 104:554–558

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sasaki K, Yagi H, Bronson RT, Tominaga K, Matsunashi T, Deguchi K, Tani Y, Kishimoto T, Komori T (1996) Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. Proc Natl Acad Sci U S A 93:12359–12363

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schwer B, Verdin E (2008) Conserved metabolic regulatory functions of sirtuins. Cell Metab 7:104–112

    CAS  PubMed  Google Scholar 

  • Seet BT, Dikic I, Zhou MM, Pawson T (2006) Reading protein modifications with interaction domains. Nat Rev Mol Cell Biol 7:473–483

    CAS  PubMed  Google Scholar 

  • Segre CV, Chiocca S (2011) Regulating the regulators: the post-translational code of class I HDAC1 and HDAC2. J Biomed Biotechnol 2011:690848

    PubMed Central  PubMed  Google Scholar 

  • Shen X, Liu Y, Hsu YJ, Fujiwara Y, Kim J, Mao X, Yuan GC, Orkin SH (2008) EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell 32:491–502

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shi J, Wang E, Zuber J, Rappaport A, Taylor M, Johns C, Lowe SW, Vakoc CR (2012) The Polycomb complex PRC2 supports aberrant self-renewal in a mouse model of MLL-AF9;Nras(G12D) acute myeloid leukemia. Oncogene. doi:10.1038/onc.2012.110

    Google Scholar 

  • Shia WJ, Okumura AJ, Yan M, Sarkeshik A, Lo MC, Matsuura S, Komeno Y, Zhao X, Nimer SD, Yates JR, 3rd et al (2012) PRMT1 interacts with AML1-ETO to promote its transcriptional activation and progenitor cell proliferative potential. Blood 119:4953–4962

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shigesada K, van de Sluis B, Liu PP (2004) Mechanism of leukemogenesis by the inv(16) chimeric gene CBFB/PEBP2B-MHY11. Oncogene 23:4297–4307

    CAS  PubMed  Google Scholar 

  • Shima Y, Kitabayashi I (2011) Deregulated transcription factors in leukemia. Int J Hematol 94:134–141

    CAS  PubMed  Google Scholar 

  • Shipley J, Butera JN (2009) Acute myelogenous leukemia. Exp Hematol 37:649–658

    CAS  PubMed  Google Scholar 

  • Slany RK (2009) The molecular biology of mixed lineage leukemia. Haematologica 94:984–993

    PubMed Central  CAS  PubMed  Google Scholar 

  • Slany RK (2010) When speed matters: leukemogenic transformation by MLL fusion proteins. Cell Cycle 9:2475–2476

    CAS  PubMed  Google Scholar 

  • Sobulo OM, Borrow J, Tomek R, Reshmi S, Harden A, Schlegelberger B, Housman D, Doggett NA, Rowley JD, Zeleznik-Le NJ (1997) MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). Proc Natl Acad Sci U S A 94:8732–8737

    PubMed Central  CAS  PubMed  Google Scholar 

  • Soriano AO, Yang H, Faderl S, Estrov Z, Giles F, Ravandi F, Cortes J, Wierda WG, Ouzounian S, Quezada A et al (2007) Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome. Blood 110:2302–2308

    CAS  PubMed  Google Scholar 

  • Speck NA, Gilliland DG (2002) Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer 2:502–513

    CAS  PubMed  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    CAS  PubMed  Google Scholar 

  • Taira N, Yoshida K (2012) Post-translational modifications of p53 tumor suppressor: determinants of its functional targets. Histol Histopathol 27:437–443

    CAS  PubMed  Google Scholar 

  • Takeda S, Chen DY, Westergard TD, Fisher JK, Rubens JA, Sasagawa S, Kan JT, Korsmeyer SJ, Cheng EH, Hsieh JJ (2006) Proteolysis of MLL family proteins is essential for taspase1-orchestrated cell cycle progression. Genes Dev 20:2397–2409

    PubMed Central  CAS  PubMed  Google Scholar 

  • Talbert PB, Henikoff S (2010) Histone variants–ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 11:264–275

    CAS  PubMed  Google Scholar 

  • Thiagalingam S, Cheng KH, Lee HJ, Mineva N, Thiagalingam A, Ponte JF (2003) Histone deacetylases: unique players in shaping the epigenetic histone code. Ann N Y Acad Sci 983:84–100

    CAS  PubMed  Google Scholar 

  • Thomas T, Corcoran LM, Gugasyan R, Dixon MP, Brodnicki T, Nutt SL, Metcalf D, Voss AK (2006) Monocytic leukemia zinc finger protein is essential for the development of long-term reconstituting hematopoietic stem cells. Genes Dev 20:1175–1186

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ungerstedt JS, Sowa Y, Xu WS, Shao Y, Dokmanovic M, Perez G, Ngo L, Holmgren A, Jiang X, Marks PA (2005) Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc Natl Acad Sci U S A 102:673–678

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vaissiere T, Sawan C, Herceg Z (2008) Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res 659:40–48

    CAS  PubMed  Google Scholar 

  • van Zutven LJ, Onen E, Velthuizen SC, van Drunen E, von Bergh AR, van den Heuvel-Eibrink MM, Veronese A, Mecucci C, Negrini M, de Greef GE et al (2006) Identification of NUP98 abnormalities in acute leukemia: JARID1A (12p13) as a new partner gene. Genes Chromosomes Cancer 45:437–446

    CAS  PubMed  Google Scholar 

  • Verbrugge I, Johnstone RW, Bots M (2011) Promises and challenges of anticancer drugs that target the epigenome. Epigenomics 3:547–565

    CAS  PubMed  Google Scholar 

  • Verzijlbergen KF, van Welsem T, Sie D, Lenstra TL, Turner DJ, Holstege FC, Kerkhoven RM, van Leeuwen F (2011) A barcode screen for epigenetic regulators reveals a role for the NuB4/HAT-B histone acetyltransferase complex in histone turnover. PLoS Genet 7:e1002284

    PubMed Central  CAS  PubMed  Google Scholar 

  • Voss AK, Thomas T (2009) MYST family histone acetyltransferases take center stage in stem cells and development. Bioessays 31:1050–1061

    CAS  PubMed  Google Scholar 

  • Wagner JM, Hackanson B, Lubbert M, Jung M (2010) Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenetics 1:117–136

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Q, Stacy T, Miller JD, Lewis AF, Gu TL, Huang X, Bushweller JH, Bories JC, Alt FW, Ryan G et al (1996) The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell 87:697–708

    CAS  PubMed  Google Scholar 

  • Wang GG, Song J, Wang Z, Dormann HL, Casadio F, Li H, Luo JL, Patel DJ, Allis CD (2009) Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature 459:847–851

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang L, Gural A, Sun XJ, Zhao X, Perna F, Huang G, Hatlen MA, Vu L, Liu F, Xu H et al (2011) The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation. Science 333:765–769

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson AJ, Byun DS, Popova N, Murray LB, L’Italien K, Sowa Y, Arango D, Velcich A, Augenlicht LH, Mariadason JM (2006) Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem 281:13548–13558

    CAS  PubMed  Google Scholar 

  • Wilting RH, Yanover E, Heideman MR, Jacobs H, Horner J, van der Torre J, DePinho RA, Dannenberg JH (2010) Overlapping functions of Hdac1 and Hdac2 in cell cycle regulation and haematopoiesis. EMBO J 29:2586–2597

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wong P, Iwasaki M, Somervaille TC, So CW, Cleary ML (2007) Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev 21:2762–2774

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xia ZB, Anderson M, Diaz MO, Zeleznik-Le NJ (2003) MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein. Proc Natl Acad Sci U S A 100:8342–8347

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang XJ, Seto E (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26:5310–5318

    CAS  PubMed  Google Scholar 

  • Yang XJ, Ullah M (2007) MOZ and MORF, two large MYSTic HATs in normal and cancer stem cells. Oncogene 26:5408–5419

    CAS  PubMed  Google Scholar 

  • Yao YL, Yang WM (2011) Beyond histone and deacetylase: an overview of cytoplasmic histone deacetylases and their nonhistone substrates. J Biomed Biotechnol 2011:146493

    PubMed Central  PubMed  Google Scholar 

  • Yao Y, Chen P, Diao J, Cheng G, Deng L, Anglin JL, Prasad BV, Song Y (2011) Selective inhibitors of histone methyltransferase DOT1L: design, synthesis, and crystallographic studies. J Am Chem Soc 133:16746–16749

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu BD, Hess JL, Horning SE, Brown GA, Korsmeyer SJ (1995) Altered Hox expression and segmental identity in Mll-mutant mice. Nature 378:505–508

    CAS  PubMed  Google Scholar 

  • Zeisig BB, Milne T, Garcia-Cuellar MP, Schreiner S, Martin ME, Fuchs U, Borkhardt A, Chanda SK, Walker J, Soden R et al (2004) Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Mol Cell Biol 24:617–628

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang XD, Gillespie SK, Borrow JM, Hersey P (2004) The histone deacetylase inhibitor suberic bishydroxamate regulates the expression of multiple apoptotic mediators and induces mitochondria-dependent apoptosis of melanoma cells. Mol Cancer Ther 3:425–435

    CAS  PubMed  Google Scholar 

  • Zhang Z, Yamashita H, Toyama T, Sugiura H, Ando Y, Mita K, Hamaguchi M, Hara Y, Kobayashi S, Iwase H (2005) Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast*. Breast Cancer Res Treat 94:11–16

    CAS  PubMed  Google Scholar 

  • Zhu P, Martin E, Mengwasser J, Schlag P, Janssen KP, Gottlicher M (2004) Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 5:455–463

    CAS  PubMed  Google Scholar 

  • Bots M et al (2014) Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors. Blood 123(9):1341–1352

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricky W. Johnstone .

Editor information

Editors and Affiliations

Conclusions

Conclusions

A growing amount of data indicates that alterations in the activity or expression of histone-modifying enzymes play a critical role in the development and progression of AML, and, thus, could constitute particularly promising therapeutic targets for these diseases. In the recent years, there has been a strong focus on the development and use of epigenetic drugs and in particular of HDACi for the treatment of hematologic malignancies, including AML and MDS. Many compounds have been tested in preclinical setting giving encouraging results, and some have proceeded to evaluation in phase I/II clinical trials on AML patients. Although some promising results have been obtained with HDACi (especially in combination studies) in patients with AML, so far, the therapeutic success of these drugs has been limited by a series of different factors. First of all, some histone-modifying enzymes seem to play very different and specific roles in distinct classes of AML, depending on the cellular origin and the genetic background of the leukemic cells. Thus, inhibitors of specific enzymes or classes of enzymes are likely to have very different effects on different subtypes of leukemias. Another important issue is that in many cases the exact mechanism by which these epigenetic drugs exert their therapeutic activity is still not clear, and this obviously complicates the optimization of their clinical use.

A better understanding of the cancer-specific dependency on different epigenetic regulators , the development of more selective inhibitors of epigenetic enzymes, and a better stratification of patients enrolled in the clinical studies will probably greatly improve in the future the performance and the impact of epigenetic drugs in the clinics.

Acknowledgments

RWJ is a principal research fellow of the National Health and Medical Research Council of Australia (NHMRC) and supported by NHMRC Program and Project Grants, the Susan G Komen Breast Cancer Foundation, Cancer Council Victoria, The Victorian Cancer Agency, The Leukemia Foundation of Australia and the Victorian Breast Cancer Research Consortium. MG is a postdoctoral fellow supported by the Italian Cancer Research Foundation (FIRC).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag New York

About this chapter

Cite this chapter

Ghisi, M., Johnstone, R. (2015). AML: Deacetylases. In: Andreeff, M. (eds) Targeted Therapy of Acute Myeloid Leukemia. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1393-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1393-0_21

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1392-3

  • Online ISBN: 978-1-4939-1393-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics