Skip to main content

Basic Cancer Biology

  • Chapter
  • First Online:
Cancer Bioinformatics
  • 2760 Accesses

Abstract

Cancer has been recognized since early times, but treatment protocols and medications have lagged, by millennia, the initial observations of the disease. The tragic cases of childhood and teenage cancer notwithstanding, most cancers develop in the aging population, consistent with the nature of metabolic, genetic and other alterations discussed below and in various chapters. Epidemiological data show that, behind heart disease, cancer is the second leading cause of death worldwide, and many expect that in time cancer will overtake heart disease as the leading cause of mortality. Some 150 years ago it was demonstrated that cancer is composed of cells with morphology differing from that of normal cells. With information becoming available from numerous areas in biology and medicine, and capitalizing on major advances in technology, great strides were made in the twentieth century in unraveling many of the complexities of cancer, work that is continuing at an accelerating pace in the twenty-first century. It is now recognized that by far the majority of all cancers arises from environmental factors, metabolic disturbances, somatic mutations, and other pathophysiological processes (discussed throughout the book), while the remaining ones are attributable to germline mutations and are thus inheritable (familial).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandrov LB, Stratton MR (2014) Mutational signatures: The patterns of somatic mutations hidden in cancer genomes. Curr Opin Gen Devel 24: 52–60.

    Article  Google Scholar 

  • Alexandrov LB, Nik-Zainal S, Wedge DC et al. (2013) Signatures of mutational processes in human cancer. Nature 500: 415–421.

    Article  Google Scholar 

  • Anastasiou D, Poulogiannis G, Asara JM et al. (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334: 1278–1283.

    Article  Google Scholar 

  • Ashworth A, Lord, CJ, Reis-Filho JS (2011) Genetic interactions in cancer progression and treatment. Cell 145: 30–38.

    Article  Google Scholar 

  • Beck S et al. for the AACR Cancer Epigenome Task Force (2012) A blueprint for an international cancer epigenome consortium. A report from the AACR Cancer Epigenome Task Force. Cancer Res 72: 6319–6324.

    Google Scholar 

  • Bald T, Quast T, Landsberg J, et al. (2014) Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 507: 109–113.

    Google Scholar 

  • Bensinger SJ, Christofk HR (2012) New aspects of the Warburg effect in cancer cell biology. Sem Cell Devel Biol 23: 352–361.

    Article  Google Scholar 

  • Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432: 332–337.

    Article  Google Scholar 

  • Burrell RA, Swanton C (2014) The evolution of the unstable cancer genome. Curr Opin Gen Devel 24: 61–67.

    Article  Google Scholar 

  • Burrell RA, McGranahan N, Bartek J, Swanton C (2013) The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501: 338–345.

    Article  Google Scholar 

  • Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nature Rev Cancer 11: 85–95.

    Article  Google Scholar 

  • Calona A, Taurielloa DVF, Batlle E (2014) TGF-beta in CAF-mediated tumor growth and metastasis. Sem Cancer Biol 25: 15–22.

    Article  Google Scholar 

  • Catalano V, Turdo A, Di Franco S, Dieli F, Todaro M, Stassi G (2013) Tumor and its microenvironment: A synergistic interplay. Sem Cancer Biol 23P: 522–532.

    Article  Google Scholar 

  • Chen J-Q, Russo J (2012) Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Biochim Biophys Acta 1826: 370–384.

    Google Scholar 

  • Corteza E, Roswallb P, Pietras K (2014) Functional subsets of mesenchymal cell types in the tumor microenvironment. Sem Cancer Biol 25: 3–9.

    Article  Google Scholar 

  • Costa A, Scholer-Dahirel A, Mechta-Grigoriou F (2014) The role of reactive oxygen species and metabolism on cancer cells and their microenvironment. Sem Cancer Biol 25: 23–32.

    Article  Google Scholar 

  • Cowin PA, Anglesio M, Etemadmoghadam D, Bowtell DL (2010) Profiling the cancer genome. Ann Rev Genomics Human Gen 11: 133–159.

    Article  Google Scholar 

  • Dang CV (2012) Links between metabolism and cancer. Genes Devel 26: 877–890.

    Article  Google Scholar 

  • De Wevera O, Van Bockstalb M, Mareela M, Hendrixa A, Brackea M (2014) Carcinoma-associated fibroblasts provide operational flexibility in metastasis. Sem Cancer Biol 25: 33–46.

    Article  Google Scholar 

  • Duesberg PH (1987) Cancer genes: Rare recombinants instead of activated oncogenes. Proc Natl Acad Sci 84: 2117–2124.

    Article  Google Scholar 

  • Eifert C, Powers RS (2012) From cancer genomes to oncogenic drivers, tumour dependencies and therapeutic targets. Nature Rev Cancer 12: 572–578.

    Article  Google Scholar 

  • Elmore, S (2007) Apotosis: A review of programmed cell death. Toxic Path 35: 495–516.

    Article  Google Scholar 

  • Eltzchig HK, Carmeliet P (2011) Hypoxia and inflammation. New Engl J Med 364: 656–665.

    Article  Google Scholar 

  • Escoté X and Fajas L (2014) Metabolic adaptation to cancer growth: From the cell to the organism. Cancer Lett: in press. doi: http://dx.doi.org/10.1016/j.canlet.2014.03.034

    Google Scholar 

  • Faubert B, Vincent EE, Poffenberger MC, Jones RG (2014) The AMP-activated protein kinase (AMPK) and cancer: Many faces of a metabolic regulator. Cancer Lett: in press. http://dx.doi.org/10.1016/j.canlet.2014.01.018

    Google Scholar 

  • Fearson ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61: 759–767.

    Article  Google Scholar 

  • Ferreira LMR (2010) Cancer metabolism: The Warburg effect today. Exper Mol Path 89: 372–380.

    Article  Google Scholar 

  • Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: Plasticity and reciprosity. Cell 147: 992–1009.

    Article  Google Scholar 

  • Fullgrabe J, Kavanagh E, Joseph B (2011) Histone oncomodifications. Oncogene 30: 3391–3403.

    Article  Google Scholar 

  • Garraway LA, Lander ES (2013) Lessons from the cancer genome. Cell 153: 17–37.

    Article  Google Scholar 

  • Gorlach A (2014) Hypoxia and reactive oxygen species. In: Melillo G (ed) Hypoxia and cancer, Humana Press/Springer, New York, pp. 65–90.

    Chapter  Google Scholar 

  • Grivennikov SI, Karin M (2010) Inflammation and oncogenesis: A vicious connection. Curr Opin Genet Dev. 20: 65. doi:10.1016/j.gde.2009.11.004

    Article  Google Scholar 

  • Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140: 883–899.

    Article  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57–70.

    Article  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: The next generation. Cell 144: 646–674.

    Article  Google Scholar 

  • Icard P, Lincet H (2012) A global view of the biochemical pathways involved in the regulation of the metabolism of cancer cells. Biochim Biophys Acta 1826: 423–433.

    Google Scholar 

  • Icard P, Poulain L, Lincet H (2012) Understanding the central role of citrate in the metabolism of cancer cells. Biochim Biophys Acta 1825: 111–116.

    Google Scholar 

  • Irmisch A, Huelsken J (2013) Metastasis: New insights into organ-specific extravasation and metastatic niches. Exp Cell Res 319: 1604–1610.

    Article  Google Scholar 

  • Jang M, Kim SS, Lee J (2013) Cancer cell metabolism: Implications for therapeutic targets. Exper Mol Med 45: e45. doi:10.1038/emm.2013.85

    Article  Google Scholar 

  • Ji R-C (2014) Hypoxia and lymphangiogenesis in tumor microenvironment and metastasis. Cancer Lett 346: 6–16.

    Article  Google Scholar 

  • Jinka R, Kapoor R, Pavuluri S, Raj AT, Kumar MJ, Rao L, Pande G (2010) Differential gene expression and clonal selection during cellular transformation induced by adhesion deprivation. BMC Cell Biol 11:93 doi: 10.1186/1471-2121-11-93

    Google Scholar 

  • Jinka R, Kapoor R, Sistla PG, Raj TA, Pande G (2012) Alterations in cell-extracellular matrix interactions during progression of cancers. Internat J Cell Biology 2012: ID 219196. doi:10.1155/2012/219196

    Google Scholar 

  • Johnson C, Warmoes MO, Shen X, Locasale JW (2014) Epigenetics and cancer metabolism. Cancer Lett: in press. doi.org/10.1016/j.canlet.2013.09.043.

    Google Scholar 

  • Kandoth C, McLellan MD, Vandin F et al. (2013) Mutational landscapes and significance across 12 major cancer types. Nature 502: 333–339.

    Article  Google Scholar 

  • Klein CA (2013) Selection and adaptation during metastatic cancer progression. Nature 501: 365–372.

    Article  Google Scholar 

  • Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nature Rev Cancer 11: 325–337.

    Article  Google Scholar 

  • Lawrence MS, Stojanov P, Polak P et al. (2013) Mutational Heterogeneity in cancer and the search for new cancer-associated genes. Nature 499: 214–218.

    Article  Google Scholar 

  • Liang Y, Liu J, Feng Z (2013) The regulation of cellular metabolism by tumor suppressor p53. Cell Biosci 3: 9. doi:10.1186/2045-3701-3-9

    Article  Google Scholar 

  • Liou G-Y and Storz P (2010) Reactive oxygen species in cancer. Free Rad Res 44: 479–496.

    Article  Google Scholar 

  • Loeb LA (1989) Endogenous carcinogenesis: Molecular oncology into the twenty-first century-presidential address Cancer Res 49: 5489–5496.

    Google Scholar 

  • Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: A dynamic niche in cancer progression. J Cell Biol 196: 395–406.

    Article  Google Scholar 

  • Lu W, Ogasawara MA, Huang P (2007) Models of reactive oxygen species in cancer. Drug Disc Today Dis Models 4: 67–73.

    Article  Google Scholar 

  • Mack SC, Witt H, Piro RM et al. (2014)Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506: 445–550.

    Article  Google Scholar 

  • Martinez-Outschoorna UE, Lisanti MP, Sotgiab F (2014) Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Sem Cancer Biol 25: 47–60.

    Article  Google Scholar 

  • Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501: 328–337.

    Article  Google Scholar 

  • Nakajima EC, Van Houten B (2013) Metabolic symbiosis in cancer: Refocusing the Warburg lens. Mol Carcinogen 52: 329–337.

    Article  Google Scholar 

  • Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194: 23–28.

    Article  Google Scholar 

  • Oermann EK, Wu J, Guan K-L, Xiong Y (2012) Alterations in metabolic genes and metabolites in cancer. Sem Cell Devel Biol 23: 370–380.

    Article  Google Scholar 

  • Parker M, Mohankumar KM, Punchihewa C et al. (2014) C11orf95-RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature 506: 451–455.

    Article  Google Scholar 

  • Parsons DW, Jones S, Zhang X et al. (2008) An integrated genome analysis of human glioblastoma multiforme. Science 321: 1807–1812.

    Article  Google Scholar 

  • Pleasance ED, Cheetham RK, Stephens PJ et al. (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463: 191–197.

    Article  Google Scholar 

  • Santos CR, Schulze A (2012) Lipid metabolism in cancer. FEBS J 279: 2610–2623.

    Article  Google Scholar 

  • Schultz GS and Wysocki A (2009) Interactions between extracellular matrix and growth factors. Wound Repair Regen 17: 153–162.

    Article  Google Scholar 

  • Shay JES, Simon MC (2012) Hypoxia-inducible factors: Crosstalk between inflammation and metabolism. Sem Cell Devel Biol 23: 389–394.

    Article  Google Scholar 

  • Shen H and Laird PW (2013) Interplay between the cancer genome and epigenome. Cell 153: 38–55.

    Article  Google Scholar 

  • Soga T (2013) Cancer metabolism: Key players in metabolic reprogramming. Cancer Sci 104: 275–281.

    Article  Google Scholar 

  • Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458: 719–724.

    Article  Google Scholar 

  • Suva ML, Riggi N, Bernstein BE (2013) Epigenetic reprogramming in cancer. Science 339: 1567–1570.

    Article  Google Scholar 

The Cancer Genome Atlas Research Network [see cancergenome.nih.gov]. Nine of the multi-authored papers are listed below

  • McLendon R, Friedman A, Bigner D et al. (2011a) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068.

    Article  Google Scholar 

  • Bell D, Berchuck A, Birrer M et al. (2011b) Integrated genomic analyses of ovarian carcinoma. Nature 474: 609–615.

    Article  Google Scholar 

  • Muzny DM, Bainbridge MN, Chang K et al. (2012a) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487: 330–337.

    Article  Google Scholar 

  • Hammerman PS, Lawrence MS, Voet D et al. (2012b) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489: 519–525.

    Article  Google Scholar 

  • Koboldt DC, Fulton RS, McLellan MD et al. (2012c) Comprehensive molecular portraits of human breast tumors. Nature 490: 61–70.

    Article  Google Scholar 

  • Getz G, Gabriel SB, Cibulskis K et al. (2013a) Integrated genomic characterization of endometrial carcinoma. Nature 497: 67–73.

    Article  Google Scholar 

  • Creighton CJ, Morgan M, Gunaratne PH et al. (2013b) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499: 43–49.

    Article  Google Scholar 

  • Ley TJ, Miller C, Ding L et al. (2013c) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. New Engl J Med 368: 2059–2074.

    Article  Google Scholar 

  • Weinstein JN, Akbani R, Broom BM et al. (2014) Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507: 315–322.

    Article  Google Scholar 

  • Timp W and Feinberg AP (2013) Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nature Rev Cancer 13: 497–510.

    Article  Google Scholar 

  • Tomasetti C, Vogelstein B, Parmigiani G (2013) Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc Natl Acad Sci 110: 1999–2004.

    Article  Google Scholar 

  • Tripathi M, Billet S, Bhowmick NA (2012) Understanding the role of stromal fibroblasts in cancer progression. Call Adhes Migr 6: 231–235.

    Article  Google Scholar 

  • Tymoczko JL, Berg JM, Stryer L (2013) Biochemistry: A short course, 2nd edn. W.H. Freeman and Company, New York.

    Google Scholar 

  • Van Dijk M, Goransson SA, Stromblad S (2013) Cell to extracellular matrix interactions and their reciprocal nature in cancer. Exp Cell Res 319: 1663–1670.

    Article  Google Scholar 

  • Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz, Jr. LA, Kinzler KW (2013) Cancer genome landscapes. Nature 339: 1546–1558.

    Google Scholar 

  • Vogt PK (2012) Retroviral oncogenes: A historical primer. Nature Rev Cancer 12: 639–648.

    Article  Google Scholar 

  • Waldman T and Schneider R (2013) Targeting histone modifications-Epigenetics in cancer. Curr Opin Cell Biol 25: 184–189.

    Article  Google Scholar 

  • Waris G and Ahsan H (2006) Reactive oxygen species: Role in the development of cancer and various chronic conditions. J Carcinogen 5: 14. doi:10.1186/1477-3163-5-14

    Article  Google Scholar 

  • Webb BA, Chimenti M, Jacobson MP, Barber DL (2011) Dysregulated pH: A perfect storm for cancer progression. Nature Rev Cancer 11: 671–677.

    Article  Google Scholar 

  • Weinberg RA (2012) The biology of cancer. Garland Science, New York.

    Google Scholar 

  • Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nature Rev Cancer 11: 393–410.

    Article  Google Scholar 

  • Wu Y, Antony S, Meitzler JL, Doroshow JH (2014) Molecular mechanisms underlying chronic inflammation-associated cancers. Cancer Lett 345: 164–173.

    Article  Google Scholar 

  • Yoshii Y, Furukawa T, Saga T, Fujibayashi (2014) Acetate/acetyl-CoA metabolism associated with cancer fatty acid synthesis: Overview and application. Cancer Lett 347: 204–211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Xu, Y., Cui, J., Puett, D. (2014). Basic Cancer Biology. In: Cancer Bioinformatics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1381-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1381-7_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1380-0

  • Online ISBN: 978-1-4939-1381-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics