Skip to main content

The Use of “Omics” to Guide the Selection of Targeted Therapy

  • Chapter
  • First Online:
Targeted Therapy of Acute Myeloid Leukemia

Part of the book series: Current Cancer Research ((CUCR))

Abstract

In this book, the role of many different proteins, pathways, or genetic events in affecting the function of leukemic cells, as well as their suitability for therapeutic modulation, is discussed. However, since acute myeloid leukemia (AML) is a very heterogeneous disease, it will be necessary to match the characteristics of individual patients to the selection of the right targeted agent in order to maximize efficacy. In this chapter, we discuss how the application of the numerous molecular profiling arrays that are now available can be utilized to provide the answer to this dilemma. The development of methods to combine data from multiple arrays, termed “integromics” will enable a more sophisticated application of “omic” data that will facilitate the selection of combinations of targeted agents on an individualized basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banker DE, Mayer SJ, Li HY et al (2004) Cholesterol synthesis and import contribute to protective cholesterol increments in acute myeloid leukemia cells. Blood 104:1816–1824

    Article  CAS  PubMed  Google Scholar 

  • Barretina J, Caponigro G, Stransky N et al (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483:603–607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bendall SC, Simonds EF, Qiu P et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:687–696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blair A, Sutherland HJ (2000) Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Exp Hematol 28:660–671

    Article  CAS  PubMed  Google Scholar 

  • Blair A, Hogge DE, Sutherland HJ (1998) Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34+/CD71/HLA-DR. Blood 92:4325–4335

    CAS  PubMed  Google Scholar 

  • Butler JS, Koutelou E, Schibler AC, Dent SY (2012) Histone-modifying enzymes: regulators of developmental decisions and drivers of human disease. Epigenomics 4:163–177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Calin GA, Liu CG, Sevignani C et al (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A 101:11755–11760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Calin GA, Ferracin M, Cimmino A et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Liu CG, Ferracin M et al (2007) Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 12:215–229

    Article  CAS  PubMed  Google Scholar 

  • Carter BZ, Zhang N, Coombes KR et al (2009) Expression of apoptosis repressor with caspase recruitment domain (ARC), an antiapoptotic protein, is strongly prognostic in acute myeloid leukemia (AML) [abstract]. Blood 114:166

    Google Scholar 

  • Carter BZ, Qiu YH, Zhang N et al (2010) Expression of ARC (apoptosis repressor with caspase recruitment domain), an antiapoptotic protein, is strongly prognostic in AML. Blood ­117(3):780–787

    Article  PubMed  Google Scholar 

  • Cesano A, Woronicz J, Cohen AC et al (2009) Single cell network profiling as a tool to identify AML chemotherapy resistant cell phenotypes under in vivo therapeutic pressure [abstract]. Blood 114:165

    Article  Google Scholar 

  • Chan WI, Huntly BJ (2008) Leukemia stem cells in acute myeloid leukemia. Semin Oncol ­35:326–335

    Article  CAS  PubMed  Google Scholar 

  • Fredriksson S, Gullberg M, Jarvius J et al (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20:473–477

    Article  CAS  PubMed  Google Scholar 

  • Garzon R, Heaphy CE, Havelange V et al (2009) MicroRNA 29b functions in acute myeloid leukemia. Blood 114:5331–5341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892

    Article  CAS  PubMed  Google Scholar 

  • Gold L, Ayers D, Bertino J et al (2010) Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE 5:e15004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Greenbaum D, Colangelo C, Williams K, Gerstein M (2003) Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol 4:117

    Article  PubMed Central  PubMed  Google Scholar 

  • Griffin TJ, Gygi SP, Ideker T et al (2002) Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol Cell Proteomics 1:323–333

    Article  CAS  PubMed  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    PubMed Central  CAS  PubMed  Google Scholar 

  • Irish JM, Hovland R, Krutzik PO et al (2004) Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118:217–228

    Article  CAS  PubMed  Google Scholar 

  • Jansen R, Greenbaum D, Gerstein M (2002) Relating whole-genome expression data with protein-protein interactions. Genome Res 12:37–46

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jordan CT, Upchurch D, Szilvassy SJ et al (2000) The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 14:1777–1784

    Article  CAS  PubMed  Google Scholar 

  • Kadia T, Kornblau SM, Kantarjian H et al (2009) Clinical characterization and proteomic consequences of mutated Ras in acute myeloid leukemia [abstract]. Blood 114:139–140

    Google Scholar 

  • Kern W, Kohlmann A, Wuchter C et al (2003) Correlation of protein expression and gene expression in acute leukemia. Cytometry B Clin Cytom 55:29–36

    Article  PubMed  Google Scholar 

  • Kornblau SM, Banker DE, Stirewalt D et al (2007) Blockade of adaptive defensive changes in ­cholesterol uptake and synthesis in AML by the addition of pravastatin to idarubicin + high dose Ara-C: a phase I study. Blood 109(7):2999–3006

    Google Scholar 

  • Kornblau SM, Singh N, Qiu YH et al (2009a) Highly phosphorylated FOXO3 A is an adverse prognostic factor in acute myeloid leukemia [abstract]. Blood 114:166–167

    Google Scholar 

  • Kornblau SM, Minden MD, Rosen DB et al (2009b) Single cell network profiles in non-M3 AML associated with patient response to standard induction therapy [abstract]. Blood 114:633

    Google Scholar 

  • Kornblau SM, Tibes R, Qiu YH et al (2009c) Functional proteomic profiling of AML predicts response and survival. Blood 113:154–164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kornblau SM, McCue D, Singh N et al (2010a) Recurrent expression signatures of cytokines and chemokines are present and are independently prognostic in acute myelogenous leukemia and myelodysplasia. Blood 116(20):4251–4261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kornblau SM, Minden A, Hogge D, Chohen A, Cesano A (2010b) Insights into acute myeloid leukemia via single cell network profiling. Clin Lab Int 1:12–15

    Google Scholar 

  • Kornblau SM, Minden M, Rosen D et al (2010c) Dynamic single cell network profiles in AML are associated with patient response to standard induction therapy. Clin Can Res 16(14):3721–3733

    Article  CAS  Google Scholar 

  • Kornblau SM, Covey T, Putta S et al (2011a) Signaling changes in the stem cell factor-AKT-S6 pathway in diagnostic AML samples are associated with disease relapse. Blood Cell J 1(2):e3

    CAS  Google Scholar 

  • Kornblau SM, Qiu YH, Zhang N et al (2011b) Abnormal expression of FLI1 protein is an adverse prognostic factor in acute myeloid leukemia. Blood 118:5604–5612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kornblau SM, Qutub A, Yao H et al (2013) Proteomic profiling identifies distinct protein patterns in acute myelogenous leukemia CD34+CD38- stem-like cells. PLoS One 8(10):e78453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krutzik PO, Irish JM, Nolan GP, Perez OD (2004) Analysis of protein phosphorylation and ­cellular signaling events by flow cytometry: techniques and clinical applications. Clin ­Immunol 110:206–221

    Article  CAS  PubMed  Google Scholar 

  • Lee DW, Futami M, Carroll M et al (2012) Loss of SHIP-1 protein expression in high-risk myelodysplastic syndromes is associated with miR-210 and miR-155. Oncogene 31:4085–4094 (Epub)

    Article  CAS  PubMed  Google Scholar 

  • Levin VA, Panchabhai SC, Shen L et al (2010) Different changes in protein and phosphoprotein levels result from serum starvation of high-grade glioma and adenocarcinoma cell lines. J Proteome Res 9:179–191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu C, Ward PS, Kapoor GS et al (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483:474–478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma W, Yang D, Gu Y et al (2009) Finding disease-specific coordinated functions by multi-function genes: insight into the coordination mechanisms in diseases. Genomics 94:94–100

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Wang M, Wang ZQ et al (2010a) Effect of long-term storage in TRIzol on microarray-based gene expression profiling. Cancer Epidemiol Biomarkers Prev 19:2445–2452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma L, Reinhardt F, Pan E et al (2010b) Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 28:341–347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miao F, Natarajan R (2005) Mapping global histone methylation patterns in the coding regions of human genes. Mol Cell Biol 25:4650–4661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365:488–492

    Article  CAS  PubMed  Google Scholar 

  • Minden MD, Kornblau SM, Rosen DB et al (2009) FLT3 ITD signaling profiles in AML samples harboring mutations [abstract]. Blood 114:635

    Google Scholar 

  • Neeley ES, Kornblau SM, Coombes KR, Baggerly KA (2009) Variable slope normalization of reverse phase protein arrays. Bioinformatics 25:1384–1389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neeley ES, Baggerly KA., Kornblau SM (2012) Surface adjustment of reverse phase protein ­arrays using positive controls spots. Cancer Inform 2012:77–86

    Article  Google Scholar 

  • Ogata H, Goto S, Sato K et al (1999) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 27:29–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pemmaraju N, Kantarjian HM, Ravandi F et al (2009) FLT3 inhibitor therapy for patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML): impact on survival according to FLT3 status [abstract]. Blood 114:424–425

    Google Scholar 

  • Phillips CL, Gerbing R, Alonzo T et al (2010) MDM2 polymorphism increases susceptibility to childhood acute myeloid leukemia: a report from the Children’s Oncology Group. Pediatr Blood Cancer 55:248–253

    Article  PubMed Central  PubMed  Google Scholar 

  • Pichiorri F, Suh SS, Rocci A et al (2010) Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 18:367–381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poland KS, Shardy DL, Azim M et al (2009) Overexpression of ZNF342 by juxtaposition with MPO promoter/enhancer in the novel translocation t(17;19)(q23;q13.32) in pediatric acute myeloid leukemia and analysis of ZNF342 expression in leukemia. Genes Chromosomes Cancer 48:480–489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quintas-Cardama A, Qiu YH, Post SM et al (2012) Reverse phase protein array profiling reveals distinct proteomic signatures associated with chronic myeloid leukemia progression and with chronic phase in the CD34-positive compartment. Cancer 118:5283–5292 (Epub)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ravandi F, Patel K, Luthra R et al (2011) Prognostic significance of alterations in IDH enzyme isoforms in patients with AML treated with high-dose cytarabine and idarubicin. Cancer 118:(10):2665–2673

    Article  PubMed Central  PubMed  Google Scholar 

  • Roboz GJ, Guzman M (2009) Acute myeloid leukemia stem cells: seek and destroy. Expert Rev Hematol 2:663–672

    Article  PubMed  Google Scholar 

  • Rosen DB, Minden MD, Kornblau SM et al (2010) Functional characterization of FLT3 receptor signaling deregulation in acute myeloid leukemia by single cell network profiling (SCNP). PLoS ONE 5:e13543

    Article  PubMed Central  PubMed  Google Scholar 

  • Ruvolo PP, Qui YH, Coombes KR et al (2011a) Low expression of PP2 A regulatory subunit B55alpha is associated with T308 phosphorylation of AKT and shorter complete remission duration in acute myeloid leukemia patients. Leukemia 25:1711–1717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ruvolo PP, Zhou L, Watt JC et al (2011b) Targeting PKC-mediated signal transduction pathways using enzastaurin to promote apoptosis in acute myeloid leukemia-derived cell lines and blast cells. J Cell Biochem 112:1696–1707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Starkova J, Gadgil S, Qiu YH et al (2011) Up-regulation of homeodomain genes, DLX1 and DLX2, by FLT3 signaling. Haematologica 96:820–828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles [abstract]. Proc Natl Acad Sci U S A 102:15545–15550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taby RF, Yellapragada SV, Kroeger H et al (2009) Validation of a DNA methylation signature of favorable prognosis in newly diagnosed acute myeloid leukemia [abstract]. Blood 114:645

    Google Scholar 

  • Taussig DC, Vargaftig J, Miraki-Moud F et al (2010) Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34 fraction. Blood 115:1976–1984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tehranchi R, Woll PS, Anderson K et al (2010) Persistent malignant stem cells in del(5q) ­myelodysplasia in remission. N Engl J Med 363:1025–1037

    Article  CAS  PubMed  Google Scholar 

  • Tibes R, Qiu YH, Lu Y et al (2006) Reverse phase protein array (RPPA): validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells (HSC). Mol Cancer Ther 5:2512–2521

    Article  CAS  PubMed  Google Scholar 

  • Tsao T, Kornblau S, Safe S et al. (2010) Role of peroxisome proliferator-activated receptor-gamma and its coactivator DRIP205 in cellular responses to CDDO (RTA –401) in acute myelogenous leukemia. Cancer Res 70:4949–4960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Valastyan S, Chang A, Benaich N, Reinhardt F, Weinberg RA (2011) Activation of miR-31 ­function in already-established metastases elicits metastatic regression. Genes Dev 25:646–659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walter MJ, Shen D, Ding L et al (2012) Clonal architecture of secondary acute myeloid leukemia. N Engl J Med 366:1090–1098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Washburn MP, Koller A, Oshiro G et al (2003) Protein pathway and complex clustering of ­correlated mRNA and protein expression analyses in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 100:3107–3112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weinstein JN (2002) ‘Omic’ and hypothesis-driven research in the molecular pharmacology of cancer. Curr Opin Pharmacol 2:361–365

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Tan AC, Winslow RL, Geman D (2008) Merging microarray data from separate breast ­cancer studies provides a robust prognostic test. BMC Bioinformatics 9:125

    Google Scholar 

  • York H, Kornblau SM, Qutub AA (2012) Network analysis of reverse phase protein expression data: Characterizing protein signatures in acute myeloid leukemia cytogenetic categories t(8;21) and inv(16). Proteomics 12:2084–2093

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Dr. Richard Eric Davis for critical reading and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Kornblau M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag New York

About this chapter

Cite this chapter

Kornblau, S. (2015). The Use of “Omics” to Guide the Selection of Targeted Therapy. In: Andreeff, M. (eds) Targeted Therapy of Acute Myeloid Leukemia. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1393-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1393-0_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1392-3

  • Online ISBN: 978-1-4939-1393-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics