Skip to main content

When Misrepresentation is Successful

  • Chapter
  • First Online:
Epistemological Dimensions of Evolutionary Psychology

Abstract

In the present chapter, we investigate the notion that an action is successful if and only if (iff) it is caused by a true representation. We demonstrate that there indeed exist representations which—even though being false—can systematically lead to successful actions, if specific conditions hold, especially, if there is stochastic noise in the generation of representations and the cost of errors is asymmetrically distributed and the success-relevant feature can only be indirectly assessed via indicator features. Finally, we discuss this observation in relation to illusionary perception and evolutionary epistemology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Capital letters here denote variables. A variable is a set of possible values together with a measurement operation which allows determination of what value currently is the case. For instance, the size of an apple can be considered as a variable S. The possible values of S are within the interval between zero and infinity. The measurement is a ruler, which also determines the quality of the variable, namely [cm] or [m].

  2. 2.

    Here, we consider only first-order representations, the content of which is situated in the observers’ external environment. In principle, representations can also be meta-representations, i.e. about other representations.

  3. 3.

    Although it might be debated whether the truth of a representation ‘guarantees’ success (see Nanay 2013; Blackburn 2005), there is general consensus that a false representation is incapable of generating a successful action other than accidentally.

  4. 4.

    Utility is used in a similar sense in evolutionary biology (e.g. Reeve and Sherman 1993; Fox and Westneat 2010). In decision science it is frequently termed pay-off, (cost) value, or reward (e.g. Green and Swets 1966; Gold and Shadlen 2007). It can be quantified in cardinal or ordinal scale.

  5. 5.

    Assuming that a representation invariably causes the same action, in the present case, a representation of x meters always leads to a jump of x meters.

  6. 6.

    The exact numerical values are arbitrary.

  7. 7.

    Costs can be defined in two ways. First, negative entries in the utility matrix can be considered costs. The definition we are using in the subsequent chapter is the following: The incorrect action has less utility than the correct action. We understand as cost the amount of how much less utility an incorrect action has, compared to the correct action. That is, the ‘costly’ action can have a positive entry in the utility matrix, but we would still speak of cost, as utility would be positive but smaller than for the correct action.

  8. 8.

    Cf. Godfrey-Smith (1991) for the analytic derivation of the optimal decision criterion. An alternative (and equivalent) approach has been described by Bischof (1998).

  9. 9.

    In the following, we keep the indices c for indicator and t for success-relevant representations maintaining continuity with the main example without implying restriction to that specific example.

  10. 10.

    The general conclusions do not depend on the specific numbers used in the simulation.

  11. 11.

    The last point is not shown in the simulation. Increasing the probability of encountering a toxic snake to values greater than 50 % leads to lower overall levels of fitness and to a greater shift of representation. Probabilities smaller than 50 % have the reverse effect.

  12. 12.

    The term ‘evolutionary epistemology’ has been used in at least two different ways (Bradie 1986). Popper and others used the term to describe the growth of human knowledge by the (non-genetic) evolution of ideas and theories (Popper 1972). In this chapter, we use it only in the sense of Lorenz (1973) and Vollmer (1975).

  13. 13.

    Note that an analogue distinction has also been proposed by Bertalanffy: ‘The popular forms of intuition and categories, such as space, time, matter and causality, work well enough in the world of “medium dimensions” to which the human animal is biologically adapted. Here, Newtonian mechanics and classical physics, as based upon these visualizable categories, are perfectly satisfactory.’ (Bertalanffy 1968, p. 241, see also Bertalanffy 1955).

References

  • Abrams, M. (2012). Measured, modeled, and causal conceptions of fitness. Frontiers in Genetics, 3, 1–12. doi:10.3389/fgene.2012.00196.

    Article  Google Scholar 

  • Aglioti, S., DeSouza, J. F., & Goodale, M. A. (1995). Size-contrast illusions deceive the eye but not the hand. Current Biology: CB, 5(6), 679–685.

    Article  PubMed  Google Scholar 

  • Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology: CB, 14, 257–262. doi:10.1016/j.cub.2004.01.029..

    Article  PubMed  Google Scholar 

  • Bazylinski, D. A., & Frankel, R. B. (2004). Magnetosome formation in prokaryotes. Nature Reviews Microbiology, 2(3), 217–230. doi:10.1038/nrmicro842..

    Article  PubMed  Google Scholar 

  • Baube, C. L., Rowland, W. J., & Fowler, J. B. (1995). The mechanisms of colour-based mate choice in female threespine sticklebacks: Hue, contrast and configurational cues. Behaviour, 132(13–14), 13–14.

    Google Scholar 

  • Bertalanffy, L. (1955). An essay on the relativity of categories. Philosophy of Science, 22, 243–263.

    Article  Google Scholar 

  • Bertalanffy, L. (1968). The relativity of categories. In L. Bertalanffly (Ed.), General system theory (pp. 222–250). New York: George Braziller.

    Google Scholar 

  • Bischof, N. (1966). Erkenntnistheoretische Grundlagenprobleme der Wahrnehmungspsychologie. In W. Metzger & H. Erke (Eds.), Handbuch der Psychologie in 12 Bdn. Bd. 1/I: Wahrnehmung und Bewusstsein (pp. 21–78). Göttingen: Psychologie.

    Google Scholar 

  • Bischof, N. (1998). Struktur und Bedeutung. Bern: Hans Huber.

    Google Scholar 

  • Bischof, N. (2009). Psychologie: Ein Grundkurs für Anspruchsvolle [Psychology: A basic course for the ambitious] (2nd ed.). Stuttgart: Kohlhammer.

    Google Scholar 

  • Blackburn, S. (2005). Success semantics. In H. Lillehammer & D. H. Mellor (Eds.), Ramsey’s legacy (pp. 22–36). Oxford: Oxford University Press.

    Google Scholar 

  • Blakemore, R. P. (1975). Magnetotactic bacteria. Science, 190(4212), 377–379.

    Article  PubMed  Google Scholar 

  • Borchers, H.-W., Burghagen, H., & Ewert, J.-P. (1978). Key stimuli of prey for toads (Bufo bufo L.): Configuration and movement patterns. Journal of Comparative Physiology, 128(3), 189–192.

    Article  Google Scholar 

  • Bradie, M. (1986). Assessing evolutionary epistemology. Biology and Philosophy, 1, 401–459.

    Article  Google Scholar 

  • Breland, K., & Breland, M. (1961). The misbehaviour of organisms. American Psychologist, 16, 681–684.

    Article  Google Scholar 

  • Castiello, U. (2005). The neuroscience of grasping. Nature Reviews Neuroscience, 6(9), 726–736. doi:10.1038/nrn1744.

    Article  Google Scholar 

  • Dretske, F. (1981). Knowledge and the flow of information. Cambridge: MIT/Bradford Press.

    Google Scholar 

  • Dretske, F. (1986). Misrepresentation. In R. Bogdan (Ed.), Belief (pp. 17–36). Oxford: Oxford University Press.

    Google Scholar 

  • Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429–433. doi:10.1038/415429a.

    Article  PubMed  Google Scholar 

  • Ewert, J.-P. (1974). The neural basis of visually guided behaviour. Scientific American, 230(3), 34–42.

    Article  PubMed  Google Scholar 

  • Faumont, S., Lindsay, T. H., & Lockery, S. R. (2012). Neuronal microcircuits for decision making in C. elegans. Current Opinion in Neurobiology, 22(4), 580–591. doi:10.1016/j.conb.2012.05.005.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fodor, J. A. (1990). A theory of content and other essays. Cambridge: MIT Press.

    Google Scholar 

  • Fox, C. W., & Westneat, D. F. (2010). Adaptation. In D. F. Westneat & C. W. Fox (Eds.), Evolutionary behavioral ecology (pp. 16–32). New York: Oxford University Press.

    Google Scholar 

  • Franz, V. H. (2001). Action does not resist visual illusions. Trends in Cognitive Sciences, 5(11), 457–459.

    Article  PubMed  Google Scholar 

  • Franz, V. H., Gegenfurtner, K. R., Bülthoff, H. H., & Fahle, M. (2000). Grasping visual illusions: No evidence for a dissociation between perception and action. Psychological Science, 11, 20–25.

    Article  PubMed  Google Scholar 

  • Godfrey-Smith, P. (1991). Signal, decision, action. The Journal of Philosophy, 88(12), 709–722.

    Article  PubMed  Google Scholar 

  • Gold, J. I., & Shadlen, M. N. (2007). The Neural Basis of Decision Making. Annual Review of Neuroscience, 30(1), 535–574. doi:10.1146/annurev.neuro.29.051605.113038.

    Article  PubMed  Google Scholar 

  • Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley.

    Google Scholar 

  • Hoff, W. D., van der Horst, M. A., Nudel, C. B., & Hellingwerf, K. J. (2009). Prokaryotic phototaxis. Methods in Molecular Biology, 571, 25–49. doi:10.1007/978-1-60761-198-1_2.

    Article  PubMed  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1974). Sequence regularity and geometry of orientation columns in monkey striate cortex. Journal of Comparative Neurology, 158(3), 267–294.

    Article  PubMed  Google Scholar 

  • Jékely, G. (2009). Evolution of phototaxis. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1531), 2795–2808. doi:10.1098/rstb.2009.0072.

    Article  Google Scholar 

  • Lettvin, J. Y., Maturana, H. R., McCulloch, W. S., & Pitts, W. H. (1968). What the frog’s eye tells the frog’s brain. In W. C. Cunning & M. Balaban (Eds.), The mind: Biological approaches to its functions (pp. 233–258). New York: Wiley.

    Google Scholar 

  • Lorenz, K. (1937). Über die Bildung des Instinktbegriffes. Die Naturwissenschaften, 25(19), 289–300. doi:10.1007/BF01492648.

    Article  Google Scholar 

  • Lorenz, K. (1973). Die Rückseite des Spiegels: Versuch einer Naturgeschichte menschlichen Erkennens. Munich: Piper.

    Google Scholar 

  • Millikan, R. G. (1989). Biosemantics. The Journal of Philosophy, 86(6), 281–297.

    Article  Google Scholar 

  • Nanay, B. (2013). Success semantics: the sequel. Philosophical Studies, 165(1), 151–165. doi:10.1007/s11098-012-9922-7.

    Google Scholar 

  • Neumann, J., & Morgenstern, O. (1947). Theory of games and economic behavior. Princeton: Princeton University Press.

    Google Scholar 

  • Papineau, D. (1984). Representation and explanation. Philosophy of Science, 51, 550–572.

    Article  Google Scholar 

  • Papineau, D. (2003). Is representation rife? Ratio, 16(2), 107–123.

    Article  Google Scholar 

  • Pavlov, I. P. (1927/2010). Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. Annals of Neurosciences, 17(3), 136–141. doi:10.5214/246.

    Google Scholar 

  • Pick, H. L., Warren, D. H., & Hay, J. C. (1969). Sensory conflict in judgments of spatial direction. Perception and Psychophysics, 6(4), 203–205. doi:10.3758/BF03207017..

    Article  Google Scholar 

  • Popper, K. R. (1972). Objective knowledge: An evolutionary approach. Oxford: Clarendon.

    Google Scholar 

  • Ramsey, F. P., & Moore, G. E. (1927). Symposium: Facts and Propositions. Proceedings of the Aristotelian Society, Supplementary Volumes, 7, 153–206.

    Google Scholar 

  • Reeve, H. K., & Sherman, P. W. (1993). Adaptation and the goals of evolutionary research. Quarterly Review of Biology, 68, 1–32.

    Article  Google Scholar 

  • Schleidt, W. M. (1962). Die historische Entwicklung der Begriffe “Angeborenes auslösendes Schema”, und “Angeborener Auslösemechanismus” in der Ethologie. Zeitschrift für Tierpsychologie, 19, 697–722.

    Article  Google Scholar 

  • Seyfarth, R., Cheney, D., & Marler, P. (1980). Monkey responses to three different alarm calls: Evidence of predator classification and semantic communication. Science, 210(4471), 801–803. doi:10.1126/science.7433999.

    Article  PubMed  Google Scholar 

  • Shea, N. (2007). Consumers need information: Supplementing teleosemantics with an input condition. Philosophy and Phenomenological Research, 75(2), 404–435.

    Article  Google Scholar 

  • Stephens, D. W., & Krebs, J. R. (1987). Foraging Theory. Princeton: Princeton University Press.

    Google Scholar 

  • Tinbergen, N. (1951). The study of instinct. Oxford: Clarendon.

    Google Scholar 

  • Usher, M. (2001). A statistical referential theory of content: Using information theory to account for misrepresentation. Mind & Language, 16(3), 311–334.

    Google Scholar 

  • Vollmer, G. (1975). Evolutionäre Erkenntnistheorie [Evolutionary epistemology]. Stuttgart: Hirzel.

    Google Scholar 

  • Vollmer, G. (2010). Invariance and objectivity. Foundations of Physics, 40, 1651–1667. doi:10.1007/s10701-010-9471-x.

    Article  Google Scholar 

  • Warren, D. H., Welch, R. B., & McCarthy, T. J. (1981). The role of visual-auditory “compellingness” in the ventriloquism effect: Implications for transitivity among the spatial senses. Perception & Psychophysics, 30(6), 557–564. doi:10.3758/BF03202010.

    Article  Google Scholar 

  • Whyte, J. T. (1990). Success semantics. Analysis, 50(3), 149–157.

    Article  Google Scholar 

Download references

Acknowledgments

We thank W. Schleidt for valuable comments on previous versions of the manuscript and E. Ratko-Dehnert, A. Hetmanek, J. Jarecki, M. Rausch, B. Schlagbauer, and B. Ruf for fruitful discussions on the topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Zehetleitner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zehetleitner, M., Schönbrodt, F. (2015). When Misrepresentation is Successful. In: Breyer, T. (eds) Epistemological Dimensions of Evolutionary Psychology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1387-9_10

Download citation

Publish with us

Policies and ethics