Skip to main content

Raf/MEK/ERK Signaling

  • Chapter
  • First Online:
Targeted Therapy of Acute Myeloid Leukemia

Part of the book series: Current Cancer Research ((CUCR))

  • 2029 Accesses

Abstract

The Ras/Raf/MEK/ERK cascade is often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Certain components of these pathways, RAS, NF1, BRAF, and MEK1 are also deregulated by mutations. Upstream mutations in one signaling pathway or even in downstream components of the same pathway can alter the sensitivity of the cells to certain small molecule inhibitors. This pathway has profound effects on proliferative, apoptotic and differentiation pathways. Dysregulation of components of this pathway can contribute to: resistance to other pathway inhibitors and chemotherapeutic drugs. Intense scientific, commercial, and clinical interest has developed over the past decade in elucidating the functions of this pathway in leukemia and other blood cancers. Targeting this pathways is often complex and can result in pathway activation depending on the presence of upstream mutations (e.g., Raf inhibitors induce Raf activation in cells with wild type RAF in the presence of mutant, activated RAS). Furthermore, targeting with inhibitors directed at two constituents of the same pathway may be a more effective approach. This chapter will first describe these pathways and then evaluate potential uses of Raf and MEK inhibitors that have been investigated in pre-clinical and clinical investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham D, Podar K et al (2000) Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation. J Biol Chem 275:22300–22304

    Article  CAS  PubMed  Google Scholar 

  • Aronov AM, Tang Q et al (2009) Structure-guided design of potent and selective pyrimidylpyrrole inhibitors of extracellular signal-regulated kinase (ERK) using conformational control. J Med Chem 52:6362–6368

    Article  CAS  PubMed  Google Scholar 

  • Arthur JS (2008) MSK activation and physiological roles. Front Biosci 13:5866–5879

    Article  CAS  PubMed  Google Scholar 

  • Badalian-Very G, Vergilio JA et al (2010) Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood 116:1919–1923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Balan V, Leicht DT et al (2006) Identification of novel in vivo Raf-1 phosphorylation sites mediating positive feedback Raf-1 regulation by extracellular signal-regulated kinase. Mol Biol Cell 17:1141–1153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barretina J, Caponigro G et al (2012) The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483:603–607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bollag G, Hirth P et al (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467:596–599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Borthakur G, Kantarjian H et al (2011) Phase I study of sorafenib in patients with refractory or relapsed acute leukemias. Haematologica 96:62–68

    Google Scholar 

  • Brennan DF, Dar AC et al (2011) A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK. Nature 472:366–369

    Article  CAS  PubMed  Google Scholar 

  • Brose MS, Volpe P et al (2002) BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 62:6997–7000

    CAS  PubMed  Google Scholar 

  • Buchholz B, Klanke B et al (2011) The Raf kinase inhibitor PLX5568 slows cyst proliferation in rat polycystic kidney disease but promotes renal and hepatic fibrosis. Nephrol Dial Transplant 26:3458–3465

    Article  CAS  PubMed  Google Scholar 

  • Buday L, Downward J (2008) Many faces of Ras activation. Biochimica et Biophysica Acta 1786:178–187

    CAS  PubMed  Google Scholar 

  • Caponigro G, Sellers WR (2011) Advances in the preclinical testing of cancer therapeutic hypotheses. Nat Rev Drug Discov 10:179–187

    Article  CAS  PubMed  Google Scholar 

  • Casar B, Rodríguez J et al (2012) Mxi2 sustains ERK1/2 phosphorylation in the nucleus by preventing ERK1/2 binding to phosphatases. Biochem J 441:571–578

    Article  CAS  PubMed  Google Scholar 

  • Case M, Matheson E et al (2008) Mutation of genes affecting the RAS pathway is common in childhood acute lymphoblastic leukemia. Cancer Res 68:6803–6809

    Article  CAS  PubMed  Google Scholar 

  • Catalanotti F, Reyes G et al (2009) A Mek1-Mek2 heterodimer determines the strength and duration of the Erk signal. Nat Struct Mol Biol 16:294–303

    Article  CAS  PubMed  Google Scholar 

  • Cervello M, McCubrey JA et al (2012) Targeted therapy for hepatocellular carcinoma: novel agents on the horizon. Oncotarget 3:236–260

    PubMed Central  PubMed  Google Scholar 

  • Chan DA, Giaccia AJ (2011) Harnessing synthetic lethal interactions in anticancer drug discovery. Nat Rev Drug Discov 10:351–364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang F, Steelman LS et al (2003) Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 17:1263–1293

    Article  CAS  PubMed  Google Scholar 

  • Chang Q, Chapman MS et al (2010) Antitumour activity of a potent MEK inhibitor RDEA119/BAY 869766 combined with rapamycin in human orthotopic primary pancreatic cancer xenografts. BMC Cancer 10:515

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chapman MA, Lawrence MS et al (2011) Initial genome sequencing and analysis of multiple myeloma. Nature 471:467–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chapman PB, Hauschild A et al (2011) BRIM-3 study group improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chappell WH, Steelman LS et al (2011) Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget 2:135–164

    PubMed Central  PubMed  Google Scholar 

  • Chen H, Zhu G et al (2009) Extracellular signal-regulated kinase signaling pathway regulates breast cancer cell migration by maintaining slug expression. Cancer Res 69:9228–9235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen J, Shen Q et al (2011) Protein kinase D3 sensitizes RAF inhibitor RAF265 in melanoma cells by preventing reactivation of MAPK signaling. Cancer Res 71:4280–4291

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Zhang C et al (2007) A functional serine 118 phosphorylation site in estrogen receptor-et al alpha is required for down-regulation of gene expression by 17beta-estradiol and 4-hydroxytamoxifen. Endocrinology 148:4634–4641

    Article  CAS  PubMed  Google Scholar 

  • Corcoran RB, Dias-Santagata D et al (2010) BRAF gene amplification can promote acquired resistance to MEK inhibitors in cancer cells harboring the BRAF V600E mutation. Sci Signal 3:ra84

    Google Scholar 

  • Costello PS, Nicolas RH et al (2004) Ternary complex factor SAP-1 is required for Erk-mediated thymocyte positive selection. Nat Immunol 5:289–298

    Article  CAS  PubMed  Google Scholar 

  • Costello P, Nicolas R et al (2010) Ternary complex factors SAP-1 and Elk-1, but not net, are functionally equivalent in thymocyte development. J Immunol 185:1082–1092

    Article  CAS  PubMed  Google Scholar 

  • Cuevas BD, Abell AN et al (2003) MEKK1 regulates calpain-dependent proteolysis of focal adhesion proteins for rear-end detachment of migrating fibroblasts. EMBO J 22:3346–3355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cusack K, Allen H et al (2009) Identification of a selective thieno[2,3-c]pyridine inhibitor of COT kinase and TNF-alpha production. Bioorg Med Chem Lett 19:1722–1725

    Article  CAS  PubMed  Google Scholar 

  • Davies BD, Logie A et al (2007) AZD6244 (ARRY 142886) a potent inhibitor of mitogen-activated protein kinase/extracellular signal-related kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship and potential for combination in preclinical models. Mol Cancer Ther 6:2209–2219

    Article  CAS  PubMed  Google Scholar 

  • Davies H, Bignell GR et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  CAS  PubMed  Google Scholar 

  • Davies SP, Reddy H et al (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dougherty MK, Muller J et al (2005) Regulation of Raf-1 by direct feedback phosphorylation. Mol Cell 17:215–224

    Article  CAS  PubMed  Google Scholar 

  • Downward J (2003) Targeting Ras signaling pathways in cancer therapy. Nature Reviews Cancer 3:11–22

    Article  CAS  PubMed  Google Scholar 

  • Eblen ST, Slack JK et al (2002) Rac-PAK signaling stimulates extracellular signal-regulated kinase (ERK) activation by regulating formation of MEK1-ERK complexes. Mol Cell Biol 22:6023–6033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eisen T, Ahmad T et al (2006) Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br J Cancer 95:581–586

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Escudier B, Eisen T et al (2007) TARGET Study Group Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134

    Article  CAS  PubMed  Google Scholar 

  • Flaherty KT, Puzanov I et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garnett MJ, Edelman EJ et al (2012) Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483:570–575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goettel JA, Liang D et al (2011) KSR1 is a functional protein kinase capable of serine autophosphorylation and direct phosphorylation of MEK1 find rest of reference. Exp Cell Res 317:452–463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Graham TR, Zhau HE et al (2008) Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res 68:2479–2488

    Article  CAS  PubMed  Google Scholar 

  • Grammatikakis N, Lin JH et al (1999) p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function. Mol Cell Biol 19:1661–1672

    PubMed Central  CAS  PubMed  Google Scholar 

  • Greenman C, Stephens P et al (2007) Patterns of somatic mutation in human cancer genomes. Nature 446:153–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Greger J, Eastman S et al (2012) Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations. Mol Cancer Ther 11:909–920

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Prywes R (2002) ATF1 phosphorylation by the ERK MAPK pathway is required for epidermal growth factor-induced c-jun expression. J Biol Chem 277:50550–50556

    Article  CAS  PubMed  Google Scholar 

  • Hatzivassiliou G, Liu B et al (2012) ERK inhibition overcomes acquired resistance to MEK inhibitors. Mol Cancer Ther 11:1143–1154

    Article  CAS  PubMed  Google Scholar 

  • Haura EB, Ricart AD et al (2010) A phase II study of PD-0325901, an oral MEK inhibitor, in previously treated patients with advanced non-small cell lung cancer. Clin Cancer Res 16:2450–2457

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Shibata K et al (2004) Insulin receptor substrate-1/SHP-2 interaction, a phenotype-dependent switching machinery of insulin-like growth factor-I signaling in vascular smooth muscle cells. J Biol Chem 279:40807–40818

    Article  CAS  PubMed  Google Scholar 

  • Heidorn SJ, Milagre C et al (2010) Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140:209–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoeflich KP, Herter S et al (2009a) Antitumor efficacy of the novel RAF inhibitor GDC-0879 is predicted by BRAFV600E mutational status and sustained extracellular signal-regulated kinase/mitogen-activated protein kinase pathway suppression. Cancer Research 69: 3042–3051

    Google Scholar 

  • Hoeflich KP, O’Brien C et al (2009b) In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase in basal-like breast cancer models. Clin Cancer Res 15:4649–4664

    Google Scholar 

  • Hong J, Zhou J et al (2011) Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness. Cancer Res 71:3980–3990.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huynh H, Soo KC et al (2007) Targeted inhibition of the extracellular signal-regulated kinases kinase pathway with AZD-6244 (ARRY-142886) in the treatment of hepatocellular carcinoma. Mol Cancer Ther 6:138–146

    Article  CAS  PubMed  Google Scholar 

  • Iverson C, Larson G et al (2009) RDEA119/BAY 869766: a potent, selective, allosteric inhibitor of MEK1/2 for the treatment of cancer. Cancer Res 69:6839–6847

    Article  CAS  PubMed  Google Scholar 

  • Johannessen CM, Boehm JS et al (2010) COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468:968–972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joseph EW, Pratilas CA et al (2010) The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci USA 107:14903–14908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kefford R, Arkenau H et al (2010) Phase I/II study of GSK2118436, a selective inhibitor of oncogenic mutant BRAF kinase, in patients with metastatic melanoma and other solid tumors. J Clin Oncol 28:15s

    Google Scholar 

  • Killestein J, Rudick RA et al (2011) Oral treatment for multiple sclerosis. Lancet Neurol 10:1026–1034

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Kong SY et al (2010) Blockade of the MEK/ERK signalling cascade by AS703026, a novel selective MEK1/2 inhibitor, induces pleiotropic anti-myeloma activity in vitro and in vivo. Br J Haematol. 149:537–549.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Konopleva M, Milella M et al (2012) MEK inhibition enhances ABT-737-induced leukemia cell apoptosis via prevention of ERK-activated MCL-1 induction and modulation of MCL-1/BIM complex. Leukemia 26:778–787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kudchadkar R, Paraiso KH et al (2012) Targeting mutant BRAF in melanoma: current status and future development of combination therapy strategies. Cancer J 18:124–131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    CAS  PubMed  Google Scholar 

  • Little S, Balmanno K et al (2011) Amplification of the driving oncogene, KRAS or BRAF, underpins acquired resistance to MEK1/2 inhibitors in colorectal cancer cells. Sci Signal 4:ra17

    Article  CAS  Google Scholar 

  • Liu D, Xing J, Trink B et al (2010) BRAF mutation-selective inhibition of thyroid cancer cells by the novel MEK inhibitor RDEA119 and genetic-potentiated synergism with the mTOR inhibitor temsirolimus. Int J Cancer 127:2965–2973

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Llovet JM, Ricci S et al (2008) SHARP investigators study group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390

    Article  CAS  PubMed  Google Scholar 

  • Lohr JG, Stojanov P et al (2012) Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci USA 109:3879–3884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • LoRusso PM, Krishnamurthi SS et al (2010) Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clin Cancer Res 16:1924–1937

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Solimini NL et al (2009) Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136:823–837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCubrey JA, Steelman LS et al (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochem Biophys Acta 773:1263–1284

    Article  CAS  Google Scholar 

  • McCubrey JA, Steelman LS et al (2010) Emerging MEK inhibitors. Exp Opin Emerging Drugs 15:203–223

    Article  CAS  Google Scholar 

  • McCubrey JA, Steelman LS et al (2011) Therapeutic resistance resulting from mutations in Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways. J Cell Physiol 226:2762–2781

    Article  CAS  PubMed  Google Scholar 

  • McKay MM, Ritt DA et al (2011) RAF inhibitor-induced KSR1/B-RAF binding and its effects on ERK cascade signaling. Curr Biol 21:563–568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mischak H, Seitz T et al (1996) Negative regulation of Raf-1 by phosphorylation of serine 621. Mol Cell Biol 10:5409–5418

    Google Scholar 

  • Mylona A, Nicolas R et al (2010) The essential function for SRF in T cell development reflects its specific coupling to ERK signalling. Mol Cell Biol 31:267–276

    Google Scholar 

  • Nagarajan D, Melo T et al (2012) ERK/GSK3β/Snail signaling mediates radiation-induced alveolar epithelial-to-mesenchymal transition. Free Radic Biol Med 52:983–992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nazarian R, Shi H et al (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Negrini S, Gorgoulis VG et al (2010) Genomic instability–an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11:220–228

    Article  CAS  PubMed  Google Scholar 

  • Neviani P, Santhanam R et al (2007) FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and philadelphia chromosome-positive acute lymphocytic leukemia. J Clin Invest 117:2408–2421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oberholzer PA, Kee D et al (2012) RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. J Clin Oncol 30:316–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohren JF, Chen H et al (2004) Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat Struct Mol Biol 11:1192–1197

    Article  CAS  PubMed  Google Scholar 

  • Ott PA, Hamilton A et al (2010) A phase II trial of sorafenib in metastatic melanoma with tissue correlates. PLoS One 5:e15588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pao W, Girard N (2011) New driver mutations in non-small-cell lung cancer. Lancet Oncol 12:175–180

    Article  CAS  PubMed  Google Scholar 

  • Paraiso KH, Fedorenko IV et al (2010) Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. Br J Cancer 102:1724–1730

    Google Scholar 

  • Paraiso KH, Xiang Y et al (2011) PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res 71:2750–2760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patel SP, Kim KB (2012) Selumetinib (AZD6244; ARRY-142886) in the treatment of metastatic melanoma. Expert Opin Investig Drugs 21:531–539

    Article  CAS  PubMed  Google Scholar 

  • Perrotti D, Neviani P (2008) Protein phosphatase 2A (PP2A), a drugable tumor suppressor in Ph1(+) leukemias. Cancer Metastasis Rev 27:159–168

    Article  CAS  PubMed  Google Scholar 

  • Poulikakos PI, Persaud Y et al (2011) RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480:387–390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poulikakos PI, Rosen N (2011) Mutant BRAF melanomas–dependence and resistance. Cancer Cell 19:11–15

    Article  CAS  PubMed  Google Scholar 

  • Poulikakos PI, Solit DB (2011) Resistance to MEK inhibitors: should we co-target upstream? Sci Signal 4:pe16

    Article  PubMed  CAS  Google Scholar 

  • Poulikakos PI, Zhang C et al (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464:427–430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pratilas CA, Hanrahan AJ et al (2008) Genetic predictors of MEK dependence in non-small cell lung cancer. Cancer Res 68:9375–9383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Puxeddu E, Moretti S et al (2004) BRAF(V599E) mutation is the leading genetic event in adult sporadic papillary thyroid carcinomas. J Clin Endocrinol Metab 89:2414–2420

    Article  CAS  PubMed  Google Scholar 

  • Rajalingam K, Wunder C et al (2005) Prohibitin is required for Ras-induced Raf-MEK-ERK activation and epithelial cell migration. Nat Cell Biol 7:837–843

    Article  CAS  PubMed  Google Scholar 

  • Ratain MJ, Eisen T et al (2006) Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol 24:2505–2512

    Article  CAS  PubMed  Google Scholar 

  • Rebecca VW, Sondak VK et al (2012) A brief history of melanoma: from mummies to mutations Melanoma Res 22:114–122

    Article  PubMed Central  PubMed  Google Scholar 

  • Ricciardi MR, Scerpa MC et al (2012) Therapeutic potential of MEK inhibition in acute myelogenous leukemia: rationale for “vertical” and “lateral” combination strategies. J Mol Med (Berl) [Epub ahead of print]

    Google Scholar 

  • Rimassa L, Santoro A (2009) Sorafenib therapy in advanced hepatocellular carcinoma: the SHARP trial. Expert Rev Anticancer Ther 9:739–745

    Article  CAS  PubMed  Google Scholar 

  • Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68:320–344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schaeffer HJ, Catling AD et al (1998) MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science 281:1668–1671

    Google Scholar 

  • Sebolt-Leopold JS (2008) Advances in the development of cancer therapeutics directed against the Ras-mitogen-activated protein kinase pathway. Clin Cancer Res 14:3651–3656

    Article  CAS  PubMed  Google Scholar 

  • Sharlow ER, Giridhar KV et al (2008) Potent and selective disruption of protein kinase D functionality by a benzoxoloazepinolone. J Biol Chem 283:33516–33526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma A, Tran MA et al (2006) Targeting mitogen-activated protein kinase/extracellular signal-regulated kinase kinase in the mutant (V600E) B-Raf signaling cascade effectively inhibits melanoma lung metastases. Cancer Res 66:8200–8209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma SV, Settleman J (2010) Exploiting the balance between life and death: targeted cancer therapy and “oncogenic shock”. Biochem Pharmacol 80:666–673

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Moriceau G et al (2012) Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance Nat Commun 3:724. doi:10.1038/ncomms1727

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shin S, Dimitri CA et al (2010) ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Mol Cell 38:114–1127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simmons GW, Pong WW et al (2011) Neurofibromatosis-1 heterozygosity increases microglia in a spatially and temporally restricted pattern relevant to mouse optic glioma formation and growth. J Neuropathol Exp Neurol 70:51–62

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smalley KS, Lioni M et al (2008) Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas. Mol Cancer Ther 7:2876–2883

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smalley KS, Xiao M et al (2009) CRAF inhibition induces apoptosis in melanoma cells with non-V600E BRAF mutations. Oncogene 28:85–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Solit DB, Garraway LA et al (2006) BRAF mutation predicts sensitivity to MEK inhibition. Nature 439:358–362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sorokina EM, Feinstein SI et al (2011) Intracellular targeting of peroxiredoxin 6 to lysosomal organelles requires MAPK activity and binding to 14-3-3ε. Am J Physiol Cell Physiol 300:C1430–1441

    Google Scholar 

  • Sos ML, Michel K et al (2009) Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. J Clin Invest 119:1727–1740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sosman JA, Kim KB et al (2012) Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 366:707–714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steelman LS, Pohnert SC et al (2004) JAK/STAT, RAF/MEK/ERK, PI3K/AKT and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 18:189–218

    Article  CAS  PubMed  Google Scholar 

  • Steelman LS, Abrams SL et al (2008) Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and JAK/STAT pathways to leukemia. Leukemia 22:686–707

    Article  CAS  PubMed  Google Scholar 

  • Sturm OE, Orton R et al (2010) The mammalian MAPK/ERK pathway exhibits properties of a negative feedback amplifier. Sci Signal 3:ra90

    Google Scholar 

  • Su F, Viros A, Milagre C et al (2012) RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med 366:207–215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tai YT, Fulciniti M et al (2007) Targeting MEK induces myeloma-cell cytotoxicity and inhibits osteoclastogenesis. Blood 110:1656–1663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takimoto CH, Awada A (2008) Safety and anti-tumor activity of sorafenib (Nexavar) in combination with other anti-cancer agents: a review of clinical trials. Cancer Chemother Pharmacol 61:535–548

    Article  CAS  PubMed  Google Scholar 

  • Tanios Bekaii-Saab T, Phelps MA et al (2011) Multi-institutional phase II study of selumetinib in patients with metastatic biliary cancers. JCO 29:2357–2363

    Article  CAS  Google Scholar 

  • Tiacci E, Trifonov V et al (2011) BRAF mutations in hairy-cell leukemia. N Engl J Med 364:2305–2315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tol J, Nagtegaal ID et al (2009) BRAF mutation in metastatic colorectal cancer. N Engl J Med 361:98–99

    Article  CAS  PubMed  Google Scholar 

  • Topisirovic I, Sonenberg N (2011) mRNA translation and energy metabolism in cancer: the role of the MAPK and mtorc1 pathways. Cold Spring Harb Symp Quant Biol [Epub ahead of print]

    Google Scholar 

  • Torkamani A, Schork NJ (2009) Identification of rare cancer driver mutations by network reconstruction Genome Res 19:1570–1578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trepel J, Mollapour M et al (2010) Targeting the dynamic HSP90 complex in cancer. Nature Rev Cancer 10:537–549

    Article  CAS  Google Scholar 

  • Villanueva J, Vultur A et al (2010) Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18:683–695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wagle N, Emery C et al (2011) Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol 29:3085–3096

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Webb DJ, Donais K et al (2004) FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol 6:154–156

    Article  CAS  PubMed  Google Scholar 

  • Wee S, Jagani Z et al (2009) PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res 69:4286–4293

    Article  CAS  PubMed  Google Scholar 

  • Weinstein IB, Joe A (2008) Oncogene addiction. Cancer Res 68:3077–3080

    Article  CAS  PubMed  Google Scholar 

  • Whittaker S, Kirk R et al (2010a) Gatekeeper mutations mediate resistance to BRAF-targeted therapies. Sci Transl Med 2:35ra41

    Google Scholar 

  • Whittaker S, Ménard D et al (2010b) A novel, selective, and efficacious nanomolar pyridopyrazinone inhibitor of V600EBRAF. Cancer Res 70:8036–8044

    Google Scholar 

  • Wilhelm SM, Carter C et al (2004) BAY 43–9006 Exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Research 64:7099–7109

    Article  CAS  PubMed  Google Scholar 

  • Xing J, Ginty DD et al (1996) Coupling of the Ras-MAPK pathway to gene activation by Rsk2, a growth factor regulated CREB kinase. Science 273:959–963

    Article  CAS  PubMed  Google Scholar 

  • Yeh TC, Marsh V et al (2007) Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin Cancer Res 13:1576–1583

    Article  CAS  PubMed  Google Scholar 

  • Yeung K, Janosch P et al (2000) Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the raf kinase inhibitor protein. Mol Cell Biol 20:3079–3085

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang W, Konopleva M, Ruvolo V et al (2008a) Sorafenib induces apoptosis of AML cells via Bim-mediated activation of the intrinsic apoptotic pathway. Leukemia 22:808–818.

    Google Scholar 

  • Zhang W, Konopleva M, Shi YX et al (2008b). Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst 100:184–198.

    Google Scholar 

  • Zheng Y, Xia Y et al (2009) FAK phosphorylation by ERK primes Ras-induced tyrosine dephosphorylation of FAK mediated by PIN1 and PTP-PEST. Mol Cell 35:11–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng Y, Yang W et al (2011) Ras-induced and extracellular signal-regulated kinase 1 and 2 phosphorylation-dependent isomerization of protein tyrosine phosphatase (PTP)-PEST by PIN1 promotes FAK dephosphorylation by PTP-PEST. Mol Cell Biol 31:4258–4269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zitzmann K, de Toni E et al (2011) The novel Raf inhibitor Raf265 decreases Bcl-2 levels and confers TRAIL-sensitivity to neuroendocrine tumour cells. Endocr Relat Cancer 18:277–285

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. McCubrey Ph.D. .

Editor information

Editors and Affiliations

Appendices

Conclusions

Pharmaceutical companies have developed inhibitors to the Ras/Raf/MEK/ERK pathway. Initially MEK inhibitors were demonstrated to have the most specificity. However, these inhibitors may have limited effectiveness in treating human cancers, unless the particular cancer proliferates directly in response to the Raf/MEK/ERK pathway. Moreover, MEK inhibitors are often cytostatic as opposed to cytotoxic, thus their ability to function as effective anti-cancer agents in a monotherapeutic setting may be limited, and they may be more effective when combined with chemo or radiotherapy. Raf inhibitors have also been developed and some are being used to treat various cancer patients (e.g., sorafenib). This particular Raf inhibitor also inhibits other receptors and kinases which may be required for the growth of the particular cancer. This promiscuous nature of Sorafenib has contributed to the effectiveness of this particular Raf inhibitor for certain cancers. Raf inhibitors such as vemurafenib, dabrafenib, and GDC-0879 are promising for the treatment of melanoma, CRC, thyroid and other solid cancers and leukemias/lymphomas/myelomas which have mutations at BRAF V600E. However, problems have been identified with certain BRAF mutant allele inhibitors as they will also result in Raf-1 activation if RAS is mutated/amplified of if an exon of BRAF is deleted, or if BRAF is amplified or if there are mutations at MEK1 and other genetic mechanisms. Combination therapy with either a traditional drug/physical treatment or another inhibitor that targets a specific molecule in either the same or different signal transduction pathway are also key approaches for improving the effectiveness and usefulness of MEK and Raf inhibitors.

Some scientists and clinicians have considered that the simultaneous targeting of Raf and MEK by individual inhibitors may be more effective in cancer therapy than just targeting Raf or MEK by themselves (Ricciardi et al. 2012). This is based in part on the fact that there are intricate feed-back loops from ERK which can inhibit Raf and MEK. For example when MEK1 is targeted, ERK1,2 is inhibited and the negative feed-back loop on MEK is broken and activated MEK accumulates. However, if Raf is also inhibited, it may be possible to completely shut down the pathway. This is a rationale for treatment with both MEK and Raf inhibitors. Finally, an emerging concept is the dual targeting of two different signal transduction pathways, Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR for example. This has been explored in some preclinical models and is being investigated in clinical trials. The rationale for the targeting of both pathways may be dependent on the presence of driver mutations in either/or both pathways or in upstream Ras in the particular cancer which can activate both pathways.

Acknowledgments

AMM was supported in part by grants from: Fondazione del Monte di Bologna e Ravenna, MinSan 2008 “Molecular therapy in pediatric sarcomas and leukemias against IGF-IR system: new drugs, best drug-drug interactions, mechanisms of resistance and indicators of efficacy”, MIUR PRIN 2008 (2008THTNLC), and MIUR FIRB 2010 (RBAP10447J-003) and 2011 (RBAP11ZJFA_001).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag New York

About this chapter

Cite this chapter

McCubrey, J., Steelman, L., Bäsecke, J., Martelli, A. (2015). Raf/MEK/ERK Signaling. In: Andreeff, M. (eds) Targeted Therapy of Acute Myeloid Leukemia. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1393-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1393-0_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1392-3

  • Online ISBN: 978-1-4939-1393-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics