Skip to main content

Multiple Routes for Survival: Understanding How Cancer Evades Apoptosis

  • Chapter
  • First Online:
Cancer Bioinformatics
  • 2582 Accesses

Abstract

Apoptosis is a process of programmed cell-death encoded in all multicellular organisms. The system is designed to remove damaged, unhealthy or unneeded cells during development and under certain stresses. At the tissue level, it plays a key role in maintaining tissue homeostasis. For example, the typical human body produces approximately 50–70 billion new cells by mitosis each day (Karam 2009), and the same number of cells will be terminated by apoptosis to maintain total cell homeostasis, suggesting that there is a functional link between growth and cell death by apoptosis. Malfunctions of the apoptotic system, in either its regulators or effectors, have been linked to a variety of human diseases. Examples include: (1) human degenerative diseases, such as multiple sclerosis, which are known to be associated with abnormally high activities of apoptosis, and (2) cancer that is considered by some as a disease of abnormally low activities of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akgul C (2009) Mcl-1 is a potential therapeutic target in multiple types of cancer. Cell Mol Life Sci 66: 1326-1336

    Article  Google Scholar 

  • Altman JK, Glaser H, Sassano A et al. (2010) Negative regulatory effects of Mnk kinases in the generation of chemotherapy-induced antileukemic responses. Mol Pharmacol 78: 778-784

    Article  Google Scholar 

  • Araki S, Shimada Y, Kaji K et al. (1990) Apoptosis of vascular endothelial cells by fibroblast growth factor deprivation. Biochem Biophys Res Commun 168: 1194-1200

    Article  Google Scholar 

  • Askew DS, Ashmun RA, Simmons BC et al. (1991) Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 6: 1915-1922

    Google Scholar 

  • Barres BA, Hart IK, Coles HS et al. (1992) Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70: 31-46

    Article  Google Scholar 

  • Batistatou A, Greene LA (1991) Aurintricarboxylic acid rescues PC12 cells and sympathetic neurons from cell death caused by nerve growth factor deprivation: correlation with suppression of endonuclease activity. J Cell Biol 115: 461-471

    Article  Google Scholar 

  • Bissonnette RP, Echeverri F, Mahboubi A et al. (1992) Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 359: 552-554

    Article  Google Scholar 

  • Boise LH, Gonzalez-Garcia M, Postema CE et al. (1993) bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74: 597-608

    Article  Google Scholar 

  • Brady CA, Attardi LD (2010) p53 at a glance. J Cell Sci 123: 2527-2532

    Article  Google Scholar 

  • Brancolini C (2008) Inhibitors of the Ubiquitin-Proteasome System and the cell death machinery: How many pathways are activated? Curr Mol Pharmacol 1: 24-37

    Article  Google Scholar 

  • Broker LE, Kruyt FA, Giaccone G (2005a) Cell death independent of caspases: a review. Clin Cancer Res 11: 3155-3162

    Article  Google Scholar 

  • Broker LE, Kruyt FAE, Giaccone G (2005b) Cell death independent of caspases: A review. Clinical Cancer Research 11: 3155-3162

    Article  Google Scholar 

  • Burlacu A (2003) Regulation of apoptosis by Bcl-2 family proteins. J Cell Mol Med 7: 249-257

    Article  Google Scholar 

  • Cairns P, Esteller M, Herman JG et al. (2001) Molecular detection of prostate cancer in urine by GSTP1 hypermethylation. Clin Cancer Res 7: 2727-2730

    Google Scholar 

  • Cancer-Genome-Atlas-Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490: 61-70

    Google Scholar 

  • Cell-Signaling-Tech (2011) Apoptosis Inhibition.

    Google Scholar 

  • Clarke MA, Wentzensen N, Mirabello L et al. (2012) Human papillomavirus DNA methylation as a potential biomarker for cervical cancer. Cancer Epidemiol Biomarkers Prev 21: 2125-2137

    Article  Google Scholar 

  • Collins FS, Barker AD (2007) Mapping the cancer genome. Pinpointing the genes involved in cancer will help chart a new course across the complex landscape of human malignancies. Sci Am 296: 50-57

    Article  Google Scholar 

  • Collins MK, Perkins GR, Rodriguez-Tarduchy G et al. (1994) Growth factors as survival factors: regulation of apoptosis. Bioessays 16: 133-138

    Article  Google Scholar 

  • Craig RW (2002) MCL1 provides a window on the role of the BCL2 family in cell proliferation, differentiation and tumorigenesis. Leukemia 16: 444-454

    Article  Google Scholar 

  • Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13: 2905-2927

    Article  Google Scholar 

  • Dawson JP, Berger MB, Lin CC et al. (2005) Epidermal growth factor receptor dimerization and activation require ligand-induced conformational changes in the dimer interface. Mol Cell Biol 25: 7734-7742

    Article  Google Scholar 

  • Debbas M, White E (1993) Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev 7: 546-554

    Article  Google Scholar 

  • Derouet M, Thomas L, Cross A et al. (2004) Granulocyte macrophage colony-stimulating factor signaling and proteasome inhibition delay neutrophil apoptosis by increasing the stability of Mcl-1. Journal of Biological Chemistry 279: 26915-26921

    Article  Google Scholar 

  • Desai R (2013) Cell Death. Available at: http://drrajivdesaimd.com/,

  • Deveraux QL, Reed JC (1999) IAP family proteins–suppressors of apoptosis. Genes Dev 13: 239-252

    Article  Google Scholar 

  • Du W, Searle JS (2009) The rb pathway and cancer therapeutics. Curr Drug Targets 10: 581-589

    Article  Google Scholar 

  • Dumble M, Moore L, Chambers SM et al. (2007) The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging. Blood 109: 1736-1742

    Article  Google Scholar 

  • Engel BE, Welsh E, Emmons MF et al. (2013) Expression of integrin alpha 10 is transcriptionally activated by pRb in mouse osteoblasts and is downregulated in multiple solid tumors. Cell Death Dis 4: e938

    Article  Google Scholar 

  • Evan GI, Wyllie AH, Gilbert CS et al. (1992) Induction of apoptosis in fibroblasts by c-myc protein. Cell 69: 119-128

    Article  Google Scholar 

  • Fanidi A, Harrington EA, Evan GI (1992) Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature 359: 554-556

    Article  Google Scholar 

  • Feng Z, Lin M, Wu R (2011) The Regulation of Aging and Longevity: A New and Complex Role of p53. Genes Cancer 2: 443-452

    Article  Google Scholar 

  • Gazdar AF (2009) Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 28 Suppl 1: S24-31

    Article  Google Scholar 

  • Gogvadze V, Orrenius S, Zhivotovsky B (2008) Mitochondria in cancer cells: what is so special about them? Trends Cell Biol 18: 165-173

    Article  Google Scholar 

  • Gorgoulis VG, Zacharatos P, Kotsinas A et al. (2003) p53 activates ICAM-1 (CD54) expression in an NF-kappaB-independent manner. EMBO J 22: 1567-1578

    Article  Google Scholar 

  • Hafsi H, Hainaut P (2011) Redox control and interplay between p53 isoforms: roles in the regulation of basal p53 levels, cell fate, and senescence. Antioxid Redox Signal 15: 1655-1667

    Article  Google Scholar 

  • Harbour JW, Dean DC (2000) Rb function in cell-cycle regulation and apoptosis. Nat Cell Biol 2: E65-67

    Article  Google Scholar 

  • Harmey JH, Bouchier-Hayes D (2002) Vascular endothelial growth factor (VEGF), a survival factor for tumour cells: implications for anti-angiogenic therapy. Bioessays 24: 280-283

    Article  Google Scholar 

  • Hermeking H, Eick D (1994) Mediation of c-Myc-induced apoptosis by p53. Science 265: 2091-2093

    Article  Google Scholar 

  • Jaattela M (2004) Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 23: 2746-2756

    Article  Google Scholar 

  • Jaattela M, Tschopp J (2003) Caspase-independent cell death in T lymphocytes. Nature Immunology 4: 416-423

    Article  Google Scholar 

  • Ji F, Cao S, Kannan N et al. (2014) Oxidative stress counteracts intrinsic disorder in the EGFR kinase and promote receptor dimerization. In preparation.

    Google Scholar 

  • Karam JA (2009) Apoptosis in Carcinogenesis and Chemotherapy. Netherlands: Springer:

    Google Scholar 

  • Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47: 89-116

    Article  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British journal of cancer 26: 239-257

    Article  Google Scholar 

  • Kolenko VM, Uzzo RG, Bukowski R et al. (2000) Caspase-dependent and -independent death pathways in cancer therapy. Apoptosis 5: 17-20

    Article  Google Scholar 

  • Kuemmerle JF (2003) IGF-I elicits growth of human intestinal smooth muscle cells by activation of PI3K, PDK-1, and p70S6 kinase. Am J Physiol Gastrointest Liver Physiol 284: G411-422

    Google Scholar 

  • Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2: 589-598

    Article  Google Scholar 

  • Levine AJ, Oren M (2009) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9: 749-758

    Article  Google Scholar 

  • Levkau B, Koyama H, Raines EW et al. (1998) Cleavage of p21Cip1/Waf1 and p27Kip1 mediates apoptosis in endothelial cells through activation of Cdk2: role of a caspase cascade. Mol Cell 1: 553-563

    Article  Google Scholar 

  • Liu G, Park YJ, Tsuruta Y et al. (2009) p53 Attenuates lipopolysaccharide-induced NF-kappaB activation and acute lung injury. J Immunol 182: 5063-5071

    Article  Google Scholar 

  • LoPiccolo J, Blumenthal GM, Bernstein WB et al. (2008) Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat 11: 32-50

    Article  Google Scholar 

  • Lowe J, Shatz M, Resnick M et al. (2013) Modulation of immune responses by the tumor suppressor p53. BioDiscovery 8:

    Google Scholar 

  • Lowe SW (1999) Activation of p53 by oncogenes. Endocr Relat Cancer 6: 45-48

    Article  Google Scholar 

  • Lowe SW, Ruley HE (1993) Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev 7: 535-545

    Article  Google Scholar 

  • Luthi AU, Martin SJ (2007) The CASBAH: a searchable database of caspase substrates. Cell death and differentiation 14: 641-650

    Article  Google Scholar 

  • Macleod KF, Hu Y, Jacks T (1996) Loss of Rb activates both p53-dependent and independent cell death pathways in the developing mouse nervous system. EMBO J 15: 6178-6188

    Google Scholar 

  • Martins CP, Brown-Swigart L, Evan GI (2006) Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127: 1323-1334

    Article  Google Scholar 

  • Mathiasen IS, Jaattela M (2002) Triggering caspase-independent cell death to combat cancer. Trends in Molecular Medicine 8: 212-220

    Article  Google Scholar 

  • Meller R, Cameron JA, Torrey DJ et al. (2006) Rapid degradation of Bim by the ubiquitin-proteasome pathway mediates short-term ischemic tolerance in cultured neurons. Journal of Biological Chemistry 281: 7429-7436

    Article  Google Scholar 

  • Menendez D, Inga A, Resnick MA (2010) Potentiating the p53 network. Discov Med 10: 94-100

    Google Scholar 

  • Menendez D, Shatz M, Azzam K et al. (2011) The Toll-Like Receptor Gene Family Is Integrated into Human DNA Damage and p53 Networks. Plos Genetics 7:

    Google Scholar 

  • Menendez D, Shatz M, Resnick MA (2013) Interactions between the tumor suppressor p53 and immune responses. Current Opinion in Oncology 25: 85-92

    Article  Google Scholar 

  • Misra S, Ghatak S, Zoltan-Jones A et al. (2003) Regulation of multidrug resistance in cancer cells by hyaluronan. Journal of Biological Chemistry 278: 25285-25288

    Article  Google Scholar 

  • Morgenbesser SD, Williams BO, Jacks T et al. (1994) p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature 371: 72-74

    Article  Google Scholar 

  • Nevins JR (2001) The Rb/E2F pathway and cancer. Hum Mol Genet 10: 699-703

    Article  Google Scholar 

  • O’Connor R (1998) Survival factors and apoptosis. Adv Biochem Eng Biotechnol 62: 137-166

    Google Scholar 

  • Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-kappaB signaling pathways. Nature Immunology 12: 695-708

    Article  Google Scholar 

  • Okamoto K, Prives C (1999) A role of cyclin G in the process of apoptosis. Oncogene 18: 4606-4615

    Article  Google Scholar 

  • Okuda Y, Okuda M, Bernard CC (2003) Regulatory role of p53 in experimental autoimmune encephalomyelitis. J Neuroimmunol 135: 29-37

    Article  Google Scholar 

  • Pesch J, Brehm U, Staib C et al. (1996) Repression of interleukin-2 and interleukin-4 promoters by tumor suppressor protein p53. J Interferon Cytokine Res 16: 595-600

    Article  Google Scholar 

  • Peter ME, Heufelder AE, Hengartner MO (1997) Advances in apoptosis research. Proc Natl Acad Sci U S A 94: 12736-12737

    Article  Google Scholar 

  • Qi R, Liu XY (2006) New advance in caspase-independent programmed cell death and its potential in cancer therapy. Int J Biomed Sci 2: 211-216

    Google Scholar 

  • Querido E, Teodoro JG, Branton PE (1997) Accumulation of p53 induced by the adenovirus E1A protein requires regions involved in the stimulation of DNA synthesis. Journal of Virology 71: 3526-3533

    Google Scholar 

  • Rawson CL, Loo DT, Duimstra JR et al. (1991) Death of serum-free mouse embryo cells caused by epidermal growth factor deprivation. J Cell Biol 113: 671-680

    Article  Google Scholar 

  • Rodier F, Campisi J, Bhaumik D (2007) Two faces of p53: aging and tumor suppression. Nucleic Acids Res 35: 7475-7484

    Article  Google Scholar 

  • Russell P, Hennessy BT, Li J et al. (2012) Cyclin G1 regulates the outcome of taxane-induced mitotic checkpoint arrest. Oncogene 31: 2450-2460

    Article  Google Scholar 

  • Samuelson AV, Lowe SW (1997) Selective induction of p53 and chemosensitivity in RB-deficient cells by E1A mutants unable to bind the RB-related proteins. Proc Natl Acad Sci U S A 94: 12094-12099

    Article  Google Scholar 

  • Santhanam U, Ray A, Sehgal PB (1991) Repression of the interleukin 6 gene promoter by p53 and the retinoblastoma susceptibility gene product. Proc Natl Acad Sci U S A 88: 7605-7609

    Article  Google Scholar 

  • Schneider G, Henrich A, Greiner G et al. (2010) Cross talk between stimulated NF-kappaB and the tumor suppressor p53. Oncogene 29: 2795-2806

    Article  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME et al. (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593-602

    Article  Google Scholar 

  • Shi Y (2004) Caspase activation, inhibition, and reactivation: a mechanistic view. Protein Sci 13: 1979-1987

    Article  Google Scholar 

  • Shi Y, Glynn JM, Guilbert LJ et al. (1992) Role for c-myc in activation-induced apoptotic cell death in T cell hybridomas. Science 257: 212-214

    Article  Google Scholar 

  • Siskind LJ (2005) Mitochondrial ceramide and the induction of apoptosis. J Bioenerg Biomembr 37: 143-153

    Article  Google Scholar 

  • Strasser A, Harris AW, Bath ML et al. (1990) Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348: 331-333

    Article  Google Scholar 

  • Suen DF, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22: 1577-1590

    Article  Google Scholar 

  • Szakacs G, Paterson JK, Ludwig JA et al. (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5: 219-234

    Article  Google Scholar 

  • Takaoka A, Hayakawa S, Yanai H et al. (2003) Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature 424: 516-523

    Article  Google Scholar 

  • Torres Aleman I (2005) Role of insulin-like growth factors in neuronal plasticity and neuroprotection. Adv Exp Med Biol 567: 243-258

    Article  Google Scholar 

  • Tsang TY, Tang WY, Tsang WP et al. (2008) Downregulation of hepatoma-derived growth factor activates the Bad-mediated apoptotic pathway in human cancer cells. Apoptosis 13: 1135-1147

    Article  Google Scholar 

  • Vandel L, Nicolas E, Vaute O et al. (2001) Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase. Mol Cell Biol 21: 6484-6494

    Article  Google Scholar 

  • Ventura A, Kirsch DG, McLaughlin ME et al. (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445: 661-665

    Article  Google Scholar 

  • Vincent AM, Feldman EL (2002) Control of cell survival by IGF signaling pathways. Growth Horm IGF Res 12: 193-197

    Article  Google Scholar 

  • Voldborg BR, Damstrup L, Spang-Thomsen M et al. (1997) Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann Oncol 8: 1197-1206

    Article  Google Scholar 

  • Vousden KH, Prives C (2009) Blinded by the Light: The Growing Complexity of p53. Cell 137: 413-431

    Article  Google Scholar 

  • Xiao GH, Jeffers M, Bellacosa A et al. (2001) Anti-apoptotic signaling by hepatocyte growth factor/Met via the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways. Proc Natl Acad Sci U S A 98: 247-252

    Article  Google Scholar 

  • Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9: 47-59

    Article  Google Scholar 

  • Zhang HG, Wang J, Yang X et al. (2004) Regulation of apoptosis proteins in cancer cells by ubiquitin. Oncogene 23: 2009-2015

    Article  Google Scholar 

  • Zheng SJ, Lamhamedi-Cherradi SE, Wang P et al. (2005) Tumor suppressor p53 inhibits autoimmune inflammation and macrophage function. Diabetes 54: 1423-1428

    Article  Google Scholar 

  • Zhong Q, Gao W, Du F et al. (2005) Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121: 1085-1095

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

Table 7.1 Transcriptomic datasets of 15 cancer types are collected from the GEO database and used in our data analysis

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Xu, Y., Cui, J., Puett, D. (2014). Multiple Routes for Survival: Understanding How Cancer Evades Apoptosis. In: Cancer Bioinformatics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1381-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1381-7_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1380-0

  • Online ISBN: 978-1-4939-1381-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics