Skip to main content

Involvement of Nitric Oxide, Neurotrophins and HPA Axis in Neurobehavioural Alterations Induced by Prenatal Stress

  • Chapter
  • First Online:
Perinatal Programming of Neurodevelopment

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 10))

Abstract

Several studies suggest that negative emotions during pregnancy generate adverse effects on the cognitive, behavioural and emotional development of the descendants. The psychoneuroendocrine pathways involve the transplacentary passage of maternal glucocorticoids in order to influence directly on fetal growth and brain development.

Nitric oxide is a gaseous neurotransmitter that plays an important role in the control of neural activity by diffusing into neurons and participates in learning and memory processes. It has been demonstrated that nitric oxide is involved in the regulation of corticosterone secretion. Thus, it has been found that the neuronal isoform of nitric oxide synthase (nNOS) is an endogenous inhibitor of glucocorticoid receptor (GR) in the hippocampus and that nNOS in the hippocampus may participate in the modulation of hypothalamic–pituitary–adrenal axis activity via GR.

Neurotrophins are a family of secreted growth factors consisting of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3) and NT4. Although initially described in the nervous system, they regulate processes such as cell survival, proliferation and differentiation in several other compartments. It has been demonstrated that the NO–citrulline cycle acts together with BDNF in maintaining the progress of neural differentiation.

In the present chapter, we explore the interrelation between nitric oxide, glucocorticoids and neurotrophins in brain areas that are key structures in learning and memory processes. The participation of this interrelation in the behavioural and cognitive alterations induced in the offspring by maternal stress is also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aid T, Kazantseva A, Piirsoo M, Palm K, Timmusk T (2007) Mouse and rat BDNF gene structure and expression revisted. J Neurosci Res 85:525–535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Angelucci F, Brene S, Mathe AA (2005) BDNF in schizophrenia, depression and corresponding animal models. Mol Psychiatry 10:345–352

    Article  CAS  PubMed  Google Scholar 

  • Araki T, Tanji H, Fujihara K et al (1999) Increases in [3H]FK-506 and [3H]L-NG-nitroarginine binding in the rat brain after nigrostriatal dopaminergic denervation. Metab Brain Dis 14:21–31

    Article  CAS  PubMed  Google Scholar 

  • Bibel M, Barde Y-A (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 14:2919–2937

    Article  CAS  PubMed  Google Scholar 

  • Binder DK, Scharfman HE (2004) Brain-derived neurotrophic factor. Growth Factors 22(3):123−131

    Google Scholar 

  • Blum R, Konnerth A (2005) Neurotrophin-mediated rapid signaling in the central nervous system: mechanisms and functions. Physiology (Bethesda) 20:70–78

    Article  CAS  Google Scholar 

  • Bredt DS, Snyder SH (1994) Nitric oxide: a physiologic messenger molecule. Ann Rev Biochem 63:175–195

    Article  CAS  PubMed  Google Scholar 

  • Capoccia S, Berry A, Bellisario V, Vacirca D, Ortona E, Alleva E, Cirulli F Quality and timing of stressors differentially impact on brain plasticity and neuroendocrine-immune function in mice. Neural Plast. 2013; 2013:971817. doi: 10.1155/2013/971817

    PubMed Central  PubMed  Google Scholar 

  • Chrousos GP, Torpy DJ, Gold PW (1998) Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: clinical implications. Ann Intern Med 129:229–240

    Article  CAS  PubMed  Google Scholar 

  • Colasanti M, Suzuki H (2000 Jul) The dual personality of NO. Trends Pharmacol Sci 21(7):249–252

    Article  CAS  PubMed  Google Scholar 

  • Correia CT, Coutinho AM, Sequeira AF, Sousa IG, Venda LLO, Almeida JP, Abreu RL, Lobo C, Miguel TS, Conroy J, Cochrane L, Gallagher L, Gill M, Ennis S, Oliveira GG, Vicente AM (2010) Increased BDNF levels and NTRK2 gene association suggest a disruption of BDNF/TrkB signaling in autism. Genes Brain Behav 9:841–848

    Article  CAS  PubMed  Google Scholar 

  • Cratty MS, Ward HE, Johnson EA, Azzaro AJ, Birkle DL (1995) Prenatal stress increases corticotropin releasing factor(CRF) content and release in rat amygdala minces. Brain Res 675:297–302

    Article  CAS  PubMed  Google Scholar 

  • Dawson TM, Snyder SH (1994) Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci 14:5147–5159

    CAS  PubMed  Google Scholar 

  • De Bellis MD (2005) The psychobiology of neglect. Child Maltreat 10:150–172

    Article  PubMed  Google Scholar 

  • de Lima MN, Presti-Torres J, Vedana G, Alcalde LA, Stertz L, Fries GR, Roesler R, Andersen ML, Quevedo J, Kapczinski F, Schröder N (2011) Early life stress decreases hippocampal BDNF content and exacerbates recognition memory deficits induced by repeated D-amphetamine exposure. Behav Brain Res 224(1):100–106

    Article  PubMed  Google Scholar 

  • Demyttenaiere K, Nijs P, Evers-Kiebooms F, Konincky PR (1989) The effect of a specific emotion stressor on prolactin, cortisol, and testosterone concentrations in women varies with their trait anxiety. Fertil Steril 52:942–948

    Google Scholar 

  • Dennis KE, Levitt P (2005) Regional expression of brain derived neurotrophic factor (BDNF) is correlated with dynamic patterns of promoter methylation in the developing mouse forebrain. Mol Brain Res 140:1–9

    Article  CAS  PubMed  Google Scholar 

  • Dhobale M, Mehendale S, Pisal V, D’Souza V, Joshi S (2012)Association of brain-derived neurotrophic factor and tyrosine kinase B receptor in pregnancy. Neuroscience 216:31–37

    Article  CAS  PubMed  Google Scholar 

  • Di Monte DAR, Anderson A et al (1997) Inhibition of monoamine oxidase contributes to the protective effect of 7-nitroindazole against MPTP neurotoxicity. J Neurochem 69:1771–1773

    Article  CAS  PubMed  Google Scholar 

  • Edwards TM, Rickard NS (2007) New perspectives on the mechanisms through which nitric oxide may affect learning and memory processes. Neurosci Biobehav Rev 31(3):413–425. (Epub 2006 Dec 26)

    Article  CAS  PubMed  Google Scholar 

  • Feil R, Hofmann F, Kleppisch T (2005) Function of cGMP-dependent protein kinases in the nervous system. Rev Neurosci 16:23–41

    CAS  PubMed  Google Scholar 

  • Feil R, Kleppisch T (2008) NO/cGMP-dependent modulation of synaptic transmission. Handb Exp Pharmacol 184:529–605

    Article  CAS  PubMed  Google Scholar 

  • Fride E, Dan Y, Gavish M, Weinstock M (1985) Prenatal stress impairs maternal behavior in a conflict situation and reduces hippocampal benzodiazepine receptors. Life Sci 36(22):2103–2109

    Article  CAS  PubMed  Google Scholar 

  • Fumagalli F, Molteni R, Racagni G, Riva MA (2007) Stress during development: impact on neuroplasticity and relevance to psychopathology. Prog Neurobiol 81:197–217

    Article  PubMed  Google Scholar 

  • Hopper RA, Garthwaite J (2006) Tonic and phasic nitric oxide signals in hippocampal long-term potentiation. J Neurosci 26:11513–11521

    Article  CAS  PubMed  Google Scholar 

  • Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev. Neurosci 24:677–736

    CAS  Google Scholar 

  • Jeanneteau FD, Lambert WM, Ismaili N, Bath KG, Lee FS, Garabedian MJ, Chao MV (2012) BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus. Proc Natl Acad Sci U S A 109:1305–1310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaffman A, Meaney MJ (2007) Neurodevelopmental sequelae of postnatal maternal care in rodents. Clinical and research implications of molecular insights. J Child Psychol Psychiatry 48:224–244

    Article  PubMed  Google Scholar 

  • Kang H, Schuman EM (1995) Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267(5204):1658–1662

    Article  CAS  PubMed  Google Scholar 

  • Kawamura K, Kawamura N, Kumazawa Y, Kumagai J, Fujimoto T, Tanaka T (2011 Mar) Brain-derived neurotrophic factor/tyrosine kinase B signaling regulates human trophoblast growth in an in vivo animal model of ectopic pregnancy. Endocrinology 152(3):1090–1100. doi: 10.1210/en.2010-1124. (Epub 2011 Jan 14)

    Article  CAS  PubMed  Google Scholar 

  • Kawamura K, Kawamura N, Sato W, Fukuda J, Kumagai J, Tanaka T (2009 Aug) Brain-derived neurotrophic factor promotes implantation and subsequent placental development by stimulating trophoblast cell growth and survival. Endocrinology 150(8):3774–3782. doi: 10.1210/en.2009-0213. (Epub 2009 Apr 16)

    Article  CAS  PubMed  Google Scholar 

  • Kinnunen AK, Koenig JI, Bilbe G (2003 Aug) Repeated variable prenatal stress alters pre- and postsynaptic gene expression in the rat frontal pole. J Neurochem 86(3):736–748

    Article  CAS  PubMed  Google Scholar 

  • Kiss JP, Vizi ES (2001) Nitric oxide: a novel link between synaptic and nonsynaptic transmission. Trends Neurosci 24:211–215

    Article  CAS  PubMed  Google Scholar 

  • Kodomari I, Wada E, Nakamura S, Wada K (2009 Feb) Maternal supply of BDNF to mouse fetal brain through the placenta. Neurochem Int 54(2):95–98

    Article  CAS  PubMed  Google Scholar 

  • Koenig JI, Elmer GI, Shepard PD, Lee PR, Mayo C, Joy B, Hercher E, Brady DL (2005) Prenatal exposure to a repeated variable stress paradigm elicits behavioral and neuroendocrinological changes in the adult offspring: potential relevance to schizophrenia. Behav Brain Res 156(2):251–261

    Article  PubMed  Google Scholar 

  • Korsching S (1993) The neurotrophic factor concept: a reexamination. J Neurosci 13(7):2739–2748

    CAS  PubMed  Google Scholar 

  • Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T (1995 Sep 12) Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci U S A 92(19):8856–8860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee BE, Ha M, Park H, Hong YC, Kim Y, Kim YJ, Ha EH (2011) Psychosocial work stress during pregnancy and birthweight. Paediatr Perinat Epidemiol 25(3):246–254

    Article  PubMed  Google Scholar 

  • Lee PR, Brady DL, Shapiro RA, Dorsa DM, Koenig JI (2007) Prenatal stress generates deficits in rat social behavior: reversal by oxytocin. Brain Res 2 1156:152–167

    Article  CAS  Google Scholar 

  • Lee S, Blanton CA, Rivier C (2003 Jun) Prenatal ethanol exposure alters the responsiveness of the rat hypothalamic-pituitary-adrenal axis to nitric oxide. Alcohol Clin Exp Res 27(6):962–969

    Article  CAS  PubMed  Google Scholar 

  • Lipton SA (1999) Neuronal protection and destruction by NO. Cell Death Differ 6:943–951

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Mori A (1999) Stress, aging, and brain oxidative damage. Neurochem Res 24:1479–1497

    Article  CAS  PubMed  Google Scholar 

  • Liu Q-R, Lu L, Zhu X-G, Gong J-P, Shaham Y, Uhl GR (2006) Rodent BDNF genes, novel promoters, novel splice variants and regulation by cocaine. Brain Res 1067:1–12

    Article  CAS  PubMed  Google Scholar 

  • Lonart G, Johanson KM (1992) Inhibitory effects of nitric oxide on the uptake of [3H]dopamine and [3H] glutamate by striatal synaptosomes. J Neurochem 63:2108–2117

    Article  Google Scholar 

  • Lopez-Figueroa MO, Itoi K, Watson SJ (1998) Regulation of nitric oxide synthase messenger RNA expression in the rat hippocampus by glucocorticoids. Neuroscience 87:439–446

    Article  CAS  PubMed  Google Scholar 

  • Maccari S, Darnaudery M, Morley-Fletcher S, Zuena AR, Cinque C, Van Reeth O (2003) Prenatal stress and long-term consequences: implications of glucocorticoid hormones. Neurosci Biobehav Rev 27(1–2):119–127

    Article  CAS  PubMed  Google Scholar 

  • Marletta MA (1994) Nitric oxide synthase: aspects concerning structure and catalysis. Cell 78:927–930

    Article  CAS  PubMed  Google Scholar 

  • Maur D, Romero C, Palumbo M, Genaro A, Zorrilla Zubilete M (2007) Alterations in behavioral learning due to prenatal stress in rats. Biocell 31:100

    Google Scholar 

  • Maur DG, Romero CB, Burdet B, Palumbo ML, Zorrilla-Zubilete MA (2012 Dec) Prenatal stress induces alterations in cerebellar nitric oxide that are correlated with deficits in spatial memory in rat’s offspring. Neurochem Int 61(8):1294–1301

    Article  CAS  PubMed  Google Scholar 

  • Mayeur S, Lukaszewski MA, Breton C, Storme L, Junien C, Vieau D, Lesage J (2011) BDNF in feto-placental development. Med Sci (Paris) 27(3):251–252

    Article  Google Scholar 

  • McEwen BS (1998) Stress, adaptation, and disease. Allostasis and allostatic load. Ann N Y Acad Sci 1;840:33–44

    Article  CAS  Google Scholar 

  • McEwen BS (1999) Stress and hippocampal plasticity. Annu Rev Neurosci 22:105–122. (Review)

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS (2007 Jul) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87(3):873–904. (Review)

    Article  PubMed  Google Scholar 

  • McKay SE, Purcell AL, Carew TJ (1999) Regulation of synaptic function by neurotrophic factors in vertebrates and invertebrates: implications for development and learning. Learn Mem 6(3):193–215

    CAS  PubMed  Google Scholar 

  • Miller SD, Mueller E, Gifford GW, Kinsley CH (1999 Jun 29) Prenatal stress-induced modifications of neuronal nitric oxide synthase in amygdala and medial preoptic area. Ann N Y Acad Sci 877:760–763

    Article  CAS  PubMed  Google Scholar 

  • Miranda KM, Espey MG, Wink DA (2000) A discussion of the chemistry of oxidative and nitrosative stress in cytotoxicity. J Inorg Biochem 79:237–240

    Article  CAS  PubMed  Google Scholar 

  • Mizuno M, Yamada K, Olariu A, Nawa H, Nabeshima T (2000) Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J Neurosci 20(18):7116–7121

    CAS  PubMed  Google Scholar 

  • Moncada S, Higgs A (1993) The L-arginine-nitric oxide pathway. New Engl J Med 329:2002–2012

    Article  CAS  PubMed  Google Scholar 

  • Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  • Mueller BR, Bale TL (2006) Impact of prenatal stress on long term body weight is dependent on timing and maternal sensitivity. Physiol Behav 88:605–614

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu Y, Kurosaki R, Watanabe H et al (2003) Cerebral alterations in a MPTP-mouse model of Parkinson’s disease-an immunocytochemical study. J Neural Transm 110:1129–1144

    Article  CAS  PubMed  Google Scholar 

  • Murmu MS et al (2006) Changes of spine density and dendritic complexity in the prefrontal cortex in offspring of mothers exposed to stress during pregnancy. Eur J Neurosci 24:1477–1487

    Article  PubMed  Google Scholar 

  • Nair A, Vadodaria KC, Banerjee SB, Benekareddy M, Dias BG, Duman RS, Vaidya VA (2007) Stressor-specific regulation of distinct brain-derived neurotrophic factor transcripts and cyclic AMP response element-binding protein expression in the postnatal and adult rat hippocampus. Neurophsychopharmacol 32:1504–1519

    Article  CAS  Google Scholar 

  • Nathan C, Xie QW (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78:915–918

    Article  CAS  PubMed  Google Scholar 

  • Noble KG, Tottenham N, Casey BJ (2005) Neuroscience perspectives on disparities in school readiness and cognitive achievement. Future Child 15:71–89

    Article  PubMed  Google Scholar 

  • Numakawa T, Kumamaru E, Adachi N, Yagasaki Y, Izumi A, Kunugi H (2010) Glucocorticoid receptor interaction with TrkB promotes BDNF-triggered PLC-gamma signaling for glutamate release via a glutamate transporter. Proc Natl Acad Sci U S A 106(2):647–652

    Article  Google Scholar 

  • Palumbo ML, Fosser NS, Rios H, Zorrilla Zubilete MA, Guelman LR, Cremaschi GA, Genaro AM (2007) Loss of hippocampal neuronal nitric oxide synthase contributes to the stress-related deficit in learning and memory. J Neurochem 102(1):261–274

    Article  CAS  PubMed  Google Scholar 

  • Patin V, Lordi B, Vincent A, Caston J (2005) Effects of prenatal stress on anxiety and social interactions in adult rats. Brain Res Dev Brain Res 160(2):265–274

    Article  CAS  PubMed  Google Scholar 

  • Patterson SL, Abel T, Deuel TA, Martin KC, Rose JC, Kandel ER (1996) Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16(6):1137–1145

    Article  CAS  PubMed  Google Scholar 

  • Patterson SL, Grover LM, Schwartzkroin PA, Bothwell M (1992) Neurotrophin expression in rat hippocampal slices: a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron 9(6):1081–1088

    Article  CAS  PubMed  Google Scholar 

  • Petraglia F, Florio P, Nappi C, Genazzani AR (1996) Peptide signaling in human placenta and membranes: autocrine, paracrine, and endocrine mechanisms. Endocr Rev 17:156–186

    CAS  PubMed  Google Scholar 

  • Pezet S, McMahon SB (2006) Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 29:507–538

    Article  CAS  PubMed  Google Scholar 

  • Pittenger C, Duman RS (2007) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33:88–109

    Article  PubMed  Google Scholar 

  • Pruunsild P, Kazantseva A, Aid T, Palm K, Timmusk T (2007) Dissecting the human BDNF locus: Bidirectional transcription, complex splicing, and multiple promoters. Genomics 90(3):397–406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rehn AE, Rees SM (2005) Investigating the neurodevelopmental hypothesis of schizophrenia. Clin Exp Pharmacol Physiol 32(9):687–696. (Review)

    Article  CAS  PubMed  Google Scholar 

  • Roth TL, Lubin FD, Funk AJ, Sweat D (2009) Lasting epigenetic influence of early-life adversity on the BDNF Gene. Biol Pshychiatry 65:760–769

    Article  CAS  Google Scholar 

  • Ruiz R, Avant C (2005) Effects of maternal prenatal stress on infant outcomes. ANS Adv Nurs Sci 28:345–355

    Article  PubMed  Google Scholar 

  • Sathanoori M, Dias BG, Nair AR, Banjerjee SB, Tole S, Vaidya VA (2004) Differential regulation of multiple brain-derived neurotrophic factor transcripts in the postnatal and adult rat in hippocampus during development, and in response to kitinate administration. Brain Res Mol Brain Res 130:170–177

    Article  CAS  PubMed  Google Scholar 

  • Schinder AF, Poo M (2000) The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci 23:639–645

    Article  CAS  PubMed  Google Scholar 

  • Schmidt HD, Shelton RC, Duman RS (2011) Functional biomarkers of depression: diagnosis, treatment, and pathophysiology. Neuropsychopharmacology 36(12):2375–2394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schulz JB, Matthews RT, Muqit MMK (1995) Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP induced neurotoxicity in mice. J Neurochem 64:936–939

    Article  CAS  PubMed  Google Scholar 

  • Steckler T (2001) The molecular neurobiology of stress evidence from genetic and epigenetic models. Behav Pharmacol 12:381–427

    Article  CAS  PubMed  Google Scholar 

  • Stern JE (2004 Feb–Apr) Nitric oxide and homeostatic control: an intercellular signalling molecule contributing to autonomic and neuroendocrine integration? Prog Biophys Mol Biol 84(2–3):197–215

    Article  CAS  PubMed  Google Scholar 

  • Sug-Tang A, Bocking AD, Brooks AN, Hooper S, White SE, Jacobs RA, Fraher LJ, Challis JR (1992) Effects of restricting uteroplacental blood flow on concentrations of corticotrophin-releasing hormone, adrenocorticotrophin, cortisol, and prostaglandin E2 in the sheep fetus during late pregnancy. Can J Physiol Pharmacol 70:1396–1402

    Article  CAS  PubMed  Google Scholar 

  • Sullivan BM, Wong S, Schuman EM (1997) Modification of hippocampal synaptic proteins by nitric oxide-stimulated ADP ribosylation. Learn Mem 3:414–424

    Article  CAS  PubMed  Google Scholar 

  • Tapia-Arancibia L, Rage F, Givalois L, Arancibia S (2004) Physiology of BDNF: focus on hypothalamic function. Front Neuroendocrin 25:77–107

    Article  CAS  Google Scholar 

  • Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296(5575):1991–1995

    Article  CAS  PubMed  Google Scholar 

  • Teicher MH, Andersen SL, Polcari A, Anderson CM, Navalta CP, Kim DM (2003) The neurobiological consequences of early stress and childhood maltreatment. Neurosci Biobehav Rev 87:873–904

    Google Scholar 

  • Vallee M et al (1997) Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: correlation with stress-induced corticosterone secretion. J Neurosci 17:2626–2636

    CAS  PubMed  Google Scholar 

  • Vallee M et al (1999) Long-term effects of prenatal stress and postnatal handling on age-related glucocorticoid secretion and cognitive performance: a longitudinal study in the rat. Eur J Neurosci 11:2906–2916

    Article  CAS  PubMed  Google Scholar 

  • Van den Hove DL, Steinbusch H, Scheepens A, Van deBW, Kooiman L, Boosten B, Prickaerts J, Blanco C (2005) Prenatal stress and neonatal rat brain development. Dev Neurosci 27(5):313–320

    Article  PubMed  Google Scholar 

  • Van den Hove DL, Kenis G, Brass A, Opstelten R, Rutten BP, Bruschettini M, Blanco CE, Lesch KP, Steinbusch HW, Prickaerts J (2012) Vulnerability versus resilience to prenatal stress in male and female rats; implications from gene expression profiles in the hippocampus and frontal cortex. Eur Neuropsychopharmacol. doi:10.1016/j.euroneuro.2012.09.011

    Google Scholar 

  • Van Reeth O, Koehl M, Weibel L, Le Moal M, Maccari S (1998) Effects of prenatal stress on circadian synchronization in adult rats. J Sleep Res 7(Suppl. 2):287

    Google Scholar 

  • Wadhwa PD, Dunkel-Schetter C, Chicz-DeMet A, Porto M, Sandman CA (1996) Prenatal psychosocial factors and the neuroendocrine axis in human pregnancy. Psychosomat Med 58:432–446

    Article  CAS  Google Scholar 

  • Weinstock M (2001) Alterations induced by gestational stress in brain morphology and behaviour of the offspring. Prog Neurobiol 65(5):427–451

    Article  CAS  PubMed  Google Scholar 

  • Whitnall MH (1993 May) Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Prog Neurobiol 40(5):573–629. (Review)

    Article  CAS  PubMed  Google Scholar 

  • Wink DA, Vodovotz Y, Grisham MB et al (1999) Antioxidant effects of nitric oxide. Methods Enzymol 301:413–424

    Article  CAS  PubMed  Google Scholar 

  • Wong EY, Herbert J (2006) Raised circulating corticosterone inhibits neuronal differentiation of progenitor cells in the adult hippocampus. Neuroscience 137(1):83–92. (Epub 2005 Nov 10)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu A, Ying Z, Gomez-Pinilla F (2004) Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J Neurotrauma 21(10):1457–1467

    Article  PubMed  Google Scholar 

  • Wu J, Song TB, Li YJ, He KS, Ge L, Wang LR (2007) Prenatal restraint stress impairs learning and memory and hippocampal PKCbeta1 expression and translocation in offspring rats. Brain Res 13(1141):205–213

    Article  Google Scholar 

  • Zorrilla-Zubilete MA, Maur DG, Palumbo ML, Genaro AM (2010) Role of nitric oxide signaling pathways in brain injuries. Curr Chem Biol 4:250–261. (Bentham Science Publishers Ltd.)

    CAS  Google Scholar 

  • Zuena AR, Mairesse J, Casolini P, Cinque C, Alemà GS, Morley-Fletcher S, Chiodi V, Spagnoli LG, Gradini R, Catalani A, Nicoletti F, Maccari S (2008) Prenatal restraint stress generates two distinct behavioral and neurochemical profiles in male and female rats. PLoS One 3(5):e2170

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. Zorrilla-Zubilete .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maur, D., Pascuan, C., Genaro, A., Zorrilla-Zubilete, M. (2015). Involvement of Nitric Oxide, Neurotrophins and HPA Axis in Neurobehavioural Alterations Induced by Prenatal Stress. In: Antonelli, M. (eds) Perinatal Programming of Neurodevelopment. Advances in Neurobiology, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1372-5_4

Download citation

Publish with us

Policies and ethics