Skip to main content

Searching for Cancer Biomarkers in Human Body Fluids

  • Chapter
  • First Online:
Book cover Cancer Bioinformatics
  • 2572 Accesses

Abstract

One of the important lessons learned about cancer survival from the past few decades’ experience in cancer treatment is: early detection is the key. It has now become common knowledge that as a cancer progresses from early to more advanced stages, it gradually changes from a local and relatively simple problem to a very complex health issue involving the body at large. Once a cancer has metastasized, tumors in the new locations tend to grow substantially faster and metastasize further and much more rapidly than the primary counterpart, hence making the disease considerably more difficult to control and treat. The available statistics show that the survival rate of a cancer patient drops substantially when an encapsulated tumor spreads to the neighboring tissue and then to distant locations. For example, the 5-year survival rate drops from 99 to 66 % and then down to 9.4 % when a colorectal cancer is localized, has spread to only the local tissue and then to distant organs, respectively. Similar survival statistics hold for virtually all cancers. It is particularly worth emphasizing that the 5-year survival rates tend to drop to single digits or low tens of percentages for most of the cancers when they have spread to distal organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi J, Kumar C, Zhang Y et al. (2006) The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol 7: R80

    Article  Google Scholar 

  • Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1: 845–867

    Article  Google Scholar 

  • Arroyo JD, Chevillet JR, Kroh EM et al. (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108: 5003–5008

    Article  Google Scholar 

  • Bartels CL, Tsongalis GJ (2009) MicroRNAs: novel biomarkers for human cancer. Clin Chem 55: 623–631

    Article  Google Scholar 

  • Bateman A, Birney E, Cerruti L et al. (2002) The Pfam protein families database. Nucleic acids research 30: 276–280

    Article  Google Scholar 

  • Bendtsen JD, Jensen LJ, Blom N et al. (2004a) Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17: 349–356

    Article  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G et al. (2004b) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340: 783–795

    Article  Google Scholar 

  • Bhatt AN, Mathur R, Farooque A et al. (2010) Cancer biomarkers - current perspectives. Indian J Med Res 132: 129–149

    Google Scholar 

  • Brandtzaeg P (1971) Human secretory immunoglobulins. II. Salivary secretions from individuals with selectively excessive or defective synthesis of serum immunoglobulins. Clin Exp Immunol 8: 69–85

    Google Scholar 

  • Chan JM, Stampfer MJ, Ma J et al. (2002) Insulin-like growth factor-I (IGF-I) and IGF binding protein-3 as predictors of advanced-stage prostate cancer. J Natl Cancer Inst 94: 1099-1106

    Article  Google Scholar 

  • Chen X, Ba Y, Ma L et al. (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18: 997–1006

    Article  Google Scholar 

  • Chen Y, Zhang Y, Yin Y et al. (2005) SPD–a web-based secreted protein database. Nucleic Acids Res 33: D169–173

    Article  Google Scholar 

  • Chiaradonna F, Moresco RM, Airoldi C et al. (2012) From cancer metabolism to new biomarkers and drug targets. Biotechnol Adv 30: 30–51

    Article  Google Scholar 

  • Cho WC (2007) OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer 6: 60

    Article  Google Scholar 

  • Choudhry H, Catto JW (2011) Epigenetic regulation of microRNA expression in cancer. Methods Mol Biol 676: 165–184

    Article  Google Scholar 

  • Cui J, Chen Y, Chou WC et al. (2010) An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer. Nucleic Acids Res 39(4):1197–207

    Article  Google Scholar 

  • Cui J, Liu Q, Puett D et al. (2008) Computational Prediction of Human Proteins That Can Be Secreted into the Bloodstream. Bioinformatics 24(20): 2370–2375

    Article  Google Scholar 

  • Denny P, Hagen FK, Hardt M et al. (2008) The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions. J Proteome Res 7: 1994–2006

    Article  Google Scholar 

  • Di Stasio E, De Cristofaro R (2010) The effect of shear stress on protein conformation: Physical forces operating on biochemical systems: The case of von Willebrand factor. Biophysical chemistry 153: 1–8

    Article  Google Scholar 

  • Etheridge A, Lee I, Hood L et al. (2011) Extracellular microRNA: a new source of biomarkers. Mutat Res 717: 85–90

    Article  Google Scholar 

  • Fernandez M, Ahmad S, Sarai A (2010) Proteochemometric recognition of stable kinase inhibition complexes using topological autocorrelation and support vector machines. J Chem Inf Model 50: 1179–1188

    Article  Google Scholar 

  • Fuchs A, Kirschner A, Frishman D (2009) Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks. Proteins 74: 857–871

    Article  Google Scholar 

  • Griffiths-Jones S, Grocock RJ, van Dongen S et al. (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34: D140–144

    Article  Google Scholar 

  • Hong CS, Cui J, Ni Z et al. (2011) A computational method for prediction of excretory proteins and application to identification of gastric cancer markers in urine. PLoS One 6: e16875

    Article  Google Scholar 

  • Hu HY, Yan Z, Xu Y et al. (2009) Sequence features associated with microRNA strand selection in humans and flies. BMC Genomics 10: 413

    Article  Google Scholar 

  • Jenzano JW, Courts NF, Timko DA et al. (1986) Levels of glandular kallikrein in whole saliva obtained from patients with solid tumors remote from the oral cavity. J Dent Res 65: 67–70

    Article  Google Scholar 

  • Jones HB (1848) On a new substance occurring in the urine of a patient with mollifies ossium. Philosophical Transactions of the Royal Society 138: 55–62

    Article  Google Scholar 

  • Kosaka N, Iguchi H, Ochiya T (2010) Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 101: 2087–2092

    Article  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39: D152–157

    Article  Google Scholar 

  • Kunej T, Godnic I, Ferdin J et al. (2011) Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat Res 717: 77–84

    Article  Google Scholar 

  • Leidinger P, Backes C, Deutscher S et al. (2013) A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biology 14: R78

    Article  Google Scholar 

  • Lilja H, Ulmert D, Vickers AJ (2008) Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat Rev Cancer 8: 268–278

    Article  Google Scholar 

  • Lo A, Chiu HS, Sung TY et al. (2008) Enhanced membrane protein topology prediction using a hierarchical classification method and a new scoring function. J Proteome Res 7: 487–496

    Article  Google Scholar 

  • Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. The Journal of cell biology 196: 395–406

    Article  Google Scholar 

  • Mishra NK, Agarwal S, Raghava GP (2010) Prediction of cytochrome P450 isoform responsible for metabolizing a drug molecule. BMC Pharmacol 10: 8

    Article  Google Scholar 

  • Nixon AB, Pang H, Starr MD et al. (2013) Prognostic and predictive blood-based biomarkers in patients with advanced pancreatic cancer: results from CALGB80303 (Alliance). Clin Cancer Res 19: 6957–6966

    Article  Google Scholar 

  • Omenn GS, States DJ, Adamski M et al. (2005) Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 5: 3226–3245

    Article  Google Scholar 

  • Pang JX, Ginanni N, Dongre AR et al. (2002) Biomarker discovery in urine by proteomics. J Proteome Res 1: 161–169

    Article  Google Scholar 

  • Pfaffe T, Cooper-White J, Beyerlein P et al. (2011) Diagnostic potential of saliva: current state and future applications. Clin Chem 57: 675–687

    Article  Google Scholar 

  • Platt JC (1999) Fast Training of Support Vector Machines using Sequential Minimal Optimization. In: Advances in kernel methods: support vector learning. MIT Press Cambridge, MA, USA, pp 185 – 208

    Google Scholar 

  • S. S. Keerthi, S. K. Shevade, C. Bhattacharyya,K. R. K. Murthy (2001) Improvements to Platt’s SMO Algorithm for SVM Classifier Design Neural Computation 13: 637–649

    Article  MATH  Google Scholar 

  • Sanchez-Cespedes M (2008) The impact of gene expression microarrays in the evaluation of lung carcinoma subtypes and DNA copy number. Arch Pathol Lab Med 132: 1562–1565

    Google Scholar 

  • Scholkopf B, Platt JC, Shawe-Taylor J et al. (2001) Estimating the support of a high-dimensional distribution. Neural Computation 13: 1443–1471

    Article  Google Scholar 

  • Streckfus C, Bigler L, Tucci M et al. (2000) A preliminary study of CA15-3, c-erbB-2, epidermal growth factor receptor, cathepsin-D, and p53 in saliva among women with breast carcinoma. Cancer Investigation 18: 101–109

    Article  Google Scholar 

  • Thompson IM, Chi C, Ankerst DP et al. (2006) Effect of finasteride on the sensitivity of PSA for detecting prostate cancer. J Natl Cancer Inst 98: 1128–1133

    Article  Google Scholar 

  • Turan T, Demir S, Aybek H et al. (2000) Free and total prostate-specific antigen levels in saliva and the comparison with serum levels in men. Eur Urol 38: 550–554

    Article  Google Scholar 

  • Turchinovich A, Weiz L, Langheinz A et al. (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39: 7223–7233

    Article  Google Scholar 

  • Vlodavsky I, Friedmann Y (2001) Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest 108: 341–347

    Article  Google Scholar 

  • Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13: 227–232

    Google Scholar 

  • Wang J, Liang Y, Wang Y et al. (2013) Computational Prediction of Human Salivary Proteins from Blood Circulation and Application to Diagnostic Biomarker Identification. PLoS ONE 8: e80211

    Article  Google Scholar 

  • Weissinger EM, Schiffer E, Hertenstein B et al. (2007) Proteomic patterns predict acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Blood 109: 5511–5519

    Article  Google Scholar 

  • Wimberly H, Shee C, Thornton PC et al. (2013) R-loops and nicks initiate DNA breakage and genome instability in non-growing Escherichia coli. Nature communications 4: 2115

    Article  Google Scholar 

  • Wong DT (2006) Salivary diagnostics powered by nanotechnologies, proteomics and genomics. J Am Dent Assoc 137: 313–321

    Article  Google Scholar 

  • Woo Y, Hyung WJ, Obama K et al. (2012) Elevated high-sensitivity C-reactive protein, a marker of advanced stage gastric cancer and postgastrectomy disease recurrence. J Surg Oncol 105: 405–409

    Article  Google Scholar 

  • Xu R, Boudreau A, Bissell MJ (2009) Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev 28: 167–176

    Article  Google Scholar 

  • Yu L, Guo Y, Zhang Z et al. (2010) SecretP: a new method for predicting mammalian secreted proteins. Peptides 31: 574–578

    Article  Google Scholar 

  • Zhang H, Uchimura K, Kadomatsu K (2006) Brain keratan sulfate and glial scar formation. Ann N Y Acad Sci 1086: 81–90

    Article  Google Scholar 

  • Zhang Y, Liu D, Chen X et al. (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39: 133–144

    Article  Google Scholar 

  • Zhao Y, Srivastava D (2007) A developmental view of microRNA function. Trends Biochem Sci 32: 189–197

    Article  Google Scholar 

  • Zimmerli LU, Schiffer E, Zurbig P et al. (2008) Urinary proteomic biomarkers in coronary artery disease. Mol Cell Proteomics 7: 290–298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Xu, Y., Cui, J., Puett, D. (2014). Searching for Cancer Biomarkers in Human Body Fluids. In: Cancer Bioinformatics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1381-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1381-7_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1380-0

  • Online ISBN: 978-1-4939-1381-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics