Skip to main content

In Silico Investigation of Cancer Using Publicly Available Data

  • Chapter
  • First Online:
Cancer Bioinformatics
  • 2613 Accesses

Abstract

Cancer is a very complex disease, far more multifaceted than the traditional views rooted in the thinking that cancer is a genomic disease, at least for solid tumors as discussed in the previous chapters. The disease is a rapidly evolving biological system drifting away from normal cellular metabolism and homeostasis to adapt to the also evolving, increasingly more challenging and unfamiliar microenvironment. It may start from some, in and of itself, seemingly harmless metabolic changes in response to a stressful local condition such as persistent hypoxia and/or elevated ROS, which leads to gradual and continuing changes in the microenvironment, hence producing pressure for the underlying cells to evolve. The observed cell proliferation may represent a feasible and efficient route for the affected cells to escape from these pressures. The similar growth patterns and other common characteristics across different cancer types, referred to as hallmark activities, strongly suggest that the survival pathway of the affected cells is a well-coordinated process, possibly guided by signaling instructions manifested by hyaluronic acid and fragments as discussed in Chaps. 6 and 9. The continuous coadaptation and coevolution between the changing microenvironment and the altered cellular metabolism may drive the evolving cells to utilize whatever cellular capabilities encoded in their genomes via the increasingly more relaxed epigenomic regulations or random mutations confer for their survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achreja A, Yang L, Zhao H et al. (2013) Integrated energetics and flux analysis reveals differential metabolic reprogramming in highly and less invasive cancer cells. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research 73:

    Google Scholar 

  • Agarwal SM, Raghav D, Singh H et al. (2011) CCDB: a curated database of genes involved in cervix cancer. Nucleic Acids Res 39: D975-979

    Article  Google Scholar 

  • Ahn J, Yuan Y, Parmigiani G et al. (2013) DeMix: deconvolution for mixed cancer transcriptomes using raw measured data. Bioinformatics 29: 1865–1871

    Article  Google Scholar 

  • Akalin A, Kormaksson M, Li S et al. (2012) methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome biology 13: R87

    Article  Google Scholar 

  • Ambs S, Prueitt RL, Yi M et al. (2008) Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 68: 6162–6170

    Article  Google Scholar 

  • Bairoch A (2000) The ENZYME database in 2000. Nucleic Acids Res 28: 304–305

    Article  Google Scholar 

  • Barfield RT, Kilaru V, Smith AK et al. (2012) CpGassoc: an R function for analysis of DNA methylation microarray data. Bioinformatics 28: 1280–1281

    Article  Google Scholar 

  • Barrett T, Wilhite SE, Ledoux P et al. (2013) NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res 41: D991–995

    Article  Google Scholar 

  • Benson DA, Cavanaugh M, Clark K et al. (2013) GenBank. Nucleic Acids Res 41: D36–42

    Article  Google Scholar 

  • Berger SL, Kouzarides T, Shiekhattar R et al. (2009) An operational definition of epigenetics. Genes & development 23: 781–783

    Article  Google Scholar 

  • Bloomston M, Frankel WL, Petrocca F et al. (2007) MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297: 1901–1908

    Article  Google Scholar 

  • Brandenberger R, Wei H, Zhang S et al. (2004) Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nature biotechnology 22: 707–716

    Article  Google Scholar 

  • Calin GA, Ferracin M, Cimmino A et al. (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353: 1793–1801

    Article  Google Scholar 

  • Cancer-Genome-Analysis (2013) ABSOLUTE.

    Google Scholar 

  • Cancer-Genome-Atlas-Research-Network, Weinstein JN, Collisson EA et al. (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nature genetics 45: 1113–1120

    Article  Google Scholar 

  • Cancer-Genomics-Hub (2013) Cancer Genomics Hub.

    Google Scholar 

  • Chadwick LH (2012) The NIH Roadmap Epigenomics Program data resource. Epigenomics 4: 317–324

    Article  Google Scholar 

  • Chen JY, Mamidipalli S, Huan T (2009) HAPPI: an online database of comprehensive human annotated and predicted protein interactions. BMC Genomics 10 Suppl 1: S16

    Article  Google Scholar 

  • Chuang JC, Jones PA (2007) Epigenetics and microRNAs. Pediatric research 61: 24R–29R

    Article  Google Scholar 

  • Cooper DN, Ball EV, Krawczak M (1998) The human gene mutation database. Nucleic Acids Res 26: 285–287

    Article  Google Scholar 

  • CPTAC (2013) Clinical Proteomic Technologies for Cancer initiative.

    Google Scholar 

  • Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10: 704–714

    Article  Google Scholar 

  • Das J, Yu H (2012) HINT: High-quality protein interactomes and their applications in understanding human disease. BMC systems biology 6: 92

    Article  Google Scholar 

  • Deutsch EW, Lam H, Aebersold R (2008) PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO reports 9: 429–434

    Article  Google Scholar 

  • Downing JR, Wilson RK, Zhang J et al. (2012) The Pediatric Cancer Genome Project. Nature genetics 44: 619–622

    Article  Google Scholar 

  • Duarte NC, Becker SA, Jamshidi N et al. (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proceedings of the National Academy of Sciences of the United States of America 104: 1777–1782

    Article  Google Scholar 

  • Eckhardt F, Beck S, Gut IG et al. (2004) Future potential of the Human Epigenome Project. Expert review of molecular diagnostics 4: 609–618

    Article  Google Scholar 

  • Encode-Project-Consortium, Bernstein BE, Birney E et al. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489: 57–74

    Article  Google Scholar 

  • Evans VC, Barker G, Heesom KJ et al. (2012) De novo derivation of proteomes from transcriptomes for transcript and protein identification. Nature methods 9: 1207–1211

    Article  Google Scholar 

  • Forbes SA, Bhamra G, Bamford S et al. (2001) The Catalogue of Somatic Mutations in Cancer (COSMIC). In: Current Protocols in Human Genetics. John Wiley & Sons, Inc., Hoboken, NJ

    Google Scholar 

  • Futreal PA, Coin L, Marshall M et al. (2004) A census of human cancer genes. Nature reviews Cancer 4: 177–183

    Article  Google Scholar 

  • Garzon R, Volinia S, Liu CG et al. (2008) MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 111: 3183–3189

    Article  Google Scholar 

  • Gene-Ontology-Tools (2013) Gene Ontology Tools.

    Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome biology 5: R80

    Article  Google Scholar 

  • Goecks J, Nekrutenko A, Taylor J et al. (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome biology 11: R86

    Article  Google Scholar 

  • Goldberg R, Tewari Y, Bhat T (2004) Thermodynamics of Enzyme-Catalyzed Reactions -a Database for Quantitative Biochemistry. Bioinformatics 20: 2874–2877

    Article  Google Scholar 

  • Goldstein DB (2009) Common genetic variation and human traits. The New England journal of medicine 360: 1696–1698

    Article  Google Scholar 

  • Griffiths-Jones S, Grocock RJ, van Dongen S et al. (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34: D140–144

    Article  Google Scholar 

  • Halachev K, Bast H, Albrecht F et al. (2012) EpiExplorer: live exploration and global analysis of large epigenomic datasets. Genome biology 13: R96

    Article  Google Scholar 

  • Hanahan D, Weinberg Robert A (2011) Hallmarks of Cancer: The Next Generation. Cell 144: 646–674

    Article  Google Scholar 

  • Hardcastle TJ, Kelly KA (2010) baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC bioinformatics 11: 422

    Article  Google Scholar 

  • He X, Chang S, Zhang J et al. (2008) MethyCancer: the database of human DNA methylation and cancer. Nucleic Acids Res 36: D836–841

    Article  Google Scholar 

  • Hirayama A, Kami K, Sugimoto M et al. (2009) Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer research 69: 4918–4925

    Article  Google Scholar 

  • Hummel J, Selbig J, Walther D et al. (2007) The Golm Metabolome Database: a database for GC-MS based metabolite profiling. In: Nielsen J, Jewett M (eds) Metabolomics, vol 18. Topics in Current Genetics. Springer, Berlin Heidelberg, pp 75–95

    Chapter  Google Scholar 

  • Hunter S, Jones P, Mitchell A et al. (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40: D306–312

    Article  Google Scholar 

  • International-Cancer-Genome-Consortium, Hudson TJ, Anderson W et al. (2010) International network of cancer genome projects. Nature 464: 993–998

    Article  Google Scholar 

  • Irizarry RA, Ladd-Acosta C, Carvalho B et al. (2008) Comprehensive high-throughput arrays for relative methylation (CHARM). Genome research 18: 780–790

    Article  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27–30

    Article  Google Scholar 

  • Kanehisa M, Goto S, Sato Y et al. (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40: D109–114

    Article  Google Scholar 

  • Kato K, Yamashita R, Matoba R et al. (2005) Cancer gene expression database (CGED): a database for gene expression profiling with accompanying clinical information of human cancer tissues. Nucleic Acids Res 33: D533–536

    Article  Google Scholar 

  • Kind T, Wohlgemuth G, Lee do Y et al. (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical chemistry 81: 10038–10048

    Article  Google Scholar 

  • Koscielny G, Le Texier V, Gopalakrishnan C et al. (2009) ASTD: The Alternative Splicing and Transcript Diversity database. Genomics 93: 213–220

    Article  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics 9: 559

    Article  Google Scholar 

  • Lehne B, Schlitt T (2009) Protein-protein interaction databases: keeping up with growing interactomes. Human genomics 3: 291–297

    Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20

    Article  Google Scholar 

  • Li J, Duncan DT, Zhang B (2010) CanProVar: a human cancer proteome variation database. Human mutation 31: 219–228

    Article  Google Scholar 

  • Luo W, Brouwer C (2013) Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 29: 1830–1831

    Article  Google Scholar 

  • Maglott D, Ostell J, Pruitt KD et al. (2011) Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 39: D52–57

    Article  Google Scholar 

  • Martens L, Hermjakob H, Jones P et al. (2005) PRIDE: the proteomics identifications database. Proteomics 5: 3537–3545

    Article  Google Scholar 

  • McClellan J, King MC (2010) Genetic heterogeneity in human disease. Cell 141: 210–217

    Article  Google Scholar 

  • Metabolomics-Society (2014) Metabolomics Society

    Google Scholar 

  • Miranda KC, Huynh T, Tay Y et al. (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126: 1203–1217

    Article  Google Scholar 

  • Murphy JA, Barrantes-Reynolds R, Kocherlakota R et al. (2004) The CDKN2A database: Integrating allelic variants with evolution, structure, function, and disease association. Human mutation 24: 296–304

    Article  Google Scholar 

  • Mutwil M, Øbro J, Willats WGT et al. (2008) GeneCAT—novel webtools that combine BLAST and co-expression analyses. Nucleic Acids Research 36: W320–W326

    Article  Google Scholar 

  • NCBI (1988) National Center for Biotechnology Information.

    Google Scholar 

  • Novellino L, Castelli C, Parmiani G (2005) A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer immunology, immunotherapy: CII 54: 187–207

    Article  Google Scholar 

  • Olivier M, Eeles R, Hollstein M et al. (2002) The IARC TP53 database: new online mutation analysis and recommendations to users. Human mutation 19: 607–614

    Article  Google Scholar 

  • Omenn GS, States DJ, Adamski M et al. (2005) Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 5: 3226–3245

    Google Scholar 

  • Ongenaert M, Van Neste L, De Meyer T et al. (2008) PubMeth: a cancer methylation database combining text-mining and expert annotation. Nucleic Acids Res 36: D842–846

    Article  Google Scholar 

  • Pani G, Galeotti T, Chiarugi P (2010) Metastasis: cancer cell’s escape from oxidative stress. Cancer metastasis reviews 29: 351–378

    Article  Google Scholar 

  • Patterson MN, Hughes IA, Gottlieb B et al. (1994) The androgen receptor gene mutations database. Nucleic Acids Res 22: 3560–3562

    Google Scholar 

  • Punta M, Coggill PC, Eberhardt RY et al. (2012) The Pfam protein families database. Nucleic Acids Res 40: D290–301

    Article  Google Scholar 

  • Rebhan M, Chalifa-Caspi V, Prilusky J et al. (1998) GeneCards: a novel functional genomics compendium with automated data mining and query reformulation support. Bioinformatics 14: 656–664

    Article  Google Scholar 

  • Rebhan M, ChalifaCaspi V, Prilusky J et al. (1997) GeneCards: Integrating information about genes, proteins and diseases. Trends Genet 13: 163–163

    Article  Google Scholar 

  • Reuter S, Gupta SC, Chaturvedi MM et al. (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free radical biology & medicine 49: 1603–1616

    Article  Google Scholar 

  • Roberts A, Pimentel H, Trapnell C et al. (2011) Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics 27: 2325–2329

    Article  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140

    Article  Google Scholar 

  • Rojas I, Golebiewski M, Kania R et al. (2007) Storing and annotating of kinetic data. In silico biology 7: S37–44

    Google Scholar 

  • Schetter AJ, Leung SY, Sohn JJ et al. (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299: 425–436

    Google Scholar 

  • Schomburg I, Chang A, Ebeling C et al. (2004) BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res 32: D431–433

    Article  Google Scholar 

  • Shannon P, Markiel A, Ozier O et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research 13: 2498–2504

    Article  Google Scholar 

  • Smigielski EM, Sirotkin K, Ward M et al. (2000) dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res 28: 352–355

    Article  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America 102: 15545–15550

    Article  Google Scholar 

  • Sun R, Love MI, Zemojtel T et al. (2012) Breakpointer: using local mapping artifacts to support sequence breakpoint discovery from single-end reads. Bioinformatics 28: 1024–1025

    Article  Google Scholar 

  • Szabo C, Masiello A, Ryan JF et al. (2000) The breast cancer information core: database design, structure, and scope. Human mutation 16: 123–131

    Article  Google Scholar 

  • TANTIGEN (2009) TANTIGEN: Tumor T cell Antigen Database.

    Google Scholar 

  • The-Metabolomics-Innovation-Centre (2014) The Metabolomics Innovation Centre.

    Google Scholar 

  • The-Nutrigenomics-Organization (2008) The Nutrigenomics Organization.

    Google Scholar 

  • The-UniProt-Consortium (2014) Activities at the Universal Protein Resource (UniProt). Nucleic Acids Research 42: D191–D198

    Article  Google Scholar 

  • Wang J, Mullighan CG, Easton J et al. (2011) CREST maps somatic structural variation in cancer genomes with base-pair resolution. Nature methods 8: 652–654

    Article  Google Scholar 

  • Wishart DS, Jewison T, Guo AC et al. (2013) HMDB 3.0–The Human Metabolome Database in 2013. Nucleic Acids Res 41: D801–807

    Article  Google Scholar 

  • Wishart DS, Knox C, Guo AC et al. (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37: D603–610

    Article  Google Scholar 

  • Wishart DS, Tzur D, Knox C et al. (2007) HMDB: the Human Metabolome Database. Nucleic Acids Res 35: D521–526

    Article  Google Scholar 

  • Wyman SK, Parkin RK, Mitchell PS et al. (2009) Repertoire of microRNAs in epithelial ovarian cancer as determined by next generation sequencing of small RNA cDNA libraries. PloS one 4: e5311

    Article  Google Scholar 

  • Xenarios I, Salwinski L, Duan XJ et al. (2002) DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 30: 303–305

    Article  Google Scholar 

  • Xiao F, Zuo Z, Cai G et al. (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37: D105–110

    Article  Google Scholar 

  • Xu K, Cui J, Olman V et al. (2010) A comparative analysis of gene-expression data of multiple cancer types. PloS one 5: e13696

    Article  Google Scholar 

  • Yamada T, Letunic I, Okuda S et al. (2011) iPath2.0: interactive pathway explorer. Nucleic Acids Res 39: W412–415

    Article  Google Scholar 

  • Yanaihara N, Caplen N, Bowman E et al. (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9: 189–198

    Article  Google Scholar 

  • Zhou B, Xiao JF, Tuli L et al. (2012) LC-MS-based metabolomics. Molecular bioSystems 8: 470–481

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Xu, Y., Cui, J., Puett, D. (2014). In Silico Investigation of Cancer Using Publicly Available Data. In: Cancer Bioinformatics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1381-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1381-7_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1380-0

  • Online ISBN: 978-1-4939-1381-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics