Skip to main content

Perinatal Administration of Aromatase Inhibitors in Rodents as Animal Models of Human Male Homosexuality: Similarities and Differences

  • Chapter
  • First Online:

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 10))

Abstract

In this chapter we briefly review the evidence supporting the existence of biological influences on sexual orientation. We focus on basic research studies that have affected the estrogen synthesis during the critical periods of brain sexual differentiation in male rat offspring with the use of aromatase inhibitors, such as 1,4,6-androstatriene-3,17 (ATD) and letrozole. The results after prenatal and/or postnatal treatment with ATD reveal that these animals, when adults, show female sexual responses, such as lordosis or proceptive behaviors, but retain their ability to display male sexual activity with a receptive female. Interestingly, the preference and sexual behavior of these rats vary depending upon the circadian rhythm.

Recently, we have established that the treatment with low doses of letrozole during the second half of pregnancy produces male rat offspring, that when adults spend more time in the company of a sexually active male than with a receptive female in a preference test. In addition, they display female sexual behavior when forced to interact with a sexually experienced male and some typical male sexual behavior when faced with a sexually receptive female. Interestingly, these males displayed both sexual behavior patterns spontaneously, i.e., in absence of exogenous steroid hormone treatment. Most of these features correspond with those found in human male homosexuals; however, the “bisexual” behavior shown by the letrozole-treated rats may be related to a particular human population. All these data, taken together, permit to propose letrozole prenatal treatment as a suitable animal model to study human male homosexuality and reinforce the hypothesis that human sexual orientation is underlined by changes in the endocrine milieu during early development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albert DJ, Jonik RH, Gorzalka BB et al (1991) Serum estradiol concentration required to maintain body weight, attractivity, proceptivity, and receptivity in the ovariectomized female rat. Physiol Behav 49:225–231.

    CAS  PubMed  Google Scholar 

  • Allen LS, Gorski RA (1992) Sexual orientation and the size of the anterior commissure in the human brain. Proc Natl Acad Sci 89:7199–7202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Amateau SK, Alt JJ, Stamps CL et al (2004) Brain estradiol content in newborn rats: sex differences, regional heterogeneity, and possible de novo synthesis by the female telencephalon. Endocrinology 145:2906–2917

    CAS  PubMed  Google Scholar 

  • Bagley C, Tremblay P (1998) On the prevalence of homosexuality and bisexuality, in a random community survey of 750 men aged 18 to 27. J Homosex 36:1–18

    CAS  PubMed  Google Scholar 

  • Bailey JM, Willerman L, Parks C (1991) A test of the maternal stress theory of human male homosexuality. Arch Sex Behav 20:277–293

    CAS  PubMed  Google Scholar 

  • Bailey JM, Pillard RC, Dawood K et al (1999) A family history study of male sexual orientation using three independent samples. Behav Genet 29:79–86

    CAS  PubMed  Google Scholar 

  • Bakker J, Brand T, van Ophemert J et al (1993a) Hormonal regulation of adult partner preference behavior in neonatally ATD-treated male rats. Behav Neurosci 107:480–487

    CAS  PubMed  Google Scholar 

  • Bakker J, van Ophemert J, Slob AK (1993b) Organization of partner preference and sexual behavior and its nocturnal rhythmicity in male rats. Behav Neurosci 107:1049–1058

    CAS  PubMed  Google Scholar 

  • Bakker J, van Ophemert J, Timmerman MA et al (1995) Endogenous reproductive hormones and nocturnal rhythms in partner preference and sexual behavior of ATD-treated male rats. Neuroendocrinology 62:396–405.

    CAS  PubMed  Google Scholar 

  • Balthazar J (ed) (2012) The biology of homosexuality. Oxford University Press, New York

    Google Scholar 

  • Bao AM, Swaab DF (2011) Sexual differentiation of the human brain: relation to gender identity, sexual orientation and neuropsychiatric disorders. Front Neuroendocrinol 32:214–226

    PubMed  Google Scholar 

  • Baum MJ (2006) Mammalian animal models of psychosexual differentiation: when is ‘translation’ to the human situation possible? Horm Behav 50:579–588

    PubMed  Google Scholar 

  • Beach FA (1942) Male and female mating behavior in prepuberally castrated female rats treated with androgens. Endocrinology 31: 373–378

    Google Scholar 

  • Beach FA (1976) Sexual attractivity, proceptivity, and receptivity in female mammals. Horm Behav 7:105–138

    CAS  PubMed  Google Scholar 

  • Blanchard R, Bogaert AF (1996a). Homosexuality in men and number of older brothers. Am J Psychiatry 153:27–31

    CAS  PubMed  Google Scholar 

  • Blanchard R, Bogaert AF (1996b) Biodemographic comparisons of homosexual and heterosexual men in the Kinsey Interview Data. Arch Sex Behav 25:551–579

    CAS  PubMed  Google Scholar 

  • Blanchard R, Klassen P (1997) H-Y antigen and homosexuality in men. J Theor Biol 185:373–378

    CAS  PubMed  Google Scholar 

  • Bogaert AF 2010 Physical development and sexual orientation in men and women: an analysis of NATSAL-2000. Arch Sex Behav 39:110–116

    PubMed  Google Scholar 

  • Bogaert AF, Blanchard R (1996) Physical development and sexual orientation in men: height, weight, and age of puberty differences. Pers Individ Dif 21:77–84

    Google Scholar 

  • Bogaert AF, Friesen C, Klentrou P (2002) Age of puberty and sexual orientation in a national probability sample. Arch Sex Behav 31:73–81

    PubMed  Google Scholar 

  • Bogaert AF, Skorska M (2011) Sexual orientation, fraternal birth order, and the maternal immune hypothesis: a review. Front Neuroendocrinol 32:247–254

    PubMed  Google Scholar 

  • Booth JE (1978) Effects of the aromatization inhibitor androst-4-ene-3,6,17-trione on sexual differentiation induced by testosterone in the neonatally castrated rat. J Endocrinol 79:69–76

    CAS  PubMed  Google Scholar 

  • Brand T, Slob AK (1991) Neonatal organization of adult partner preference behavior in male rats. Physiol Behav 49:107–111

    CAS  PubMed  Google Scholar 

  • Brand T, Kroonen J, Mos J et al (1991) Adult partner preference and sexual behavior of male rats affected by perinatal endocrine manipulations. Horm Behav 25:323–341

    CAS  PubMed  Google Scholar 

  • Camperio-Ciani A, Corna F, Capiluppi C (2004) Evidence for maternally inherited factors favouring male homosexuality and promoting female fecundity. Proc Biol Sci 271:2217–2221

    PubMed Central  PubMed  Google Scholar 

  • Camperio-Ciani A, Fontanesi L, Lemmola F et al (2012) Factors associated with higher fecundity in female maternal relatives of homosexual men. J Sex Med 9:2878–2887

    PubMed  Google Scholar 

  • Cibrian-Llanderal T, Rosas-Aguilar V, Triana-Del RR et al (2012) Enhaced D2-type receptor activity facilitates the development of conditioned same-sex partner preference in male rats. Pharmacol Biochem Behav 102:177–183

    CAS  PubMed  Google Scholar 

  • Clark AS, Kelton MC, Guarraci FA et al (2004) Hormonal status and test condition, but not sexual experience, modulate partner preference in female rats. Horm Behav 45:314–323.

    CAS  PubMed  Google Scholar 

  • Clemens LG, Gladue BA (1978) Feminine sexual behavior in rats enhanced by prenatal inhibition of androgen aromatization. Horm Behav 11:190–201

    CAS  PubMed  Google Scholar 

  • Clemens LG, Shryne J, Gorski RA (1970) Androgen and development of progesterone responsiveness in male and female rats. Physiol Behav 5:673–678

    CAS  PubMed  Google Scholar 

  • Davis PG, Chaptal CV, McEwen BS (1979) Independence of the differentiation of masculine and feminine sexual behavior in rats. Horm Behav 12:12–19

    CAS  PubMed  Google Scholar 

  • de Jonge FH, Eerland EM, van de Poll NE (1986) The influence of estrogen, testosterone and progesterone on partner preference, receptivity and proceptivity. Physiol Behav 37:885–891

    CAS  PubMed  Google Scholar 

  • de Jonge FH, Muntjewerff, Louwerse AL et al (1988) Sexual behavior and sexual orientation of the female rat after hormonal treatment during various stages of development. Horm Behav 22:100–115

    PubMed  Google Scholar 

  • Diamond M (1993) Homosexuality and bisexuality in different populations. Arch Sex Behav 22:291–310

    CAS  PubMed  Google Scholar 

  • Diamond M, Sigmundson HK (1997) Sex reassignment at birth: long-term review and clinical implications. Arch Pediatr Adolesc Med Mar 151:298–304

    CAS  Google Scholar 

  • Dörner G, Geier T, Ahrens L et al (1980) Prenatal stress as possible aetiogenetic factor of homosexuality in human males. Endokrinologie 75:365–368

    PubMed  Google Scholar 

  • Dörner G, Schenk B, Schmiedel B et al (1983) Stressful events in prenatal life of bi- and homosexual men. Exp Clin Endocrinol 81:83–87

    PubMed  Google Scholar 

  • Dworkin SH (2001) Treating the bisexual client. J Clin Psychol 57:671–680

    CAS  PubMed  Google Scholar 

  • Ehrhardt AA, Meyer-Bahlburg HF (1981) Effects of prenatal hormones on gender-related behavior. Science 211:1312–1318

    CAS  PubMed  Google Scholar 

  • Ehrhardt AA, Meyer-Bahlburg HF, Rosen LR et al (1985) Sexual orientation after prenatal exposure to exogenous estrogen. Arch Sex Behav 14:57–77

    CAS  PubMed  Google Scholar 

  • Eliason M (1997) The prevalence and nature of biphobia in heterosexual undergraduate students. Arch Sex Behav 26:317–326

    CAS  PubMed  Google Scholar 

  • Eliason M (2001) Bi-negativity: the stigma facing bisexual men. In Brett B, Steinman E (eds) Bisexuality in the lives of men: facts and fictions, 1st edn. Haworth, Binghamton, pp 137–154

    Google Scholar 

  • Ellis L, Ames MA (1987) Neurohormonal functioning and sexual orientation: a theory of homosexuality-heterosexuality. Psychol Bull 101:233–258

    CAS  PubMed  Google Scholar 

  • Ellis L, Cole-Harding S (2001) The effects of prenatal stress, and of prenatal alcohol and nicotine exposure, on human sexual orientation. Physiol Behav 74:213–226

    CAS  PubMed  Google Scholar 

  • Ellis L, Ames MA, Peckham W et al (1988) Sexual orientation of human offspring may be altered by severe maternal stress during pregnancy. J Sex Res 25:152–157

    Google Scholar 

  • Erskine MS (1989) Solicitation behavior in the estrous female rat: a review. Horm Behav 23:473–502

    CAS  PubMed  Google Scholar 

  • Fausto-Sterling A (1995) Animals models for the development of human sexuality: a critical evaluation. J Homosex 28:217–236

    CAS  PubMed  Google Scholar 

  • Feder HH, Whalen RE (1965) Feminine behavior in neonatally castrated and estrogen-treated male rats. Science 147:306–307

    Google Scholar 

  • Fleming A, Vilain E (2005) The endless quest for sex determination genes. Clin Genet 67:15–25.

    CAS  PubMed  Google Scholar 

  • Gazzaniga MS (2000) Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain 123:1293–1326

    PubMed  Google Scholar 

  • Gerardin DC, Pereira OC (2002) Reproductive changes in male rats treated perinatally with an aromatase inhibitor. Pharmacol Biochem Behav 71:301–315

    CAS  PubMed  Google Scholar 

  • Geschwind N, Galaburda AM (1985) Cerebral lateralization: biological mechanisms, associations, and pathology: I. A hypothesis and a program for research. Arch Neurol 42:428–459

    CAS  PubMed  Google Scholar 

  • Gilbert AN, Wysocki CJ (1992) Hand preference and age in the United States. Neuropsychologia 30:601–608

    CAS  PubMed  Google Scholar 

  • Gooren L (1986) The neuroendocrine response of luteinizing hormone to estrogen administration in heterosexual, homosexual, and transsexual subjects. J Clin Endocrinol Metab 63:583–588

    CAS  PubMed  Google Scholar 

  • Gooren L (2006) The biology of human psychosexual differentiation. Horm Behav 50:589–601.

    CAS  PubMed  Google Scholar 

  • Hamer DH, Hu S, Magnuson VL et al (1993) A linkage between DNA markers on the X chromosome and male sexual orientation. Science 261:321–327

    CAS  PubMed  Google Scholar 

  • Hendricks SE (1969) Influence of neonatally administered hormones and early gonadectomy on rats’ sexual behavior. J Comp Physiol Psychol 69: 408–413.

    CAS  PubMed  Google Scholar 

  • Hendricks SE, Graber B, Rodriguez-Sierra JF (1989) Neuroendocrine responses to exogenous estrogen: no differences between heterosexual and homosexual men Psychoneuroendocrinology 14:177–185

    CAS  PubMed  Google Scholar 

  • Henley CL, Nunez AA, Clemens LG (2010) Exogenous androgen during development alters adult partner preference and mating behavior in gonadally intact male rats Horm Behav 57:488–495

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holtzen DW (1994) Handedness and sexual orientation. J Clin Exp Neuropsychol 16:702–712

    CAS  PubMed  Google Scholar 

  • Houtsmuller EJ, Brand T, de Jonge FH et al (1994) SDN-POA volume, sexual behavior, and partner preference of male rats affected by perinatal treatment with ATD. Physiol Behav 56:535–541.

    CAS  PubMed  Google Scholar 

  • Hu S, Pattatucci AM, Patterson C et al (1995) Linkage between sexual orientation and chromosome Xq28 in males but not in females. Nat Genet 11:248–256

    CAS  PubMed  Google Scholar 

  • Lemmola F, Camperio-Ciani A (2009) New evidence of genetic factors influencing sexual orientation in men: female fecundity increase in the maternal line. Arch Sex Behav 38:393–399

    Google Scholar 

  • Jost A, Vigier B, Prépin J et al (1973) Studies on sex differentiation in mammals. Recent Prog Horm Res 29:1–41

    CAS  PubMed  Google Scholar 

  • King M, Green J, Osborn DP et al (2005) Family size in white gay and heterosexual men. Arch Sex Behav 34:117–122

    PubMed  Google Scholar 

  • Kinnunen LH, Moltz H, Metz J et al (2004) Differential brain activation in exclusively homosexual and heterosexual men produced by the selective serotonin reuptake inhibitor, fluoxetine. Brain Res 1024:251–254

    CAS  PubMed  Google Scholar 

  • Kinsey AC, Pomery WB, Martin CE (eds) (1948) Sexual behavior in the human male. Saunders, Philadelphia

    Google Scholar 

  • Kobayasy T, Shirai M, Sakaue M et al (2009) Effects of maternal exposure to low doses of DES on testicular steroidogenesis and spermatogenesis in male rat offspring. J Reprod Dev 55:629—637

    Google Scholar 

  • Kolodny RC, Masters WH, Hendryx J et al (1971) Plasma testosterone and semen analysis in male homosexuals. N Engl J Med 285:1170–1174

    CAS  PubMed  Google Scholar 

  • Kolodny RC, Jacobs LS, Masters WH et al (1972) Plasma gonadotrophins and prolactin in male homosexuals. Lancet 2:18–20

    CAS  PubMed  Google Scholar 

  • Kruijver FP, Fernández-Guasti A, Fodor M et al (2001) Sex differences in androgen receptors of the human mamillary bodies are related to endocrine status rather than to sexual orientation or transsexuality. J Clin Endocrinol Metab 86:818–827

    CAS  PubMed  Google Scholar 

  • Kühnemann S, Brown TJ, Hochberg RB et al (1995) Sexual differentiation of estrogen receptor concentrations in the rat brain: effects of neonatal testosterone exposure. Brain Res 691:229–234

    PubMed  Google Scholar 

  • Lalumière ML, Blanchard R, Zucker KJ (2000) Sexual orientation and handedness in men and women: a meta-analysis. Psychol Bull 126:575–592

    PubMed  Google Scholar 

  • Larsson K (1979) Features of the neuroendocrine regulation of masculine sexual behavior. In Beyer C (ed) Endocrine control of sexual behavior, 1st edn. Raven, New York, pp 77–163

    Google Scholar 

  • Lee PA (1980) Normal ages of pubertal events among American males and females. J Adolesc Health Care 1:26–29

    CAS  PubMed  Google Scholar 

  • Lenz KM, Nugent BM, McCarthy MM (2012) Sexual differentiation of the rodent brain: dogma and beyond. Front Neurosci 6:1–13

    Google Scholar 

  • Lephart ED (1996) A review of brain aromatase cytochrome P450. Brain Res Brain Res Rev 22:1–26

    CAS  PubMed  Google Scholar 

  • LeVay S (1991) A difference in hypothalamic structure between heterosexual and homosexual men. Science 253:1034–1037

    CAS  PubMed  Google Scholar 

  • LeVay S (ed) (2011) Gay straight, and the reason why: the science of sexual orientation. Oxford University Press, New York

    Google Scholar 

  • Lindesay J (1987) Laterality shift in homosexual men. Neuropsychologia 25:965–969

    Google Scholar 

  • Lippa RA (2003) Handedness, sexual orientation, and gender-related personality traits in men and women. Arch Sex Behav 32:103–114

    PubMed  Google Scholar 

  • Macke JP, Hu N, Hu S et al (1993) Sequence variation in the androgen receptor gene is not a common determinant of male sexual orientation. Am J Hum Genet 53:844–852

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manning A, McGill TE (1974) Neonatal androgen and sexual behavior in female house mice. Horm Behav 5:19–31.

    CAS  PubMed  Google Scholar 

  • Manning JT, Scutt D, Wilson J et al (1998) The ratio of 2nd to 4th digit length: a predictor of sperm numbers and concentrations of testosterone, luteinizing hormone and oestrogen. Hum Reprod 13:3000–3004

    CAS  PubMed  Google Scholar 

  • McCarthy MM (2008) Estradiol and the developing brain. Physiol Rev 88:91–124

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCormick CM, Witelson SF (1991) A cognitive profile of homosexual men compared to heterosexual men and women. Psychoneuroendocrinology 16:459–473

    CAS  PubMed  Google Scholar 

  • McCormick CM, Witelson SF, Kingstone E (1990) Left-handedness in homosexual men and women: neuroendocrine implications. Psychoneuroendocrinology 15:69–76

    CAS  PubMed  Google Scholar 

  • McEwen BS Lieberburg I, Chaptal C et al (1977) Aromatization: important for sexual differentiation of the neonatal rat brain. Horm Behav 9:249–263

    CAS  PubMed  Google Scholar 

  • Meek LR, Schulz KM, Keith CA (2006) Effects of prenatal stress on sexual partner preference in mice. Physiol Behav 89:133–138

    CAS  PubMed  Google Scholar 

  • Merkx J (1984) Effect of castration and subsequent substitution with testosterone, dihydrotestosterone and oestradiol on sexual preference behaviour in the male rat. Behav Brain Res 11:59–65

    CAS  PubMed  Google Scholar 

  • Meyer-Bahlburg HF (1977) Sex hormones and male homosexuality in comparative perspective. Arch Sex Behav 6:297–325

    CAS  PubMed  Google Scholar 

  • Meyer-Bahlburg HF (1979) Sex hormones and female homosexuality: a critical examination. Arch Sex Behav 8:101–119

    CAS  PubMed  Google Scholar 

  • Meyer-Bahlburg HF, Ehrhardt AA, Rosen LR et al (1995) Prenatal estrogens and the development of homosexual orientation. Develop Psyc 31:12–21

    Google Scholar 

  • Meyer-Bahlburg HF, Gruen RS, New MI et al (1996) Gender change from female to male in classical congenital adrenal hyperplasia. Horm Behav 30:319–332

    CAS  PubMed  Google Scholar 

  • Meyer-Bahlburg HF, Dolezal C, Baker SW et al (2008) Sexual orientation in women with classical or non-classical congenital adrenal hyperplasia as a function of degree of prenatal androgen excess. Arch Sex Behav 37:85–99

    PubMed  Google Scholar 

  • Money J (1975) Ablatio penis: normal male infant sex-reassigned as a girl. Arch Sex Behav 4:65–71

    CAS  PubMed  Google Scholar 

  • Mustanski BS, Chivers ML, Bailey JM (2002) A critical review of recent biological research on human sexual orientation. Annu Rev Sex Res 13:89–140

    PubMed  Google Scholar 

  • Mustanski BS, Dupree MG, Nievergelt CM et al (2005) A genomewide scan of male sexual orientation. Hum Genet 116:272–278

    CAS  PubMed  Google Scholar 

  • Neave N, Menaged M, Weightman DR (1999) Sex differences in cognition: the role of testosterone and sexual orientation. Brain Cogn 41:245–262

    CAS  PubMed  Google Scholar 

  • Noller KL, Fish CR (1974) Diethylstilbestrol usage: its interesting past, important present and questionable future. Med Clin North Am 58:793–810

    CAS  PubMed  Google Scholar 

  • Peplau LA, Huppin M (2008) Masculinity, femininity and the development of sexual orientation in women. In Mathy R (ed) Childhood gender nonconformity and the development of adult homosexuality, 1st edn. Haworth, Binghamton, pp 147–167

    Google Scholar 

  • Perkins A, Fitzgerald JA (1992) Luteinizing hormone, testosterone, and behavioral response of male-oriented rams to estrous ewes and rams. J Anim Sci 70:1787–1794

    CAS  PubMed  Google Scholar 

  • Peters M, Reimers S, Manning JT (2006) Hand preference for writing and associations with selected demographic and behavioral variables in 255,100 subjects: the BBC internet study. Brain Cogn 62:177–189

    PubMed  Google Scholar 

  • Pfaus JG, Kippin TE, Coria-Avila G (2003) What can animal models tell us about human sexual response? Annu Rev Sex Res 14:1–63

    PubMed  Google Scholar 

  • Phoenix CH, Goy RW, Gerall AA (1959) Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 65:369–382

    CAS  PubMed  Google Scholar 

  • Pillard RC, Bailey JM (1995) A biologic perspective on sexual orientation. Psychiatr Clin North Am 18(1):1871–1884

    Google Scholar 

  • Pillard RC, Rose RM, Sherwood M (1974) Plasma testosterone levels in homosexual men. Arch Sex Behav 3:453–458

    CAS  PubMed  Google Scholar 

  • Pillard RC, Poumadere J, Carretta RA (1981) Is homosexuality familial? A review, some data, and a suggestion. Arch Sex Behav 10:465–475

    CAS  PubMed  Google Scholar 

  • Pillard RC, Poumadere J, Carretta RA (1982) A family study of sexual orientation. Arch Sex Behav 11:511–520

    CAS  PubMed  Google Scholar 

  • Poiani A (ed) (2010) Animal Homosexuality: A Biosocial Perspective. Cambridge University Press, New York

    Google Scholar 

  • Popova NK, Morozova MV, Amstislavskaya TG (2011) Prenatal stress and ethanol exposure produces inversion of sexual partner preference in mice. Neurosci Lett 489:48–52

    CAS  PubMed  Google Scholar 

  • Rahman Q 2005 Fluctuating asymmetry, second to fourth finger length ratios and human sexual orientation. Psychoneuroendocrinology 30:382–391

    PubMed  Google Scholar 

  • Rahman Q, Koerting J (2008) Sexual orientation-related differences in allocentric spatial memory tasks. Hippocampus 18:55–63

    PubMed  Google Scholar 

  • Rahman Q, Wilson GD (2003) Sexual orientation and the 2nd to 4th finger length ratio: evidence for organising effects of sex hormones or developmental instability? Psychoneuroendocrinology 28:288–303

    CAS  PubMed  Google Scholar 

  • Rahman Q, Wilson GD, Abrahams S (2003) Sexual orientation related differences in spatial memory. J Int Neuropsychol Soc 9:376–383

    PubMed  Google Scholar 

  • Rahman Q, Collins A, Morrison M et al (2008) Maternal inheritance and familial fecundity factors in male homosexuality. Arch Sex Behav 37:962–969

    PubMed  Google Scholar 

  • Rieger G, Chivers ML, Bailey JM (2005) Sexual arousal patterns of bisexual men. Psychol Sci 16:579–584

    PubMed  Google Scholar 

  • Risse GL, LeDoux J, Springer SP et al (1978) The anterior commissure in man: functional variation in a multisensory system. Neuropsychologia 16:23–31

    CAS  PubMed  Google Scholar 

  • Robinson SJ, Manning JT (2000) The ratio of 2nd to 4th digit length and male homosexuality. Evol Hum Behav 21:333–345

    PubMed  Google Scholar 

  • Roselli CE, Larkin K, Resko JA et al (2004) The volume of a sexually dimorphic nucleus in the ovine medial preoptic area/anterior hypothalamus varies with sexual partner preference. Endocrinology 145:478–483

    CAS  PubMed  Google Scholar 

  • Roselli CE, Reddy RC, Kaufman KR (2011) The development of male-oriented behavior in rams. Front Neuroendocrinol 32:164–169

    PubMed Central  PubMed  Google Scholar 

  • Savic I, Lindström P (2008) PET and MRI show differences in cerebral asymmetry and functional connectivity between homo- and heterosexual subjects. Proc Natl Acad Sci U S A 105:9403–9408

    CAS  PubMed Central  PubMed  Google Scholar 

  • Savic I, Berglund H, Lindström P (2005) Brain response to putative pheromones in homosexual men. Proc Natl Acad Sci U S A 102:7356–7361

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt G, Clement U (1990) Does peace prevent homosexuality? Arch Sex Behav 19:183–187

    CAS  PubMed  Google Scholar 

  • Schulz KM, Zehr JL, Salas-Ramirez KY et al (2009) Testosterone programs adult social behavior before and during, but not after, adolescence. Endocrinology 150:3690–3698

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sell RL, Wells JA, Wypij D (1995) The prevalence of homosexual behavior and attraction in the United States, the United Kingdom and France: results of national population-based samples. Arch Sex Behav 24:235–248

    CAS  PubMed  Google Scholar 

  • Simerly RB (2002) Wired for reproduction: organization and development of sexually dimorphic circuits in the mammalian forebrain. Ann Rev Neurosci 25:507–536

    CAS  PubMed  Google Scholar 

  • Swaab DF, Hofman MA (1990) An enlarged suprachiasmatic nucleus in homosexual men. Brain Res 537:141–148

    CAS  PubMed  Google Scholar 

  • Swaab DF, Roozendaal B, Ravid R (1987) Suprachiasmatic nucleus in aging, Alzheimer’s disease, transsexuality and Prader-Willi syndrome. In de Kloet ER, Wiegant VM, de Wied D (eds), Neuropeptides and brain function, Progress in brain research, vol. 72, 2nd edn. Elsevier, Amsterdam, pp 301–311

    Google Scholar 

  • Swaab DF, Hofman MA, Honnebier MB (1990) Development of vasopressin neurons in the human suprachiasmatic nucleus in relation to birth. Brain Res Dev Brain Res 52:289–293

    CAS  PubMed  Google Scholar 

  • Swaab DF, Slob AK, Houtsmuller EJ et al (1995) Increased number of vasopressin neurons in the suprachiasmatic nucleus (SCN) of ‘bisexual’ adult male rats following perinatal treatment with the aromatase blocker ATD. Brain Res Dev Brain Res 85:273–279

    CAS  PubMed  Google Scholar 

  • Tanner JM (1986) Normal growth and techniques of growth assessment. Clin Endocrinol Metab 15:411–451

    CAS  PubMed  Google Scholar 

  • Triana-Del Rio R, Montero-Domínguez F, Cibrian-Llanderal T et al (2011) Same-sex cohabitation under the effects of quinpirole induces a conditioned socio-sexual partner preference in males, but not in female rats. Pharmacol Biochem Behav 99:604–613

    CAS  PubMed  Google Scholar 

  • Vega Matuszczyk J, Larsson K (1995) Sexual preference and feminine and masculine sexual behavior of male rats prenatally exposed to antiandrogen or antiestrogen. Horm Behav 29:191–206

    CAS  PubMed  Google Scholar 

  • Vega Matuszczyk J, Fernandez-Guasti A, Larsson K (1988) Sexual orientation, proceptivity, and receptivity in the male rat as a function of neonatal hormonal manipulation. Horm Behav 22:362–378.

    CAS  PubMed  Google Scholar 

  • Veniegas, RC, Conley TD (2000) Biological research on women’s sexual orientations: evaluating the scientific evidence. J Soc Issues 56:267–282

    Google Scholar 

  • Vigil P, Orellana RF, Cortés ME et al (2011) Endocrine modulation of the adolescent brain: a review. J Pediatr Adolesc Gynecol 24:330–337

    PubMed  Google Scholar 

  • Vito CC, Fox TO (1981) Androgen and estrogen receptors in embryonic and neonatal rat brain. Brain Res 254:97–110

    CAS  PubMed  Google Scholar 

  • Wang CT, Shui HA, Huang RL et al (2006) Sexual motivation is demasculinized, but not feminized, in prenatally stressed male rats. Neuroscience 138:357–364

    CAS  PubMed  Google Scholar 

  • Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551–577

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whalen RE (1974) Estrogen-progesterone induction of mating in female rats. Horm Behav 5:157–162

    CAS  PubMed  Google Scholar 

  • Whalen RE, Edwards DA (1967) Hormonal determinants of the development of masculine and feminine behavior in male and female rats Anat Rec 157:173–180.

    CAS  PubMed  Google Scholar 

  • Whalen RE, Olsen KL (1981) Role of aromatization in sexual differentiation: effects of prenatal ATD treatment and neonatal castration. Horm Behav 15:107–122

    CAS  PubMed  Google Scholar 

  • Willner P (1984) The validity of animal models of depression. Psychopharmacology (Berl) 83:1–16

    CAS  Google Scholar 

  • Willner P, Mitchell PJ (2002) The validity of animal models of predisposition to depression. Behav Pharmacol 13:169–188

    CAS  PubMed  Google Scholar 

  • Witelson SF, Kigar DL, Scamvougeras A (2008) Corpus callosum anatomy in right-handed homosexual and heterosexual men. Arch Sex Behav 37:857–863

    PubMed  Google Scholar 

  • Zucker KJ, Bradley SJ, Oliver G (1996) Psychosexual development of women with congenital adrenal hyperplasia. Horm Behav 30:300–318

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors wish to thank Rebeca Reyes (M.Sc.), Martha Luna (M.Sc.), and Héctor Vázquez Espinosa for technical support and Conacyt for fellowship (219853) to S.O.H.

Conflicts of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alonso Fernández-Guasti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Olvera-Hernández, S., Fernández-Guasti, A. (2015). Perinatal Administration of Aromatase Inhibitors in Rodents as Animal Models of Human Male Homosexuality: Similarities and Differences. In: Antonelli, M. (eds) Perinatal Programming of Neurodevelopment. Advances in Neurobiology, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1372-5_18

Download citation

Publish with us

Policies and ethics