Skip to main content

The Role of Translational Medicine in Optimization of Therapies Targeting the RAS-MAP Kinase Pathway

  • Chapter
  • First Online:
Targeted Therapy of Acute Myeloid Leukemia

Part of the book series: Current Cancer Research ((CUCR))

  • 1979 Accesses

Abstract

Activation of the RAS-MAP kinase (MAPK) pathway is a common feature in hematological malignancies, including acute myelogenous leukemia (AML). Based on its central role in regulating growth and survival of a broad spectrum of human cancers, much attention has focused in recent years on pharmacologic targeting of the RAS–RAF–MEK–MAPK intracellular signaling cascade. Multiple agents now exist in various stages of clinical development that are capable of effectively inhibiting the downstream kinases in this pathway. The emergence of these agents into the clinical trial arena now allows us to turn our attention to how best to deploy them for maximal therapeutic impact in AML patients. Optimization of these therapies will ultimately depend not only on the availability of promising clinical agents but also on the identification of patients most likely to respond. Toward this goal, technological advances have led to comprehensive molecular profiling of AML samples to facilitate the identification of prognostic biomarkers and insights into the rational design of combination strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcolea MP, Casado P, Rodriguez-Prados JC, Vanhaesebroeck B, Cutillas PR (2012) Phosphoproteomic analysis of leukemia cells under basal and drug-treated conditions identifies markers of kinase pathway activation and mechanisms of resistance. Mol Cell Proteomics 11(8):453–466

    Article  PubMed Central  PubMed  Google Scholar 

  • Andreeff M, Jiang S, Zhang X, Konopleva M, Estrov Z, Snell VE, Xie Z, Okcu MF, Sanchez-Williams G, Dong J, Estey EH, Champlin RC, Kornblau SM, Reed JC, Zhao S (1999) Expression of Bcl-2-related genes in normal and AML progenitors: changes induced by chemotherapy and retinoic acid. Leukemia 13(11):1881–1892.

    Article  CAS  PubMed  Google Scholar 

  • Berthon C, Driss V, Liu J, Kuranda K, Leleu X, Jouy N, Hetuin D, Quesnel B (2010) In acute myeloid leukemia, B7-H1 (PD-L1) protection of blasts from cytotoxic T cells is induced by TLR ligands and interferon-gamma and can be reversed using MEK inhibitors. Cancer Immunol Immunother 59(12):1839–1849.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blalock WL, Moye PW, Chang F, Pearce M, Steelman LS, McMahon M, McCubrey JA (2000) Combined effects of aberrant MEK1 activity and BCL2 overexpression on relieving the cytokine dependency of human and murine hematopoietic cells. Leukemia 14(6):1080–1096.

    Article  CAS  PubMed  Google Scholar 

  • Bowen DT, Frew ME, Hills R, Gale RE, Wheatley K, Groves MJ, Langabeer SE, Kottaridis PD, Moorman AV, Burnett AK, Linch DC (2005) RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients younger than 60 years. Blood 106(6):2113–9.

    Article  CAS  PubMed  Google Scholar 

  • Campos L, Rouault JP, Sabido O, Oriol P, Roubi N, Vasselon C, Archimbaud E, Magaud JP, Guyotat D (1993) High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood 81(11):3091–6

    CAS  PubMed  Google Scholar 

  • Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma SC, Papa A, Nardella C, Cantley LC, Baselga J, Pandolfi PP (2008) Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 118(9):3065–3074

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ciuffreda L, Di Sanza C, Cesta Incani U, Eramo A, Desideri M, Biagioni F, Passeri D, Falcone I, Sette G, Bergamo P, Anichini A, Sabapathy K, McCubrey JA, Ricciardi MR, Tafuri A, Blandino G, Orlandi A, De Maria R, Cognetti F, Del Bufalo D, Milella M (2012) The mitogen-activated protein kinase (MAPK) cascade controls phosphatase and tensin homolog (PTEN) expression through multiple mechanisms. J Mol Med (Berl) 90(6):667–679

    Article  CAS  Google Scholar 

  • Crump M, Hedley D, Kamel-Reid S, Leber B, Wells R, Brandwein J, Buckstein R, Kassis J, Minden M, Matthews J, Robinson S, Turner R, McIntosh L, Eisenhauer E, Seymour L (2010) A randomized phase I clinical and biologic study of two schedules of sorafenib in patients with myelodysplastic syndrome or acute myeloid leukemia: a NCIC (National Cancer Institute of Canada) Clinical Trials Group Study. Leuk Lymphoma 51(2):252–260

    Article  CAS  PubMed  Google Scholar 

  • Dent P, Grant S (2001) Pharmacologic interruption of the mitogen-activated extracellular-regulated kinase/mitogen-activated protein kinase signal transduction pathway: potential role in promoting cytotoxic drug action. Clin Cancer Res 7(4):775–783

    CAS  PubMed  Google Scholar 

  • Dry JR, Pavey S, Pratilas CA, Harbron C, Runswick S, Hodgson D, Chresta C, McCormack R, Byrne N, Cockerill M, Graham A, Beran G, Cassidy A, Haggerty C, Brown H, Ellison G, Dering J, Taylor BS, Stark M, Bonazzi V, Ravishankar S, Packer L, Xing F, Solit DB, Finn RS, Rosen N, Hayward NK, French T, Smith PD (2010) Transcriptional pathway signatures predict MEK addiction and response to selumetinib (AZD6244). Cancer Res 70(6):2264–2273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duncan JS, Whittle MC, Nakamura K, Abell AN, Midland AA, Zawistowski JS, Johnson NL, Granger DA, Jordan NV, Darr DB, Usary J, Kuan PF, Smalley DM, Major B, He X, Hoadley KA, Zhou B, Sharpless NE, Perou CM, Kim WY, Gomez SM, Chen X, Jin J, Frye SV, Earp HS, Graves LM, Johnson GL (2012) Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 149(2):307–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, Maira M, McNamara K, Perera SA, Song Y, Chirieac LR, Kaur R, Lightbown A, Simendinger J, Li T, Padera RF, Garcia-Echeverria C, Weissleder R, Mahmood U, Cantley LC, Wong KK (2008) Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 14(12):1351–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garnett MJ, Marais R (2004) Guilty as charged: B-RAF is a human oncogene. Cancer Cell 6(4):313–9

    Article  CAS  PubMed  Google Scholar 

  • Garnett MJ, Rana S, Paterson H, Barford D, Marais R (2005) Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol Cell 20(6):963–9

    Article  CAS  PubMed  Google Scholar 

  • Gilmartin AG, Bleam MR, Groy A, Moss KG, Minthorn EA, Kulkarni SG, Rominger CM, Erskine S, Fisher KE, Yang J, Zappacosta F, Annan R, Sutton D, Laquerre SG (2011) GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin Cancer Res 17(5):989–1000

    Article  CAS  PubMed  Google Scholar 

  • Glasow A, Prodromou N, Xu K, von Lindern M, Zelent A (2005) Retinoids and myelomonocytic growth factors cooperatively activate RARA and induce human myeloid leukemia cell differentiation via MAP kinase pathways. Blood 105(1):341–9

    Article  CAS  PubMed  Google Scholar 

  • Harousseau JL, Lancet JE, Reiffers J, Lowenberg B, Thomas X, Huguet F, Fenaux P, Zhang S, Rackoff W, De Porre P, Stone R (2007) A phase 2 study of the oral farnesyltransferase inhibitor tipifarnib in patients with refractory or relapsed acute myeloid leukemia. Blood 109(12):5151–6

    Article  CAS  PubMed  Google Scholar 

  • Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, Ludlam MJ, Stokoe D, Gloor SL, Vigers G, Morales T, Aliagas I, Liu B, Sideris S, Hoeflich KP, Jaiswal BS, Seshagiri S, Koeppen H, Belvin M, Friedman LS, Malek S (2010) RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464(7287):431–5

    Article  CAS  PubMed  Google Scholar 

  • Ho YK, Smith RG, Brown MS, Goldstein JL (1978) Low-density lipoprotein (LDL) receptor activity in human acute myelogenous leukemia cells. Blood 52(6):1099–1114

    CAS  PubMed  Google Scholar 

  • Illmer T, Thiede C, Fredersdorf A, Stadler S, Neubauer A, Ehninger G, Schaich M (2005) Activation of the RAS pathway is predictive for a chemosensitive phenotype of acute myelogenous leukemia blasts. Clin Cancer Res 11(9):3217–3224

    Article  CAS  PubMed  Google Scholar 

  • Incani UC, Del Curatolo A, Di Sanza C, Falcone I, Cognetti F, Ciuffreda L, Milella M, Elena R (2012) Synergistic activity of vertical combinations of agents targeting multiple steps along the RAF/MEK/ERK cascade as a therapeutic strategy in human tumors. J Clin Oncol 30 (suppl):e13572. (Abstract)

    Google Scholar 

  • Infante JR, Fecher LA, Falchook GS, Nallapareddy S, Gordon MS, Becerra C, DeMarini DJ, Cox DS, Xu Y, Morris SR, Peddareddigari VG, Le NT, Hart L, Bendell JC, Eckhardt G, Kurzrock R, Flaherty K, Burris HA 3rd, Messersmith WA (2012) Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: a phase 1 dose-escalation trial. Lancet Oncol 13(8):773–781

    Google Scholar 

  • Jing J, Greshock J, Holbrook JD, Gilmartin A, Zhang X, McNeil E, Conway T, Moy C, Laquerre S, Bachman K, Wooster R, Degenhardt Y (2012) Comprehensive predictive biomarker analysis for MEK inhibitor GSK1120212. Mol Cancer Ther 11(3):720–9

    Article  CAS  PubMed  Google Scholar 

  • Karp JE, Lancet JE, Kaufmann SH, End DW, Wright JJ, Bol K, Horak I, Tidwell ML, Liesveld J, Kottke TJ, Ange D, Buddharaju L, Gojo I, Highsmith WE, Belly RT, Hohl RJ, Rybak ME, Thibault A, Rosenblatt J (2001) Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase 1 clinical-laboratory correlative trial. Blood 97(11):3361–9

    Article  CAS  PubMed  Google Scholar 

  • Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S, Asou N, Kuriyama K, Jinnai I, Shimazaki C, Akiyama H, Saito K, Oh H, Motoji T, Omoto E, Saito H, Ohno R, Ueda R (1999) Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 93(9):3074–3080

    CAS  PubMed  Google Scholar 

  • Kojima K, Konopleva M, Samudio IJ, Shikami M, Cabreira-Hansen M, McQueen T, Ruvolo V, Tsao T, Zeng Z, Vassilev LT, Andreeff M (2005) MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood 106(9):3150–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kojima K, Konopleva M, Samudio IJ, Ruvolo V, Andreeff M (2007) Mitogen-activated protein kinase kinase inhibition enhances nuclear proapoptotic function of p53 in acute myelogenous leukemia cells. Cancer Res 67(7):3210–9

    Article  CAS  PubMed  Google Scholar 

  • Kolch W, Pitt A (2010) Functional proteomics to dissect tyrosine kinase signalling pathways in cancer. Nat Rev Cancer 10(9):618–629

    Article  CAS  PubMed  Google Scholar 

  • Konopleva M, Tari AM, Estrov Z, Harris D, Xie Z, Zhao S, Lopez-Berestein G, Andreeff M (2000) Liposomal Bcl-2 antisense oligonucleotides enhance proliferation, sensitize acute myeloid leukemia to cytosine-arabinoside, and induce apoptosis independent of other antiapoptotic proteins. Blood 95(12):3929–3938

    CAS  PubMed  Google Scholar 

  • Konopleva M, Milella M, Ruvolo P, Watts JC, Ricciardi MR, Korchin B, McQueen T, Bornmann W, Tsao T, Bergamo P, Mak DH, Chen W, McCubrey J, Tafuri A, Andreeff M (2012) MEK inhibition enhances ABT-737-induced leukemia cell apoptosis via prevention of ERK-activated MCL-1 induction and modulation of MCL-1/BIM complex. Leukemia 26(4):778–787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kornblau SM, Vu HT, Ruvolo P, Estrov Z, O’Brien S, Cortes J, Kantarjian H, Andreeff M, May WS (2000) BAX and PKCalpha modulate the prognostic impact of BCL2 expression in acute myelogenous leukemia. Clin Cancer Res 6(4):1401–9

    CAS  PubMed  Google Scholar 

  • Kornblau SM, Tibes R, Qiu YH, Chen W, Kantarjian HM, Andreeff M, Coombes KR, Mills GB (2009) Functional proteomic profiling of AML predicts response and survival. Blood 113(1):154–164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lancet JE, Gojo I, Gotlib J, Feldman EJ, Greer J, Liesveld JL, Bruzek LM, Morris L, Park Y, Adjei AA, Kaufmann SH, Garrett-Mayer E, Greenberg PL, Wright JJ, Karp JE (2007) A phase 2 study of the farnesyltransferase inhibitor tipifarnib in poor-risk and elderly patients with previously untreated acute myelogenous leukemia. Blood 109(4):1387–1394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lauchle JO, Kim D, Le DT, Akagi K, Crone M, Krisman K, Warner K, Bonifas JM, Li Q, Coakley KM, Diaz-Flores E, Gorman M, Przybranowski S, Tran M, Kogan SC, Roose JP, Copeland NG, Jenkins NA, Parada L, Wolff L, Sebolt-Leopold J, Shannon K (2009) Response and resistance to MEK inhibition in leukaemias initiated by hyperactive Ras. Nature 461(7262):411–4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lehmann S, Paul C, Torma H (2001) Retinoid receptor expression and its correlation to retinoid sensitivity in non-M3 acute myeloid leukemia blast cells. Clin Cancer Res 7(2):367–373

    CAS  PubMed  Google Scholar 

  • Lorusso PM, Adjei AA, Varterasian M, Gadgeel S, Reid J, Mitchell DY, Hanson L, DeLuca P, Bruzek L, Piens J, Asbury P, Van Becelaere K, Herrera R, Sebolt-Leopold J, Meyer MB (2005) Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. J Clin Oncol 23(23):5281–5293

    Article  CAS  PubMed  Google Scholar 

  • Lunghi P, Tabilio A, Dall’Aglio PP, Ridolo E, Carlo-Stella C, Pelicci PG, Bonati A (2003) Downmodulation of ERK activity inhibits the proliferation and induces the apoptosis of primary acute myelogenous leukemia blasts. Leukemia 17(9):1783–1793

    Article  CAS  PubMed  Google Scholar 

  • Man CH, Fung TK, Ho C, Han HH, Chow HC, Ma AC, Choi WW, Lok S, Cheung AM, Eaves C, Kwong YL, Leung AY (2012) Sorafenib treatment of FLT3-ITD+ acute myeloid leukemia: favorable initial outcome and mechanisms of subsequent non-responsiveness associated with a D835 mutation. Blood 119(22):5133–5143

    Article  CAS  PubMed  Google Scholar 

  • Maurer T, Garrenton LS, Oh A, Pitts K, Anderson DJ, Skelton NJ, Fauber BP, Pan B, Malek S, Stokoe D, Ludlam MJ, Bowman KK, Wu J, Giannetti AM, Starovasnik MA, Mellman I, Jackson PK, Rudolph J, Wang W, Fang G (2012) Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc Natl Acad Sci U S A 109(14):5299–5304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Milella M, Kornblau SM, Estrov Z, Carter BZ, Lapillonne H, Harris D, Konopleva M, Zhao S, Estey E, Andreeff M (2001) Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J Clin Invest 108(6):851–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Milella M, Estrov Z, Kornblau SM, Carter BZ, Konopleva M, Tari A, Schober WD, Harris D, Leysath CE, Lopez-Berestein G, Huang Z, Andreeff M (2002) Synergistic induction of apoptosis by simultaneous disruption of the Bcl-2 and MEK/MAPK pathways in acute myelogenous leukemia. Blood 99(9):3461–4

    Article  CAS  PubMed  Google Scholar 

  • Milella M, Precupanu CM, Gregorj C, Ricciardi MR, Petrucci MT, Kornblau SM, Tafuri A, Andreeff M (2005) Beyond single pathway inhibition: MEK inhibitors as a platform for the development of pharmacological combinations with synergistic anti-leukemic effects. Curr Pharm Des 11(21):2779–2795

    Article  CAS  PubMed  Google Scholar 

  • Milella M, Konopleva M, Precupanu CM, Tabe Y, Ricciardi MR, Gregorj C, Collins SJ, Carter BZ, D’Angelo C, Petrucci MT, Foa R, Cognetti F, Tafuri A, Andreeff M (2007) MEK blockade converts AML differentiating response to retinoids into extensive apoptosis. Blood 109(5):2121–9

    Article  CAS  PubMed  Google Scholar 

  • Miranda MB, McGuire TF, Johnson DE (2002) Importance of MEK-1/-2 signaling in monocytic and granulocytic differentiation of myeloid cell lines. Leukemia 16(4):683–692

    Article  CAS  PubMed  Google Scholar 

  • Mirzoeva OK, Das D, Heiser LM, Bhattacharya S, Siwak D, Gendelman R, Bayani N, Wang NJ, Neve RM, Guan Y, Hu Z, Knight Z, Feiler HS, Gascard P, Parvin B, Spellman PT, Shokat KM, Wyrobek AJ, Bissell MJ, McCormick F, Kuo WL, Mills GB, Gray JW, Korn WM (2009) Basal subtype and MAPK/ERK kinase (MEK)-phosphoinositide 3-kinase feedback signaling determine susceptibility of breast cancer cells to MEK inhibition. Cancer Res 69(2):565–572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morgan MA, Dolp O, Reuter CW (2001) Cell-cycle-dependent activation of mitogen-activated protein kinase kinase (MEK –1/2) in myeloid leukemia cell lines and induction of growth inhibition and apoptosis by inhibitors of RAS signaling. Blood 97(6):1823–1834

    Article  CAS  PubMed  Google Scholar 

  • Neubauer A, Dodge RK, George SL, Davey FR, Silver RT, Schiffer CA, Mayer RJ, Ball ED, Wurster-Hill D, Bloomfield CD, Liu ET (1994) Prognostic importance of mutations in the ras proto-oncogenes in de novo acute myeloid leukemia. Blood 83(6):1603–1611

    CAS  PubMed  Google Scholar 

  • Nishioka C, Ikezoe T, Yang J, Takeshita A, Taniguchi A, Komatsu N, Togitani K, Koeffler HP, Yokoyama A (2008) Blockade of MEK/ERK signaling enhances sunitinib-induced growth inhibition and apoptosis of leukemia cells possessing activating mutations of the FLT3 gene. Leuk Res 32(6):865–872

    Article  CAS  PubMed  Google Scholar 

  • Ohren JF, Chen H, Pavlovsky A, Whitehead C, Zhang E, Kuffa P, Yan C, McConnell P, Spessard C, Banotai C, Mueller WT, Delaney A, Omer C, Sebolt-Leopold J, Dudley DT, Leung IK, Flamme C, Warmus J, Kaufman M, Barrett S, Tecle H, Hasemann CA (2004) Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat Struct Mol Biol 11(12):1192–1197

    Article  CAS  PubMed  Google Scholar 

  • Parkin B, Ouillette P, Wang Y, Liu Y, Wright W, Roulston D, Purkayastha A, Dressel A, Karp J, Bockenstedt P, Al-Zoubi A, Talpaz M, Kujawski L, Shedden K, Shakhan S, Li C, Erba H, Malek SN (2010) NF1 inactivation in adult acute myelogenous leukemia. Clin Cancer Res 16(16):4135–4147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pedersen-Bjergaard J (1992) Radiotherapy- and chemotherapy-induced myelodysplasia and acute myeloid leukemia. A review. Leuk Res 16(1):61–65

    Article  CAS  PubMed  Google Scholar 

  • Piloto O, Wright M, Brown P, Kim KT, Levis M, Small D (2007) Prolonged exposure to FLT3 inhibitors leads to resistance via activation of parallel signaling pathways. Blood 109(4):1643–1652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464(7287):427–430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pratilas CA, Taylor BS, Ye Q, Viale A, Sander C, Solit DB, Rosen N (2009) (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci U S A 106(11):4519–4524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raponi M, Lancet JE, Fan H, Dossey L, Lee G, Gojo I, Feldman EJ, Gotlib J, Morris LE, Greenberg PL, Wright JJ, Harousseau JL, Lowenberg B, Stone RM, De Porre P, Wang Y, Karp JE (2008) A 2-gene classifier for predicting response to the farnesyltransferase inhibitor tipifarnib in acute myeloid leukemia. Blood 111(5):2589–2596.

    Article  CAS  PubMed  Google Scholar 

  • Ricciardi MR, McQueen T, Chism D, Milella M, Estey E, Kaldjian E, Sebolt-Leopold J, Konopleva M, Andreeff M (2005) Quantitative single cell determination of ERK phosphorylation and regulation in relapsed and refractory primary acute myeloid leukemia. Leukemia 19(9):1543–9.

    Article  CAS  PubMed  Google Scholar 

  • Ricciardi MR, Scerpa MC, Bergamo P, Ciuffreda L, Petrucci MT, Chiaretti S, Tavolaro S, Mascolo MG, Abrams SL, Steelman LS, Tsao T, Marchetti A, Konopleva M, Del Bufalo D, Cognetti F, Foa R, Andreeff M, McCubrey JA, Tafuri A, Milella M (2012) Therapeutic potential of MEK inhibition in acute myelogenous leukemia: rationale for “vertical” and “lateral” combination strategies. J Mol Med (Berl) 90:1133-1144.

    Article  CAS  Google Scholar 

  • Rucker FG, Schlenk RF, Bullinger L, Kayser S, Teleanu V, Kett H, Habdank M, Kugler CM, Holzmann K, Gaidzik VI, Paschka P, Held G, von Lilienfeld-Toal M, Lubbert M, Frohling S, Zenz T, Krauter J, Schlegelberger B, Ganser A, Lichter P, Dohner K, Dohner H (2012) TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood 119(9):2114–2121

    Article  PubMed  Google Scholar 

  • Sebolt-Leopold JS (2008) Advances in the development of cancer therapeutics directed against the RAS-mitogen-activated protein kinase pathway. Clin Cancer Res 14(12):3651–3656

    Article  CAS  PubMed  Google Scholar 

  • Sebolt-Leopold JS, Herrera R (2004) Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4(12):937–947

    Article  CAS  PubMed  Google Scholar 

  • Sebolt-Leopold JS, Dudley DT, Herrera R, Van Becelaere K, Wiland A, Gowan RC, Tecle H, Barrett SD, Bridges A, Przybranowski S, Leopold WR, Saltiel AR (1999) Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med 5(7):810–6

    Article  CAS  PubMed  Google Scholar 

  • Seliger B, Papadileris S, Vogel D, Hess G, Brendel C, Storkel S, Ortel J, Kolbe K, Huber C, Huhn D, Neubauer A (1996) Analysis of the p53 and MDM-2 gene in acute myeloid leukemia. Eur J Haematol 57(3):230–240

    Article  CAS  PubMed  Google Scholar 

  • Solomon C, White JH, Kremer R (1999) Mitogen-activated protein kinase inhibits 1,25-dihydroxyvitamin D3-dependent signal transduction by phosphorylating human retinoid X receptor alpha. J Clin Invest 103(12):1729–1735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steelman LS, Franklin RA, Abrams SL, Chappell W, Kempf CR, Basecke J, Stivala F, Donia M, Fagone P, Nicoletti F, Libra M, Ruvolo P, Ruvolo V, Evangelisti C, Martelli AM, McCubrey JA (2011) Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia 25(7):1080–1094

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S (2006) Inhibition of the MEK/MAPK signal transduction pathway strongly impairs the growth of Flt3-ITD cells. Am J Hematol 81(2):154–5

    Article  PubMed  Google Scholar 

  • Tibes R, Qiu Y, Lu Y, Hennessy B, Andreeff M, Mills GB, Kornblau SM (2006) Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther 5(10):2512–2521

    Article  CAS  PubMed  Google Scholar 

  • Tyner JW, Erickson H, Deininger MW, Willis SG, Eide CA, Levine RL, Heinrich MC, Gattermann N, Gilliland DG, Druker BJ, Loriaux MM (2009) High-throughput sequencing screen reveals novel, transforming RAS mutations in myeloid leukemia patients. Blood 113(8):1749–1755.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van der Weide K, de Jonge-Peeters SD, Kuipers F, de Vries EG, Vellenga E (2009) Combining simvastatin with the farnesyltransferase inhibitor tipifarnib results in an enhanced cytotoxic effect in a subset of primary CD34 + acute myeloid leukemia samples. Clin Cancer Res 15(9):3076–3083.

    Article  PubMed  Google Scholar 

  • Vitols S, Gahrton G, Ost A, Peterson C (1984) Elevated low density lipoprotein receptor activity in leukemic cells with monocytic differentiation. Blood 63(5):1186–1193.

    CAS  PubMed  Google Scholar 

  • Weber JS, Flaherty KT, Infante Jr, Falchook GS, Kefford R, Daud A, Hamid O, Gonzalez R, Kudchadkar RR, Lawrence DP, Burris HA, Long GV, Algazi AP, Lewis KD, Kim KB, Puzanov I, Sun P, Little SM, Patel K, Sosman JA (2012) Updated safety and efficacy results from a phase I/II study of the oral BRAF inhibitor dabrafenib (GSK2118436) combined with the oral MEK 1/2 inhibitor trametinib (GSK1120212) in patients with BRAFi-naïve metastatic melanoma. J Clin Oncol 30(suppl):8510. (Abstract)

    Google Scholar 

  • Wee S, Jagani Z, Xiang KX, Loo A, Dorsch M, Yao YM, Sellers WR, Lengauer C, Stegmeier F (2009) PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res 69(10):4286–4293

    Article  CAS  PubMed  Google Scholar 

  • Welch JS, Link DC (2011) Genomics of AML: clinical applications of next-generation sequencing. Hematology Am Soc Hematol Educ Program 2011:30–35

    Article  PubMed  Google Scholar 

  • Whyte DB, Kirschmeier P, Hockenberry TN, Nunez-Oliva I, James L, Catino JJ, Bishop WR, Pai JK (1997) K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem 272(22):14459–14464

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, Schwartz B, Simantov R, Kelley S (2006) Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 5(10):835–844

    Article  CAS  PubMed  Google Scholar 

  • Yen A, Roberson MS, Varvayanis S, Lee AT (1998) Retinoic acid induced mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase-dependent MAP kinase activation needed to elicit HL-60 cell differentiation and growth arrest. Cancer Res 58(14):3163–3172

    CAS  PubMed  Google Scholar 

  • Yeung K, Seitz T, Li S, Janosch P, McFerran B, Kaiser C, Fee F, Katsanakis KD, Rose DW, Mischak H, Sedivy JM, Kolch W (1999) Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 401(6749):173–7

    Article  CAS  PubMed  Google Scholar 

  • Yu K, Toral-Barza L, Shi C, Zhang WG, Zask A (2008) Response and determinants of cancer cell susceptibility to PI3K inhibitors: combined targeting of PI3K and Mek1 as an effective anticancer strategy. Cancer Biol Ther 7(2):307–315

    Article  PubMed  Google Scholar 

  • Zebisch A, Staber PB, Delavar A, Bodner C, Hiden K, Fischereder K, Janakiraman M, Linkesch W, Auner HW, Emberger W, Windpassinger C, Schimek MG, Hoefler G, Troppmair J, Sill H (2006) Two transforming C-RAF germ-line mutations identified in patients with therapy-related acute myeloid leukemia. Cancer Res 66(7):3401–8

    Article  CAS  PubMed  Google Scholar 

  • Zebisch A, Wolfler A, Fried I, Wolf O, Lind K, Bodner C, Haller M, Drasche A, Pirkebner D, Matallanas D, Rath O, Blyth K, Delwel R, Taskesen E, Quehenberger F, Kolch W, Troppmair J, Sill H (2012) Frequent loss of RAF kinase inhibitor protein expression in acute myeloid leukemia. Leukemia 26(8):1842–1849.

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Konopleva M, Ruvolo VR, McQueen T, Evans RL, Bornmann WG, McCubrey J, Cortes J, Andreeff M (2008) Sorafenib induces apoptosis of AML cells via Bim-mediated activation of the intrinsic apoptotic pathway. Leukemia 22(4):808–818

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Konopleva M, Burks JK, Dywer KC, Schober WD, Yang JY, McQueen TJ, Hung MC, Andreeff M (2010) Blockade of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase and murine double minute synergistically induces Apoptosis in acute myeloid leukemia via BH3-only proteins Puma and Bim. Cancer Res 70(6):2424–2434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith S. Sebolt-Leopold .

Editor information

Editors and Affiliations

Conclusion

Conclusion

The RAS-MAPK pathway has been the subject of intense investigation for the development of therapeutic opportunities to impair the progression of a broad range of malignancies including AML. The ultimate clinical utility of agents targeting this pathway will depend on our ability to prospectively select those patients most likely to benefit from this strategy. The relative ease of obtaining pure samples of tumor cells from AML patients will facilitate the design of individualized therapeutic strategies based on the compilation of comprehensive molecular profiling data. We now have the tools to complement genomic analysis with prospective multiplexed evaluation of kinase activation patterns to provide critical information on dominant signaling pathways in individual cancers. These tools will consequently facilitate selection of AML patients most likely to benefit from RAS-MAPK pathway intervention and will further guide the design of combination strategies to potentiate single-agent effectiveness. As we work toward improvement of AML survival rates, we have made great strides in developing the requisite agents and technologies. We are now faced with the challenge of incorporating them into the practice of molecular medicine for greatest therapeutic impact.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag New York

About this chapter

Cite this chapter

Sebolt-Leopold, J. (2015). The Role of Translational Medicine in Optimization of Therapies Targeting the RAS-MAP Kinase Pathway. In: Andreeff, M. (eds) Targeted Therapy of Acute Myeloid Leukemia. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1393-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1393-0_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1392-3

  • Online ISBN: 978-1-4939-1393-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics