Skip to main content

Elucidation of Cancer Drivers Through Comparative Omic Data Analyses

  • Chapter
  • First Online:
  • 2599 Accesses

Abstract

Past statistics suggest that one out of every two men and every three women in developed countries will develop cancer during his or her life time. Cancer accounts for 12.5 % of all disease-induced deaths and ranks number three behind cardiovascular diseases and infectious and parasitic diseases worldwide. Its ranking moves up to number two when only developed countries are surveyed. A central question to be addressed here is: What causes a cancer to initiate and develop?

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anand P, Kunnumakkara AB, Sundaram C et al. (2008) Cancer is a preventable disease that requires major lifestyle changes. Pharmaceutical research 25: 2097-2116

    Google Scholar 

  • Anastasiou D, Poulogiannis G, Asara JM et al. (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334: 1278-1283

    Google Scholar 

  • Arai Y, Yoshiki T, Yoshida O (1997) c-erbB-2 oncoprotein: a potential biomarker of advanced prostate cancer. Prostate 30: 195-201

    Google Scholar 

  • Assoian RK, Zhu X (1997) Cell anchorage and the cytoskeleton as partners in growth factor dependent cell cycle progression. Curr Opin Cell Biol 9: 93-98

    Google Scholar 

  • Ault KA (2006) Epidemiology and natural history of human papilloma virus infections in the female genital tract. Infect Dis Obstet Gynecol 2006 Suppl: 40470

    Google Scholar 

  • Bignell GR, Greenman CD, Davies H et al. (2010) Signatures of mutation and selection in the cancer genome. Nature 463: 893-898

    Google Scholar 

  • Blasko I, Stampfer-Kountchev M, Robatscher P et al. (2004) How chronic inflammation can affect the brain and support the development of Alzheimer’s disease in old age: the role of microglia and astrocytes. Aging Cell 3: 169-176

    Google Scholar 

  • Boleij A, Schaeps RM, Tjalsma H (2009) Association between Streptococcus bovis and colon cancer. J Clin Microbiol 47: 516

    Google Scholar 

  • Bremner R, Zacksenhaus E (2010) Cyclins, Cdks, E2f, Skp2, and more at the first international RB Tumor Suppressor Meeting. Cancer research 70: 6114-6118

    Google Scholar 

  • Buchholz TA, Weil MM, Story MD et al. (1999) Tumor suppressor genes and breast cancer. Radiat Oncol Investig 7: 55-65

    Google Scholar 

  • Budillon A (1995) Molecular genetics of cancer. Oncogenes and tumor suppressor genes. Cancer 76: 1869-1873

    Google Scholar 

  • Burd EM (2003) Human papillomavirus and cervical cancer. Clin Microbiol Rev 16: 1-17

    Google Scholar 

  • Buttgereit F, Brand MD (1995) A hierarchy of ATP-consuming processes in mammalian cells. The Biochemical journal 312 ( Pt 1): 163-167

    Google Scholar 

  • Campisi J, Andersen JK, Kapahi P et al. (2011) Cellular senescence: a link between cancer and age-related degenerative disease? Semin Cancer Biol 21: 354-359

    Google Scholar 

  • Carracedo A, Cantley LC, Pandolfi PP (2013) Cancer metabolism: fatty acid oxidation in the limelight. Nature reviews Cancer 13: 227-232

    Google Scholar 

  • Chandel N, Maltepe E, Goldwasser E et al. (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci 95: 11715-11720

    Google Scholar 

  • Chang YE, Laimins LA (2000) Microarray analysis identifies interferon-inducible genes and Stat-1 as major transcriptional targets of human papillomavirus type 31. J Virol 74: 4174-4182

    Google Scholar 

  • Chen WY, Abatangelo G (1999) Functions of hyaluronan in wound repair. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society 7: 79-89

    Google Scholar 

  • Chew V, Toh HC, Abastado JP (2012) Immune microenvironment in tumor progression: characteristics and challenges for therapy. J Oncol 2012: 608406

    Google Scholar 

  • Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420: 860-867

    Google Scholar 

  • Crosbie EJ, Einstein MH, Franceschi S et al. (2013) Human papillomavirus and cervical cancer. Lancet 382: 889-899

    Google Scholar 

  • Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11: 98-107

    Google Scholar 

  • Edrey YH, Park TJ, Kang H et al. (2011) Endocrine function and neurobiology of the longest-living rodent, the naked mole-rat. Experimental gerontology 46: 116-123

    Google Scholar 

  • Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364: 656-665

    Google Scholar 

  • Estrella V, Chen T, Lloyd M et al. (2013) Acidity generated by the tumor microenvironment drives local invasion. Cancer research 73: 1524-1535

    Google Scholar 

  • Evans VC, Barker G, Heesom KJ et al. (2012) De novo derivation of proteomes from transcriptomes for transcript and protein identification. Nature methods 9: 1207-1211

    Google Scholar 

  • Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61: 759-767

    Google Scholar 

  • Feitelson MA, Duan LX (1997) Hepatitis B virus X antigen in the pathogenesis of chronic infections and the development of hepatocellular carcinoma. Am J Pathol 150: 1141-1157

    Google Scholar 

  • Firestein R, Bass AJ, Kim SY et al. (2008) CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature 455: 547-551

    Google Scholar 

  • Frey RS, Ushio-Fukai M, Malik AB (2009) NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology. Antioxidants & redox signaling 11: 791-810

    Google Scholar 

  • Fujiwara S, Nakagawa K, Harada H et al. (2007) Silencing hypoxia-inducible factor-1alpha inhibits cell migration and invasion under hypoxic environment in malignant gliomas. Int J Oncol 30: 793-802

    Google Scholar 

  • Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochemical pharmacology 72: 1493-1505

    Google Scholar 

  • Greenman C, Stephens P, Smith R et al. (2007) Patterns of somatic mutation in human cancer genomes. Nature 446: 153-158

    Google Scholar 

  • Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140: 883-899

    Google Scholar 

  • Gupta SC, Hevia D, Patchva S et al. (2012) Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxidants & redox signaling 16: 1295-1322

    Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 646-674

    Google Scholar 

  • He X, Ni Y, Wang Y et al. (2011) Naturally occurring germline and tumor-associated mutations within the ATP-binding motifs of PTEN lead to oxidative damage of DNA associated with decreased nuclear p53. Hum Mol Genet 20: 80-89

    Google Scholar 

  • Heck DE, Vetrano AM, Mariano TM et al. (2003) UVB light stimulates production of reactive oxygen species: unexpected role for catalase. The Journal of biological chemistry 278: 22432-22436

    Google Scholar 

  • Helicobacter, Cancer Collaborative G (2001) Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts. Gut 49: 347-353

    Google Scholar 

  • Hiotis SP, Rahbari NN, Villanueva GA et al. (2012) Hepatitis B vs. hepatitis C infection on viral hepatitis-associated hepatocellular carcinoma. BMC gastroenterology 12: 64

    Google Scholar 

  • Hirayama A, Kami K, Sugimoto M et al. (2009) Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer research 69: 4918-4925

    Google Scholar 

  • Hochachka PW, Buck LT, Doll CJ et al. (1996) Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proceedings of the National Academy of Sciences of the United States of America 93: 9493-9498

    Google Scholar 

  • Huang LE, Bindra R, Glazer P et al. (2007) Hypoxia-induced genetic instability—a calculated mechanism underlying tumor progression. J Mol Med 85: 139-148

    Google Scholar 

  • Hudson TJ, Anderson W, Artez A et al. (2010) International network of cancer genome projects. Nature 464: 993-998

    Google Scholar 

  • Ibragimova I, Ibanez de Caceres I, Hoffman AM et al. (2010) Global reactivation of epigenetically silenced genes in prostate cancer. Cancer Prev Res (Phila) 3: 1084-1092

    Google Scholar 

  • Iliakis G, Wang Y, Guan J et al. (2003) DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 22: 5834-5847

    Google Scholar 

  • Isaacs W, Kainu T (2001) Oncogenes and tumor suppressor genes in prostate cancer. Epidemiol Rev 23: 36-41

    Google Scholar 

  • Itano N, Atsumi F, Sawai T et al. (2002) Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration. Proceedings of the National Academy of Sciences of the United States of America 99: 3609-3614

    Google Scholar 

  • Jiang D, Liang J, Noble PW (2007) Hyaluronan in tissue injury and repair. Annual review of cell and developmental biology 23: 435-461

    Google Scholar 

  • Kahng YS, Lee YS, Kim BK et al. (2003) Loss of heterozygosity of chromosome 8p and 11p in the dysplastic nodule and hepatocellular carcinoma. J Gastroenterol Hepatol 18: 430-436

    Google Scholar 

  • Kalo E, Kogan-Sakin I, Solomon H et al. (2012) Mutant p53R273H attenuates the expression of phase 2 detoxifying enzymes and promotes the survival of cells with high levels of reactive oxygen species. Journal of Cell Science 125: 5578-5586

    Google Scholar 

  • Karin M, Cao Y, Greten FR et al. (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nature reviews Cancer 2: 301-310

    Google Scholar 

  • Khansari N, Shakiba Y, Mahmoudi M (2009) Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent patents on inflammation & allergy drug discovery 3: 73-80

    Google Scholar 

  • Kim S, Chin K, Gray JW et al. (2004) A screen for genes that suppress loss of contact inhibition: identification of ING4 as a candidate tumor suppressor gene in human cancer. Proceedings of the National Academy of Sciences of the United States of America 101: 16251-16256

    Google Scholar 

  • Knudson AG, Jr. (1971) Mutation and cancer: statistical study of retinoblastoma. Proceedings of the National Academy of Sciences of the United States of America 68: 820-823

    Google Scholar 

  • Kosaki R, Watanabe K, Yamaguchi Y (1999) Overproduction of hyaluronan by expression of the hyaluronan synthase Has2 enhances anchorage-independent growth and tumorigenicity. Cancer research 59: 1141-1145

    Google Scholar 

  • Kubasiak LA, Hernandez OM, Bishopric NH et al. (2002) Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc Natl Acad Sci U S A 99: 12825-12830

    Google Scholar 

  • Kuipers EJ, Perez-Perez GI, Meuwissen SG et al. (1995) Helicobacter pylori and atrophic gastritis: importance of the cagA status. J Natl Cancer Inst 87: 1777-1780

    Google Scholar 

  • Lan KH, Sheu ML, Hwang SJ et al. (2002) HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis. Oncogene 21: 4801-4811

    Google Scholar 

  • Larson J, Peterson BL, Romano M et al. (2012) Buried Alive! Arrested Development and Hypoxia Tolerance in the Naked Mole-Rat. Frontiers in Behavioral Neuroscience:

    Google Scholar 

  • Lian Z, Liu J, Li L et al. (2003) Upregulated expression of a unique gene by hepatitis B x antigen promotes hepatocellular growth and tumorigenesis. Neoplasia 5: 229-244

    Google Scholar 

  • Liao D, Johnson RS (2007) Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 26: 281-290

    Google Scholar 

  • Liaw D, Marsh DJ, Li J et al. (1997) Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nature genetics 16: 64-67

    Google Scholar 

  • Lin EY, Jones JG, Li P et al. (2003) Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163: 2113-2126

    Google Scholar 

  • Liu Y, Zuckier LS, Ghesani NV (2010) Dominant uptake of fatty acid over glucose by prostate cells: a potential new diagnostic and therapeutic approach. Anticancer research 30: 369-374

    Google Scholar 

  • Lonser RR, Glenn GM, Walther M et al. (2003) von Hippel-Lindau disease. Lancet 361: 2059-2067

    Google Scholar 

  • Lorusso G, Ruegg C (2008) The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem Cell Biol 130: 1091-1103

    Google Scholar 

  • Lu T, Gabrilovich DI (2012) Molecular pathways: tumor-infiltrating myeloid cells and reactive oxygen species in regulation of tumor microenvironment. Clinical cancer research : an official journal of the American Association for Cancer Research 18: 4877-4882

    Google Scholar 

  • Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annual review of cell and developmental biology 27: 441-464

    Google Scholar 

  • Manov I, Hirsh M, Iancu TC et al. (2013) Pronounced cancer resistance in a subterranean rodent, the blind mole-rat, Spalax: in vivo and in vitro evidence. BMC biology 11: 91

    Google Scholar 

  • Martinez-Outschoorn UE, Balliet R, Lin Z et al. (2012) BRCA1 mutations drive oxidative stress and glycolysis in the tumor microenvironment: implications for breast cancer prevention with antioxidant therapies. Cell cycle 11: 4402-4413

    Google Scholar 

  • Martinez MAR, Francisco G, Cabral LS et al. (2006) Genética molecular aplicada ao câncer cutâneo não melanoma. Anais Brasileiros de Dermatologia 81: 405-419

    Google Scholar 

  • Mazurek S, Boschek C, Hugo F et al. (2005) Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol 15: 300-308

    Google Scholar 

  • Mehta HH, Gao Q, Galet C et al. (2011) IGFBP-3 is a metastasis suppression gene in prostate cancer. Cancer research 71: 5154-5163

    Google Scholar 

  • Mikkelsen RB, Wardman P (2003) Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 22: 5734-5754

    Google Scholar 

  • Moeller BJ, Cao Y, Vujaskovic Z et al. (2004) The relationship between hypoxia and angiogenesis. Semin Radiat Oncol 14: 215-221

    Google Scholar 

  • Morin PJ, Sparks AB, Korinek V et al. (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275: 1787-1790

    Google Scholar 

  • Munakata T, Liang Y, Kim S et al. (2007) Hepatitis C virus induces E6AP-dependent degradation of the retinoblastoma protein. PLoS pathogens 3: 1335-1347

    Google Scholar 

  • Munoz N, Bosch FX, de Sanjose S et al. (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348: 518-527

    Google Scholar 

  • Murdoch CE, Zhang M, Cave AC et al. (2006) NADPH oxidase-dependent redox signalling in cardiac hypertrophy, remodelling and failure. Cardiovascular research 71: 208-215

    Google Scholar 

  • Murphree AL, Benedict WF (1984) Retinoblastoma: clues to human oncogenesis. Science 223: 1028-1033

    Google Scholar 

  • Mwenifumbo JC, Marra MA (2013) Cancer genome-sequencing study design. Nature Reviews Genetics 14: 321-332

    Google Scholar 

  • Nathaniel TI, Otukonyong E, Abdellatif A et al. (2012) Effect of hypoxia on metabolic rate, core body temperature, and c-fos expression in the naked mole rat. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience 30: 539-544

    Google Scholar 

  • Nauseef WM (2008) Biological roles for the NOX family NADPH oxidases. The Journal of biological chemistry 283: 16961-16965

    Google Scholar 

  • Nguyen LT, Uchida T, Murakami K et al. (2008) Helicobacter pylori virulence and the diversity of gastric cancer in Asia. J Med Microbiol 57: 1445-1453

    Google Scholar 

  • Nishi H, Nakada T, Kyo S et al. (2004) Hypoxia-inducible factor 1 mediates upregulation of telomerase (hTERT). Molecular and cellular biology 24: 6076-6083

    Google Scholar 

  • Nishisho I, Nakamura Y, Miyoshi Y et al. (1991) Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253: 665-669

    Google Scholar 

  • Noble PW (2002) Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biology 21: 25-29

    Google Scholar 

  • Nowell P, Hungerford D (1960) A minute chromosome in human chronic granulocytic leukemia. Science 142:

    Google Scholar 

  • Oh ST, Longworth MS, Laimins LA (2004) Roles of the E6 and E7 proteins in the life cycle of low-risk human papillomavirus type 11. J Virol 78: 2620-2626

    Google Scholar 

  • Paterson S, Vogwill T, Buckling A et al. (2010) Antagonistic coevolution accelerates molecular evolution. Nature 464: 275-278

    Google Scholar 

  • Pedersen PL, Greenawalt JW, Chan TL et al. (1970) A Comparison of Some Ultrastructural and Biochemical Properties of Mitochondria from Morris Hepatomas 9618A, 7800, and 3924A. Cancer research 30: 2620-2626

    Google Scholar 

  • Perz JF, Armstrong GL, Farrington LA et al. (2006) The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 45: 529-538

    Google Scholar 

  • Pfeiffer T, Schuster S, Bonhoeffer S (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science 292: 504-507

    Google Scholar 

  • Polyak K, Xia Y, Zweier JL et al. (1997) A model for p53-induced apoptosis. Nature 389: 300-305

    Google Scholar 

  • Ramachandran K, Gopisetty G, Gordian E et al. (2009) Methylation-mediated repression of GADD45alpha in prostate cancer and its role as a potential therapeutic target. Cancer research 69: 1527-1535

    Google Scholar 

  • Reitzer LJ, Wice BM, Kennell D (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. The Journal of biological chemistry 254: 2669-2676

    Google Scholar 

  • Roberts NJ, Vogelstein JT, Parmigiani G et al. (2012) The predictive capacity of personal genome sequencing. Sci Transl Med 4: 133ra158

    Google Scholar 

  • Roche-Lestienne C, Soenen-Cornu V, Grardel-Duflos N et al. (2002) Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood 100: 1014-1018

    Google Scholar 

  • Rolfe D, Brown G (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. PHYSIOLOGICAL REVIEWS 77: 731-758

    Google Scholar 

  • Sawyers CL, Hochhaus A, Feldman E et al. (2002) Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study: Presented in part at the 43rd Annual Meeting of The American Society of Hematology, Orlando, FL, December 11, 2001. Blood 99: 3530-3539

    Google Scholar 

  • Schaffer J (2003) Lipotoxicity: when tissues overeat. Curr Opin Lipidol 14: 281-287

    Google Scholar 

  • Schiffman M, Clifford G, Buonaguro FM (2009) Classification of weakly carcinogenic human papillomavirus types: addressing the limits of epidemiology at the borderline. Infect Agent Cancer 4: 8

    Google Scholar 

  • Scholl S, Beuzeboc P, Pouillart P (2001) Targeting HER2 in other tumor types. Ann Oncol 12 Suppl 1: S81-87

    Google Scholar 

  • Segal NH, Cohen RJ, Haffejee Z et al. (1994) BCL-2 proto-oncogene expression in prostate cancer and its relationship to the prostatic neuroendocrine cell. Arch Pathol Lab Med 118: 616-618

    Google Scholar 

  • Sgambato A, Cittadini A, Faraglia B et al. (2000) Multiple functions of p27Kip1 and its alterations in tumor cells: a review. J Cell Physiol 183: 18-27

    Google Scholar 

  • Shacter E, Weitzman SA (2002) Chronic inflammation and cancer. Oncology (Williston Park) 16: 217-226, 229; discussion 230-212

    Google Scholar 

  • Sloma I, Mitjavila-Garcia MT, Feraud O et al. (2013) Whole Genome Sequencing Of Chronic Myeloid Leukemia (CML)-Derived Induced Pluripotent Stem Cells (iPSC) Reveals Faithful Genocopying Of Highly Mutated Primary Leukemic Cells. Blood 122: 514

    Google Scholar 

  • Sounni NE, Noel A (2013) Targeting the tumor microenvironment for cancer therapy. Clin Chem 59: 85-93

    Google Scholar 

  • Srivastava S, Zou Z, Pirollo K et al. (1990) Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li–Fraumeni syndrome. Nature 348: 747-749

    Google Scholar 

  • St-Pierre J, Brand MD, Boutilier RG (2000) The effect of metabolic depression on proton leak rate in mitochondria from hibernating frogs. The Journal of experimental biology 203: 1469-1476

    Google Scholar 

  • Stehelin D, Varmus HE, Bishop JM et al. (1976) DNA related to the transforming gene (s) of avian sarcoma viruses is present in normal avian DNA.

    Google Scholar 

  • Stern R, Asari AA, Sugahara KN (2006) Hyaluronan fragments: an information-rich system. European journal of cell biology 85: 699-715

    Google Scholar 

  • Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458: 719-724

    Google Scholar 

  • Sudarshan S, Sourbier C, Kong HS et al. (2009) Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia-inducible transcription factor 1alpha stabilization by glucose-dependent generation of reactive oxygen species. Molecular and cellular biology 29: 4080-4090

    Google Scholar 

  • Sunaga N, Kohno T, Kolligs FT et al. (2001) Constitutive activation of the Wnt signaling pathway by CTNNB1 (beta-catenin) mutations in a subset of human lung adenocarcinoma. Genes Chromosomes Cancer 30: 316-321

    Google Scholar 

  • Sundaresan M, Yu ZX, Ferrans VJ et al. (1996) Regulation of reactive-oxygen-species generation in fibroblasts by Rac1. The Biochemical journal 318 ( Pt 2): 379-382

    Google Scholar 

  • The-Cancer-Genome-Atlas-Research-Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455: 1061-1068

    Google Scholar 

  • Thery M, Bornens M (2006) Cell shape and cell division. Curr Opin Cell Biol 18: 648-657

    Google Scholar 

  • Toole BP (2002) Hyaluronan promotes the malignant phenotype. Glycobiology 12: 37R-42R

    Google Scholar 

  • Toro JR, Nickerson ML, Wei MH et al. (2003) Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet 73: 95-106

    Google Scholar 

  • Valen LV (1973) A new evolutionary law. Evolutionary Theory 1: 1-30

    Google Scholar 

  • Vigetti D, Ori M, Passi. A (2010) The Xenopus model for evaluating hyaluronan during development,.

    Google Scholar 

  • Vogler M, Vogel S, Krull S et al. (2013) Hypoxia modulates fibroblastic architecture, adhesion and migration: a role for HIF-1alpha in cofilin regulation and cytoplasmic actin distribution. PloS one 8: e69128

    Google Scholar 

  • Vojtek AB, Der CJ (1998) Increasing complexity of the Ras signaling pathway. Journal of Biological Chemistry 273: 19925-19928

    Google Scholar 

  • Walboomers JM, Jacobs MV, Manos MM et al. (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189: 12-19

    Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123: 309-314

    Google Scholar 

  • Warburg O (1967) The Prime Cause and Prevention of Cancer. Triltsch, Würzburg, Germany: 6-16

    Google Scholar 

  • Warburg O, Posener K, Negelein E (1924) U¨ber den Stoffwechsel der Tumoren [On metabolism of tumors]. Biochem Z 152: 319-344.

    Google Scholar 

  • Weinhouse S, Warburg O, Burk D et al. (1956) On Respiratory Impairment in Cancer Cells. Science 124: 267-272

    Google Scholar 

  • Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nature reviews Cancer 11: 393-410

    Google Scholar 

  • Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. The Biochemical journal 313 ( Pt 1): 17-29

    Google Scholar 

  • Witz IP, Levy-Nissenbaum O (2006) The tumor microenvironment in the post-PAGET era. Cancer Lett 242: 1-10

    Google Scholar 

  • Yakymenko I, Sidorik E, Kyrylenko S et al. (2011) Long-term exposure to microwave radiation provokes cancer growth: evidences from radars and mobile communication systems. Experimental oncology 33: 62-70

    Google Scholar 

  • Yamazaki S, Yamakawa A, Okuda T et al. (2005) Distinct diversity of vacA, cagA, and cagE genes of Helicobacter pylori associated with peptic ulcer in Japan. J Clin Microbiol 43: 3906-3916

    Google Scholar 

  • Zhao M, Sun J, Zhao Z (2013) TSGene: a web resource for tumor suppressor genes. Nucleic Acids Res 41: D970-976

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

Table 5.1 A list of datasets used in analysis of Fig. 5.2
Table 5.2 A list of datasets used in analysis of Fig. 5.4
Table 5.3 Gene expression data of different species under hypoxia and normoxia
Table 5.4 A list of ATP-consuming house-keeping genes in human used for the study of Sect. 5.4

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Xu, Y., Cui, J., Puett, D. (2014). Elucidation of Cancer Drivers Through Comparative Omic Data Analyses. In: Cancer Bioinformatics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1381-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1381-7_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1380-0

  • Online ISBN: 978-1-4939-1381-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics