Skip to main content

The Dynamical Analysis of Inter-Trial Fluctuations Near Goal Equivalent Manifolds

  • Conference paper
  • First Online:
Progress in Motor Control

Abstract

Using the concept of task manifolds, a number of data analysis methods have been used to explain how redundancy influences the structure of variability observed during repeated motor performance. Here we describe investigations that integrate the task manifold perspective with the analysis of Inter-Trial task dynamics. Goal equivalent manifolds (GEMs), together with optimal control ideas, are used to formulate simple models that serve as experimentally testable hypotheses on how Inter-Trial fluctuations are generated and regulated. In an experimental context, these phenomenological models allow us to show how error-correcting control is spatiotemporally organized around a given GEM. To illustrate our approach, we apply it to study the variability observed in a virtual shuffleboard task. The geometric stability properties of the Inter-Trial dynamics near the GEM are extracted from fluctuation time series data. We find that subjects exhibit strong control of fluctuations in an eigendirection transverse to the GEM, whereas they only weakly control fluctuations in an eigendirection nearly, but not exactly, tangent to it. We demonstrate that our dynamical analysis is robust under coordinate transformations, and discuss how our results support a generalized interpretation of the minimum intervention principle that suggests the involvement of competing costs in addition to goal-level error minimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Burge J, Ernst MO, Banks MS. The Statistical Determinants of Adaptation Rate in Human Reaching. Journal of Vision. 2008;8(4):1–19.

    Article  PubMed  Google Scholar 

  • Cohen R, Sternad D. Variability in Motor Learning: Relocating, Channeling and Reducing Noise. Experimental Brain Research. 2009;193(1):69–83.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cusumano JP, Cesari P. Body-Goal Variability Mapping in an Aiming Task. Biological Cybernetics. 2006;94(5):367–379.

    Article  PubMed  Google Scholar 

  • Cusumano JP, Dingwell JB. Movement Variability Near Goal Equivalent Manifolds: Fluctuations, Control, and Model-based Analysis. Human Movement Science. 2013;32(5):899–923.

    Article  PubMed  Google Scholar 

  • Daffertshofer A, Lamoth CCJ, Meijer OG, Beek PJ. PCA in Studying Coordination and Variability: A Tutorial. Clinical Biomechanics. 2004;19(4):415–428.

    Article  PubMed  Google Scholar 

  • Delignières D, Torre K. Fractal Dynamics of Human Gait: A Reassessment of the 1996 Data of Hausdorff et al. Journal of Applied Physiology. 2009;106(4):1272–1279.

    Article  PubMed  Google Scholar 

  • Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R. Neural Correlates of Reach Errors. The Journal of Neuroscience. 2005;25(43):9919–9931.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dingwell JB, Cusumano JP. Re-Interpreting Detrended Fluctuation Analyses of Stride-to-Stride Variability in Human Walking. Gait & posture. 2010;32(3):348–353.

    Google Scholar 

  • Dingwell JB, John J, Cusumano JP. Do Humans Optimally Exploit Redundancy to Control Step Variability in Walking? PLoS Computational Biology. 2010;6(7):e1000856.

    Article  Google Scholar 

  • Dingwell JB, Smallwood RF, Cusumano JP. Trial-to-trial Dynamics and Learning in a Generalized, Redundant Reaching Task. Journal of Neurophysiology. 2013;109(1):225–237.

    Article  PubMed  PubMed Central  Google Scholar 

  • Efron B, Tibshirani RJ. An Introduction to the Bootstrap. vol. 57 of CRC Monographs on Statistics & Applied Probability. Boca Raton, FL: Chapman & Hall; 1994.

    Google Scholar 

  • Eldar A, Elowitz MB. Functional Roles for Noise in Genetic Circuits. Nature. 2010;467(7312): 167–173.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Faisal AA, Selen LPJ, Wolpert DM. Noise in the Nervous System. Nature Reviews Neuroscience. 2008;9(4):292–303.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Freedman DA. Bootstrapping Regression Models. The Annals of Statistics. 1981;9(6):1218–1228.

    Article  Google Scholar 

  • Gao J, Hu J, Tung WW, Cao Y, Sarshar N, Roychowdhury VP. Assessment of Long-Range Correlation in Time Series: How to Avoid Pitfalls. Physical Review E. 2006 January;73:016117.

    Google Scholar 

  • Golub GH, van Loan CF. Matrix Computations. Baltimore, MD: The John Hopkins University Press; 1996.

    Google Scholar 

  • Greenwood DT. Principles of Dynamics. Upper Saddle River, NJ: Prentice-Hall; 1988.

    Google Scholar 

  • Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. vol. 42 of Applied Mathematical Sciences. New York: Springer-Verlag; 1997.

    Google Scholar 

  • Harris CM, Wolpert DM. Signal-Dependent Noise Determines Motor Planning. Nature. 1998;394(6695):780–784.

    Article  PubMed  CAS  Google Scholar 

  • Hausdorff JM, Peng C, Ladin Z, Wei JY, Goldberger A. Is Walking a Random Walk? Evidence for Long-range Correlations in Stride Interval of Human Gait. Journal of Applied Physiology. 1995;78:349–349.

    PubMed  CAS  Google Scholar 

  • Hirsch MW, Smale S, Devaney RL. Differential Equations, Dynamical Systems, and an Introduction to Chaos. San Diego: Academic Press; 2004.

    Google Scholar 

  • John J, Cusumano JP. Inter-Trial Dynamics of Repeated Skilled Movements DETC2007-35380. ASME 2007 International Design Engineering Technical Conferences. 2007;p. 707–716.

    Google Scholar 

  • Latash ML, Scholz JP, Schöner G. Motor Control Strategies Revealed in the Structure of Motor Variability. Exercise & Sport Sciences Reviews. 2002;30(1):26–31.

    Article  Google Scholar 

  • Maraun D, Rust HW, Timmer J. Tempting Long-Memory: on the Interpretation of DFA Results. Nonlinear Processes in Geophysics. 2004;11(4):495–503.

    Google Scholar 

  • Mardia KV, Kent JT, Bibby JM. Multivariate Analysis. London: Academic Press; 1979.

    Google Scholar 

  • McDonnell MD, Ward LM. The Benefits of Noise in Neural Systems: Bridging Theory and Experiment. Nature Reviews Neuroscience. 2011;12(7):415–426.

    Article  PubMed  CAS  Google Scholar 

  • Mooney CZ, Duval RD. Bootstrapping: A Nonparametric Approach to Statistical Inference. vol. 95. Newbury Park, CA: Sage Publications; 1993.

    Google Scholar 

  • Moore EH, Barnard RW. General Analysis. Philadelphia, PA: American Philosophical Society; 1939.

    Google Scholar 

  • Müller H, Sternad D. Decomposition of Variability in the Execution of Goal-Oriented Tasks: Three Components of Skill Improvement. Journal of Experimental Psychology: Human Perception and Performance. 2004;30(1):212–233.

    PubMed  Google Scholar 

  • Oldfield RC. The Assessment and Analysis of Handedness: The Edinburgh Inventory. Neuropsychologia. 1971;9(1):97–113.

    Article  PubMed  CAS  Google Scholar 

  • Osborne LC, Lisberger SG, Bialek W. A Sensory Source for Motor Variation. Nature. 2005;437(7057):412–416.

    Article  PubMed  CAS  Google Scholar 

  • Peng CK, Buldyrev SV, Goldberger AL, Havlin S, Sciortino F, Simons M, et al. Long-Range Correlations in Nucleotide Sequences. Nature. 1992;356(6365):168–170.

    Google Scholar 

  • Poole D. Linear Algebra: A Modern Introduction. Boston, MA: Brooks/Cole; 2010.

    Google Scholar 

  • Ranganathan R, Newell K. Motor Learning Through Induced Variability at the Task Goal and Execution Redundancy Levels. Journal of Motor Behavior. 2010;42(5):307–316.

    Google Scholar 

  • Scholz JP, Schoner G. The Uncontrolled Manifold Concept: Identifying Control Variables For A Functional Task. Experimental Brain Research. 1999;126(3):289–306.

    Article  PubMed  CAS  Google Scholar 

  • Scholz JP, Schoner G, Latash ML. Identifying the Control Structure of Multijoint Coordination During Pistol Shooting. Experimental Brain Research. 2000;135(3):382–404.

    Article  PubMed  CAS  Google Scholar 

  • Schöner G, Scholz JP. Analyzing Variance in Multi-Degree-of-Freedom Movements: Uncovering Structure Versus Extracting Correlations. Motor Control. 2007;11(3):259–275.

    PubMed  Google Scholar 

  • Scott SH. Optimal Feedback Control and the Neural Basis of Volitional Motor Control. Nature Reviews Neuroscience. 2004;5(7):532–546.

    Article  PubMed  CAS  Google Scholar 

  • Stein RB, Gossen ER, Jones KE. Neuronal Variabiltiy: Noise or Part of the Signal? Nature Reviews Neuroscience. 2005;6(5):389–397.

    Article  PubMed  CAS  Google Scholar 

  • Sternad D, Abe MO, Hu X, Müller H. Neuromotor Noise, Error Tolerance and Velocity-Dependent Costs in Skilled Performance. PLoS Computational Biology. 2011;7(9):e1002159.

    Article  Google Scholar 

  • Todorov E. Optimality Principles in Sensorimotor Control. Nature Neuroscience. 2004;7(9): 907–915.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Todorov E, Jordan MI. Optimal Feedback Control as a Theory of Motor Coordination. Nature Neuroscience. 2002;5(11):1226–1235.

    Article  PubMed  CAS  Google Scholar 

  • van Beers RJ. Motor Learning Is Optimally Tuned to the Properties of Motor Noise. Neuron. 2009;63(3):406–417.

    Article  PubMed  Google Scholar 

  • Warren WH. The Perception-Action Coupling. In: Bloch H, Bertenthal BI, editors. Sensory-Motor Organizations and Development in Infancy and Early Childhood. Dortrecht, The Netherlands: Kluwer Academic; 1990. pp. 23–37.

    Book  Google Scholar 

  • Warren WH. The Dynamics Of Perception and Action. Psychological Review. 2006;113(2): 358–389.

    Article  PubMed  Google Scholar 

  • Wilcoxon F. Individual Comparisons by Ranking Methods. Biometrics Bulletin. 1945;1(6):80–83.

    Article  Google Scholar 

Download references

Acknowledgements

  Partial funding for this project was provided by National Institutes of Health grant 1-R03-HD058942-01 (to JBD) and by National Science Foundation grant 0625764 (to JPC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph P. Cusumano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Cusumano, J., Mahoney, J., Dingwell, J. (2014). The Dynamical Analysis of Inter-Trial Fluctuations Near Goal Equivalent Manifolds. In: Levin, M. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 826. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1338-1_9

Download citation

Publish with us

Policies and ethics